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1. Introduction

This report describes in further detail the usage of the real-time control systems
simulator presented in [Eker and Cervin, 1999]. Notice that some minor differ-
ences from the paper exist—some fields of the real-time kernel data structures
have changed names, the contents of the intitialization script is slightly changed,
etc.

2. Using the Toolbox

2.1 Creating a Computer-Controlled System
The Real-Time Kernel block models a computer with a real-time kernel. By con-
necting the inputs and outputs to a model of a physical plant, a computer-controlled
system is formed, see Figure 1. As also shown in the figure, it is often convenient

Figure 1 The inputs and outputs of the Real-Time Kernel blocks are connected to form a
computer-controlled system. The Real-Time Kernel block is conveniently placed in subsystem.

to put the Real-Time Kernel block and its connectors in a subsystem (here named
“Computer”).
Since all information about a Real-Time Kernel block is stored locally, it is possible
to include several kernel blocks in the same SIMULINK model.

The number of inputs and outputs of the kernel block is dynamic and depends on
the contents of the initialization function, which is given as a parameter to the
kernel block. The Mux and Demux blocks in Figure 1 must agree with the system
structure returned by the initialization function, rtsys. The number of inputs of
the kernel block is equal to rtsys.nbrOfInputs (given by the user). The number of
outputs of the kernel block is equal to

rtsys.nbrOfOutputs+ rtsys.nbrOfTasks(1+ rtsys.nbrOfMutexes)

(rtsys.nbrOfOutputs is given by the user, while rtsys.nbrOfTasks and
rtsys.nbrOfMutexes are determined by the simulator.) In short, the schedule gen-
erates rtsys.nbrOfTasks extra outputs, and so does each mutex graph. As an exam-
ple, consider again the system in Figure 1. If there were four tasks, three output
channels, and two mutexes, the number of outputs of the Demux block could be
specified as [1 1 1 4 4 4]. Details about the rtsys structure are found in Sec-
tion 7.
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2.2 Running a Simulation
When running a simulation, the Real-Time Kernel block is treated like any other
discrete-time block in the SIMULINK model. At the start of a simulation, the ini-
tialization function of the kernel block is evaluated. During simulation, the code
segment functions of the tasks in the kernel are executed repeatedly.

The kernel block produces a schedule graph, where the execution of each task is
described by a signal. When the signal of a task is high, the task is running, and
when the signal is medium, the task is in the ready queue (but not running). When
the signal is low, the task is sleeping (or, to be more precise, not in the ready queue).
If there are mutexes in the system, each mutex produces a mutex graph, where the
locking of the mutex of each task is described by a signal. When the signal of a task
is high, the mutex is locked by the task, and when the signal is medium, the task
is waiting to lock the mutex. When the signal is low, the task is not attempting to
lock the mutex.

2.3 Hints
You might experience that nothing changes in the simulations, even though you
have made changes in the initialization or the code segment files. To make the
changes take effect, issue the command

>> clear functions

To force MATLAB to reload all functions at the start of each simulation, issue the
command (assuming that the model is named servo)

>> set_param(’servo’,’StartFcn’,’clear functions’)

and save the model.

Similarly, you can attach plot functions and other functions at the end of a simula-
tion:

>> set_param(’servo’,’StopFcn’,’plotresults’)

3. Writing a Code Segment

The code of a task is built from a number of code segments, which are executed in
sequence every period. Often, one or two code segments are enough to model the
timely behavior of a control task.

A code segment is implemented as a MATLAB function. The function is called twice
during the simulated execution of a segment, once to execute the enterCode, and
once to execute the exitCode.

The syntax of a code segment is best illustrated by a small example. Consider the
following segment that implements a P-controller:

function [exectime,states] = pController(flag,states,params)
switch flag,

case 1, % enterCode
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r = analogIn(1);
y = analogIn(2);
states.u = params.K*(r-y);
exectime = 0.002;

case 2, % exitCode
analogOut(1,states.u)

end

The flag indicates which part should be executed, while states and params are
user-defined data structures. In this example, the control signal u is a state, and
the controller gain K is a parameter.

When flag=1 (enterCode), the function should return [exectime,states], i.e. the
execution time of the segment and the new states. When flag=2 (exitCode), the
function should return nothing. Note that assigning new states in the exitCode has
no effect.

analogIn and analogOut are real-time primitives. Further primitives include func-
tions to change the task attributes dynamically, and resource-access primitives. A
complete list is found in Section 9.

Generally, all computations should be placed in the enterCode. The exitCode could
be used to write new output signals, unlock resources, and perhaps to change task
attributes (priority, deadline, etc.) before the next segment.

4. Writing an Initialization Function

The initialization function defines the tick-size of the kernel (i.e. the resolution of
the simulation), what scheduling policy should be used, the number of input and
output channels, and the tasks that should execute in the kernel. Optionally, the
user may also define mutexes and events, and set the initial values of the output
channels.

Consider the following example, where two PID control tasks are created:

function rtsys = mymodel_init
%% General settings
rtsys.tickSize = 0.001;
rtsys.prioFun = ’prioEDF’;
rtsys.nbrOfInputs = 4;
rtsys.nbrOfOutputs = 2;
%% Create control tasks
T = 0.005; % Sampling period = deadline
states = ...
params = ...
pidCode1 = code({’pid’},states,params);
pidTask1 = task(’pidTask1’,pidCode1,T,T);
T = 0.010; % Sampling period = deadline
states = ...
params = ...
pidCode2 = code({’pid’},states,params);
pidTask2 = task(’pidTask2’,pidCode2,T,T);
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rtsys.tasks = {pidTask1,pidTask2};

The initialization function returns a data structure, rtsys. A complete description
of this structure is found in Section 7.

A task is created in two steps. First, a code structure is created by a call to code.
The first argument is a list of code segments. The second and third arguments are
arbitrary data structures that give the initial states and the parameters of the code.

Next, a task structure is created by a call to task. The supplied arguments are a
name, the code structure, the period, and the relative deadline. As optional argu-
ments, a release offset and a fixed priority may also be given. Further details about
the code and task functions are found in Section 8.

5. Writing a Priority Function

At each clock tick, the kernel sorts the tasks in the ready queue and selects the
highest-priority task to be the running task. The priority of each task is determined
dynamically through a call to priority function, which is specified in the initializa-
tion script. The function may perform any calculation on the task attributes, in-
cluding the code attributes. For a complete description of the data structures, see
Section 7.

It should be noted that a low priority value denotes a high priority.

Consider for instance the predefined priority-function for earliest-deadline-first schedul-
ing, prioEDF:

function prio = prioEDF(task)
prio = task.release + task.deadline;

The function returns the absolute deadline of the task, which is computed as the
release-time plus the relative deadline. The earlier the absolute deadline, the higher
the priority will be.

As another example, assume that all tasks in a system has a state error that
keeps track of the current control error. The user could define a priority function
that gives the highest priority to the task with the largest control error:

function prio = prioError(task)
prio = -task.code.states.error;

(It turns out that this is generally not a very good scheduling policy for a set of
control tasks.)

6. Examples

Three examples are included in the simulator archive. The first example concerns
PID control of DC servos, the second describes sub-task scheduling of control tasks,
and the third describes the use of mutexes and events.
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6.1 PID Control of DC Servos
Consider PID control of a DC servo, described by the continuous-time transfer func-
tion

G(s) = 1000
s(s+ 1) .

One possible discrete-time implementation of the PID controller, that includes fil-
tering of the derivative part, is

P(t) = K(r(t) − y(t)),

I(t) = I(t− h) + Kh
Ti
(r(t) − y(t)),

D(t) = ad D(t− h) + bd(y(t− h) − y(t)),
u(t) = P(t) + I(t)+ D(t),

where ad = Td
Nh+Td

and bd = N KTd
Nh+Td

.

The controller is designed (i.e. K , Ti, and Td are chosen) to give the system the
closed-loop bandwidth ω c = 20 rad/s and the relative damping ζ = 0.7.

Code Segment The controller is implemented as a single code segment (pid.m):

function [exectime,s] = pid(flag,s,p)
switch flag,

case 1, % enterCode
r = analogIn(p.rChan);
y = analogIn(p.yChan);
P = p.K*(r-y);
I = s.Iold+p.K*p.h/p.Ti*(r-y);
D = p.Td/(p.N*p.h+p.Td)*s.Dold+p.N*p.K*p.Td/(p.N*p.h+p.Td)*(s.yold-y);
s.u = P + I + D;
s.Iold = I;
s.Dold = D;
s.yold = y;
exectime = 0.002;

case 2, % exitCode
analogOut(p.uChan,s.u);

end

Initialization Function In the SIMULINK model servo.mdl, a single DC servo
should be controlled by a single PID control task. The model in shown in Figure 2.
The corresponding initialization function looks like this (servo_init.m):

function rtsys = servo_init

%% General settings
rtsys.tickSize = 0.001;
rtsys.prioFun = ’prioRM’;
rtsys.nbrOfInputs = 2;
rtsys.nbrOfOutputs = 1;
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Figure 2 Example 1a. One DC Servo.

%% Create control task
T = 0.006; % Sampling period
states.Iold = 0;
states.Dold = 0;
states.yold = 0;
params.K = 0.96;
params.Ti = 0.12;
params.Td = 0.049;
params.N = 10;
params.rChan = 1;
params.yChan = 2;
params.uChan = 1;
params.h = T;
pidCode = code({’pid’}, states, params);
pidTask = task(’pidTask’, pidCode, T, T);
rtsys.tasks = {pidTask};

Single-Servo Experiments The following experiments illustrate the effects of
sampling period and computational delay on control performance. Try the following:

1. Simulate the system for 2 seconds. Verify that the controller behaves as ex-
pected. Notice the computational delay of 2 ms in the control signal.

2. Increase the execution time of the PID controller to 6 ms (edit pid.m) and run
another simulation. Notice that the performance gets worse.

3. Change the execution time back to 2 ms, and instead change the sampling pe-
riod, first to 12 ms, then to 18 ms and run new simulations (edit servo_init.m).
Notice that the response is oscillatory when T = 12 ms and that the system
is very close to unstable when T = 18 ms.

Multiple-Servo Experiments The following experiments illustrate that control
performance and scheduling performance (i.e. the ability to meet deadlines) are
completely different things. In the SIMULINK model threeservos.mdl, three DC
servos should be controlled by three PID control tasks executing in a single CPU.
The model is shown in Figure 3. The corresponding initialization function is called
threeservos_init.m. The controllers have the sampling periods 6 ms, 5 ms, and
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Figure 3 Example 1b. Three DC servos.

4 ms respectively. Since the execution time of the PID controller is 2 ms, the system
is overloaded:

U =
∑

i

Ci

Ti
= 2

6
+ 2

5
+ 2

4
= 1.23 > 1.

Try the following:

1. Set the scheduling type to rate-monotonic (prioRM) and simulate the system
for 2 seconds. Notice that Task 1 misses its deadlines and that the correspond-
ing control loop becomes unstable. A plot of the results from the simulation is
shown in Figure 4.

2. Change the scheduling type to earliest-deadline-first (prioEDF) and run an-
other simulation. After an initial transient, all tasks miss their deadlines. The
performance of all control loops is satisfactory, however. A plot of the results
from the simulation is shown in Figure 5.

6.2 Sub-Task Scheduling of Control Tasks
This example illustrates that by scheduling the two main parts of a control algorithm—
Calculate Output and Update State—as separate tasks, the performance of a set of
control tasks may be improved, see [Cervin, 1999].
In the SIMULINK model improved.mdl, three inverted pendulums should be con-
trolled by three control tasks executing in the computer. The model is shown in
Figure 6.

The pendulum process is given by the continuous-time state-space description

dx
dt
=
[

0 1

1 0

]
+
[

0

1

]
y = [ 1 0 ]
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Figure 4 Simulation of the three servo controllers under rate-monotonic scheduling. Task 1
misses all its deadlines and the corresponding control loop is unstable.
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Figure 5 Simulation of the three servo controllers under earliest-deadline-first scheduling.
After an initial transient, all tasks miss all their deadlines, but the performance is satisfactory
for all controllers.

Each pendulum controller has a different closed-loop specification and a different
sampling interval. A discrete-time state-feedback controller with an observer (with
direct term) is given by

x̂(kek) = (I − KC)(Φ x̂(k− 1ek− 1) + Γu(k− 1)) + K y(k)
u(k) = −Lx̂(kek)

The calculations can be rearranged to minimize the computational delay. Introduce
the controller state w(k) = x̂ − K y(k). The controller can now be written (see
Problem 4.7 in [Åström and Wittenmark, 1997])

w(k+ 1) = Φ0w(k) + Γ0 y(k)
u(k) = C0w(k) + D0 y(k)
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where

Φ0 = (I − KC)(Φ − Γ L) Γ0 = (I − KC)(Φ − Γ L)K
C0 = −L D0 = −LK

Code Segments Two code segments capture the timely behavior of the controller.
In the first segment, calculateOutput, the measurement signal is read, the control
signal is computed, and the control signal is sent to the process. The execution time
of the segment is 10 ms:

function [exectime,states] = calculateOutput(flag,states,params)
switch flag,

case 1, % enterCode
states.y = analogIn(params.inChan);
states.u = states.C0w + params.D0*states.y;
exectime = 0.010;

case 2, % exitCode
analogOut(params.outChan,states.u);
setPriority(params.P_US);

end

Under arbitrary fixed-priority (FP) scheduling, the setPriority kernel call is used
to set the priority of the next segment (updateState). Note that the priority number
is used only if FP scheduling has been specified. If rate-monotonic (RM) scheduling
is used, it is the period alone that decides the priority of the task.

In the second segment, updateState, the states of the controller are updated. The
execution time of this segment is 18 ms:

function [exectime,states] = updateState(flag,states,params)
switch flag,

case 1, % enterCode
states.w = params.Phi0 * states.w + params.Gamma0 * states.y;
states.C0w = params.C0 * states.w;
exectime = 0.018;

case 2, % exitCode
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setPriority(params.P_CO);
end

Again, under FP scheduling, setPriority is used to set the priority of the next
segment (calculateOutput).

Initialization Function In the initialization function improved_init.m, three
pendulum controllers are created. If rate-monotonic scheduling (prioRM) is specified,
both code segments will execute at the same priority (according to the task period).
If fixed-priority scheduling (prioFP) is specified, all Calculate Output segments get
higher priorities (P_CO) than the Update State parts (P_US).

function rtsys = improved_init

%% General settings
rtsys.tickSize = 0.001;
rtsys.prioFun = ’prioRM’; % Normal, rate-monotonic scheduling
% rtsys.prioFun = ’prioFP’; % Improved, dual-priority scheduling
rtsys.nbrOfInputs = 3;
rtsys.nbrOfOutputs = 3;

%% Create control tasks
omega = [3 5 7]; % Closed-loop bandwidths
T = [0.167 0.100 0.071]; % Sampling periods
P_CO = [3 2 1]; % Priorities for Calculate Output
P_US = [6 5 4]; % Priorities for Update State
rtsys.tasks = {};
for i = 1:3

% Design controller
[Phi,Gamma,C,L,K] = penddesign(omega(i),T(i));
% Initialize the controller
states.w = [0 0]’;
states.C0w = 0;
params.Phi0 = (eye(2)-K*C)*(Phi-Gamma*L);
params.Gamma0 = params.Phi0*K;
params.C0 = -L;
params.D0 = -L*K;
params.P_CO = P_CO(i);
params.P_US = P_US(i);
params.inChan = i;
params.outChan = i;
rcode = code({’calculateOutput’,’updateState’}, states, params);
rtask = task([’Regul’ num2str(i)], rcode, T(i), T(i), 0, P_CO(i));
rtsys.tasks = {rtsys.tasks{:} rtask};

end

Experiements The following experiments verify that smaller loss can be obtained
using sub-task scheduling.

1. Set the scheduling type to prioRM. This causes both segments of each con-
troller, Calculate Output and Update State, to execute at the same priority.
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Simulate the system for 10 seconds and record the control performance loss
J for the different controllers.

2. Change the scheduling type to prioFP. This causes the different segments to
execute at different priorities. Run another simulation and record J. Verify
that the loss is significantly smaller for Controller 1 and 2. (Controller 3
has the same loss, since it its Calculate Output part always has the highest
priority.)

6.3 Resources
This example illustrates how monitors can be implemented in the simulator. Two
first-order systems should be controlled by two control tasks, rTask and oTask. The
model is shown in Figure 7. The tasks share a common resource, the data variable,
which is protected by a mutex, Mutex1.

Code Segments The code of the first task, rTask, consists of two code segments,
rSeg1 and rSeg2. In the first segment, the task attempts to lock the mutex and
then read the value of the data variable. If the value is less than 2, the task waits
for the monitor event Event1 before attempting to read the value again. The second
segment implements a simple P controller.

function [exectime,states] = rseg1(flag,states,params)
switch flag,

case 1, % enterCode
if lock(’Mutex1’) == 0
exectime = 0;
return

end
if readData(’Mutex1’) < 2
await(’Event1’)
exectime = 0;
return

end
exectime = 0.003;

13



case 2, % exitCode
unlock(’Mutex1’)

end

function [exectime,states] = rseg2(flag,states,params)
switch flag,

case 1, % enterCode
y = analogIn(params.inChannel);
states.u = -50*y;
exectime = 0.003;

case 2, % exitCode
analogOut(params.outChannel,states.u)

end

The second task, oTask, also consists of two segments. The first segment, oseg1,
implements a simple code segment. In the second segment, oseg2, the task attempts
to lock the mutex and then increase the value of the data variable. Before leaving
the monitor, the task causes the event Event1, signaling to the other task that the
data value has changed.

function [exectime,states] = oseg1(flag,states,params)
switch flag,

case 1, % enterCode
y = analogIn(params.inChannel);
states.u = -20*y;
exectime = 0.002;

case 2, % exitCode
analogOut(params.outChannel,states.u)

end

function [exectime,states] = oseg2(flag,states,params)
switch flag,

case 1, % enterCode
if lock(’Mutex1’) == 0
exectime = 0;
return

end
data = readData(1);
writeData(1,data+1)
exectime = 0.003;

case 2, % exitCode
cause(’Event1’)
unlock(’Mutex1’)

end

Initialization Function The initialization function is listed below:

function rtsys = resources_init

%% General settings
rtsys.tickSize = 0.001;
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rtsys.prioFun = ’prioRM’;
rtsys.nbrOfInputs = 2;
rtsys.nbrOfOutputs = 2;

%% Create tasks
rsegs = {’rseg1’ ’rseg2’};
rParams.inChannel = 1;
rParams.outChannel = 1;
rcode = code(rsegs,[],rParams);
rtask = task(’Regul’, rcode, 0.012, 0.012);
osegs = {’oseg1’ ’oseg2’};
oParams.inChannel = 2;
oParams.outChannel = 2;
ocode = code(osegs,[],oParams);
otask = task(’OpCom’, ocode, 0.017, 0.017);
rtsys.tasks = {rtask otask};

%% Create mutexes
data = 0;
m1 = mutex(’Mutex1’,data);
rtsys.mutexes = {m1};

%% Create events
e1 = event(’Event1’,’Mutex1’);
rtsys.events = {e1};

7. The Kernel Data Structures

The main data structure of the kernel is called rtsys. When the simulation starts,
the rtsys structure is initialized by a call to the user-supplied initialization func-
tion. Further initialization is performed by the kernel S-function. Between simu-
lation steps, the rtsys structure is stored in the UserData field of the Real-Time
Kernel SIMULINK block.

7.1 The rtsys structure

The following fields of the rtsys structure must be supplied by the user in the
initialization function:

tickSize The tick-size of the kernel, in seconds.
prioFun The name of the priority function used for scheduling. Prede-

fined priority functions are prioRM for rate-monotonic, prioDM
for deadline-monotonic, prioFP for arbitrary fixed-priority, and
prioEDF for earliest-deadline-first scheduling.

nbrOfInputs The number of input channels.
nbrOfOutputs The number of output channels.
tasks A cell array containing task structures.

The following fields of the rtsys structure are optionally created by the user in the
initialization function:
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mutexes A cell array containing mutex structures.
events A cell array containing event structures.
outputs A vector containing initial outputs. If this field is not supplied

by the user, the initial outputs are assumed to be zero.

The following fields of the rtsys structure are supplied and maintained by the
kernel itself:

nbrOfTasks The number of tasks in the kernel.
nbrOfMutexes The number of mutexes.
nbrOfEvents The number of events.
timeQ A vector containing the indexes of the tasks that are waiting

for the next release.
readyQ A vector containing the indexes of the tasks that are ready to

execute, including the running one.
running The index of the running task, 0 if none.
inputs A vector containing the inputs from the environment.

7.2 The task Structure

A task structure has the following fields:

name The name of the task.
code The code structure
period The period, in seconds.
deadline The relative deadline, in seconds.
release The time of the current release of the task. It is updated by the

kernel after each completion of the task.
priority The priority. This field must be present only if arbitrary fixed-

priority (prioFP) scheduling is specified.

7.3 The code Ctructure

A code structure has the following fields:

segs A cell array containing the names of the files in which the code
segments are located.

nbrOfSegs The number of code segments.
currentSeg The index of the current segment.
nextSeg The index of the next segment to be executed.
execTime Execution time left before the current segment has completed.
states A user-defined data structure containing the controller states.
params A user-defined data structure containing the controller param-

eters.

7.4 The mutex Structure

A mutex structure has the following fields:
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name The name of the mutex.
heldBy The index of the task holding the mutex, 0 if none.
waiting An array containing the indexes of the tasks waiting to lock the

mutex.

7.5 The event Structure

An event structure has the following fields:

name The name of the event.
mutex The mutex associated with the event, if any.
waiting An array containing the indexes of the tasks awaiting the event.

8. Initialization Functions

The following functions are used to create the initial data structures in the initial-
ization script.

8.1 code

Purpose Create a code structure.

Syntax c = code(segments,states,params)

Description code is used to create a code structure in the initialization script.
segments is a cell array containing the names of the code seg-
ments that are to be executed. states and params are any user-
defined data structures.

Example regulCode = code({’calculate’,’update’},states,params);

8.2 task

Purpose Create a task structure.

Syntax o = task(name,code,period,deadline)

o = task(name,code,period,deadline,offset)

o = task(name,code,period,deadline,offset,priority)

Description task is used to create a task structure in the initialization script.
code is a code structure that is to be associated with the task.
period and deadline give the period and the relative deadline of
the task, in seconds. offset specifies a release offset for the task,
in seconds. The default offset is zero. If arbitrary fixed-priority
scheduling (prioFP) is used, priority should contain the priority
of the task. Note that a low number denotes a high priority.

Example regulTask = task(’Regul 1’,regulCode,0.020,0.020);
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8.3 mutex

Purpose Create a mutex structure.

Syntax o = mutex(name)

o = mutex(name,data)

Description mutex is used to create a mutex structure in the initialization
script. The mutex is initially unlocked. data is used to supply a
user-defined data structure that is to be protected mutex.

Example parMutex = mutex(’parMutex’,regPars);

8.4 event

Purpose Create an event structure.

Syntax o = event(name,mutex)

Description event is used to create an event structure in the initialization
script. The event is associated with the mutex structure mutex.

Example parMutex = mutex(’parMutex’,regPars);
parChange = event(’parChange’,parMutex);

Limitations There is currently no support for “free” events, i.e. events that are
not associated with any mutex.

9. Real-Time Primitives

The following functions may be called from the used-defined code segments.

9.1 analogIn

Purpose Read an input signal.

Syntax y = analogIn(inputNbr)

Description This function is typically called from the enterCode.

analogIn reads an input signal from the environment. inputNbr
must be a number between 1 and the rtsys.nbrOfInputs.

Example y = analogIn(params.yChan);
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9.2 analogOut

Purpose Write an output signal.

Syntax analogOut(outputNbr, u)

Description This function is typically called from the exitCode.

analogOut writes a new output signal to the environ-
ment. outputNbr must be a number between 1 and
rtsys.nbrOfOutputs.

Example analogOut(params.outChan, states.u)

9.3 lock

Purpose Attempt to lock a mutex.

Syntax status = lock(mutexName)

Description This function must be called from the enterCode.

If the lock succeeded, lock returns 1, and the task may continue
to execute the code segment.

If the lock failed, lock returns 0. The task is removed from the
ready queue and is inserted into the waiting queue of the mu-
tex. The code segment function must immediately return with an
execution time of 0 since the task is no longer running. When
the mutex is later unlocked, the task will be inserted into the
ready queue again. When the task eventually becomes running,
the same code segment will be executed again, causing a new
attempt to lock the mutex.

Example function [exectime,states] = mySeg(flag,states,param)
switch flag,

case 1, % enterCode
if lock(’Mutex1’) == 0

exectime = 0;
return

end
% Lock succeeded, we may continue...

Limitations Several tasks waiting for a mutex are handled in a FIFO manner.
No further resource access protocols have been implemented.

Execution times different from zero are not allowed when the lock
fails.
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9.4 unlock

Purpose Unlock a mutex.

Syntax unlock(mutexName)

Description This function must be called from the exitCode.

The mutex must be held by the task itself. unlock causes all tasks
waiting to lock the mutex to be moved to the ready queue. The
first task that becomes running will be able to lock the mutex
again.

Example unlock(’Mutex1’);

9.5 await

Purpose Await an event.

Syntax await(eventName)

Description This function must be called from the enterCode.

await is used to await an event inside a lock-unlock construct.
The task is removed from the running queue and is inserted into
the waiting queue of the event. The code segment function must
immediately return with an execution time of 0 since the task
is no longer running. When the event is later caused, the task
will be inserted into the waiting queue of the associated mutex.
When the mutex is unlocked, the task will be inserted into the
ready queue again. When the task eventually becomes running,
the same code segment will be executed again, causing a new
attempt to lock the mutex.

Example function [exectime,states] = mySeg(flag,states,param)
switch flag,

case 1, % enterCode
if lock(’Mutex1’) == 0

exectime = 0;
return

end
if readData(’Mutex1’) < 2

await(’Event1’);
exectime = 0;
return

end
% Condition fulfilled, we may continue...

Limitations Execution times different from zero are not allowed after an
await.
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9.6 cause

Purpose Cause an event.

Syntax cause(eventName)

Description This function must be called from the exitCode.

cause is used to cause an event inside a lock-unlock construct.
The mutex associated with the event must be held by the task
itself. It causes all tasks waiting for the event to be moved to the
waiting queue of the associated mutex.

Example cause(’Event1’);

9.7 readData

Purpose Read the data associated with a mutex.

Syntax data = readData(mutexName)

Description This function is typically called from the enterCode.

readData reads the data associated with a mutex inside a lock-
unlock construct. The mutex must be held by the task itself. If
no data has been associated with the mutex, the function returns
an empty vector.

Example data = readData(’Mutex1’);

9.8 writeData

Purpose Associate data with a mutex.

Syntax writeData(mutexName,data)

Description This function is typically called from the exitCode.

writeData associates user-defined data with a mutex inside a
lock-unlock construct. This provides a mean to communicate
data to other tasks. Any previous data is overwritten.

Example writeData(’Mutex1’,regPars);
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9.9 currentSegment

Purpose Get the number of current segment.

Syntax cs = currentSegment

Description cs = currentSegment gets the number of the current code seg-
ment. This function could be used to implement several code seg-
ments in a single M-file.

Example In the initialization script:

regulCode = code({’allInOne’,’allInOne’},states,params);

In the code segment:

function [exectime,states] = allInOne(flag,states,param)
switch currentSegment,

case 1, % Calculate Output
switch flag,

case 1, % enterCode
...

case 2, % Update State
switch flag,

case 1, % enterCode
...

9.10 setNextSegment

Purpose Set the next segment to be executed.

Syntax setNextSegment(segNbr)

Description setNextSegment sets the number of the next segment to be exe-
cuted, overriding the normal order. This could be used to imple-
ment data-dependent execution of code such as conditional loops.
segNbr must be a number between zero and nbrOfSegs. A seg-
ment number of zero means that no more segments should be
executed, and that the task should be suspended until the next
period.

Example setNextSegment(4);

9.11 currentTime

Purpose Get the current time.

Syntax now = currentTime

Description currentTime gets the current time in the simulation, in seconds.
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9.12 delayUntil

Purpose Delay the task until a point in time.

Syntax delayUntil(time)

Description This function must be called from the exitCode.

delayUntil delays the task until some point in time. It should
only be used to delay a task between code segments, since when
the last code segment has finished, the task is automatically de-
layed until the next period by the kernel.

9.13 delay

Purpose Delay the task for some time.

Syntax delay(duration)

Description This function must be called from the exitCode.

delay delays the task for some time. It is equivalent to
delayUntil(currentTime+duration).

9.14 setPeriod

Purpose Set the period of the task.

Syntax setPeriod(period)

Description This function must be called from the exitCode.

setPeriod changes the period attribute of the task. If rate-
monotonic scheduling (prioRM) is used, the task will have a dif-
ferent priority at the next clock-tick. The next release of the task
will be calculated using the new priority.

9.15 setDeadline

Purpose Set the relative deadline of the task.

Syntax setDeadline(deadline)

Description This function must be called from the exitCode.

setDeadline changes the relative deadline attribute of the task.
If deadline-monotonic scheduling (prioDM) or earliest-deadline-
first scheduling (prioEDF) is used, the task will have a different
priority at the next clock-tick.
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9.16 setPriority

Purpose Set the priority of the task.

Syntax setPriority(priority)

Description This function must be called from the exitCode.

setPriority changes the priority attribute of the task. This at-
tribute is only used if arbitrary fixed-priority scheduling (prioFP)
is used. Otherwise, this function has no effect.

9.17 sendMsg

Purpose Send a message to a task.

Syntax sendMsg(taskNbr,data)

sendMsg(taskName,data)

Description sendMsg sends user-defined data to a task. The message is put in
the message queue of the receiving task.

Example data.h = 0.020;
sendMsg(2,data)

9.18 receiveMsg

Purpose Attempt to receive a message.

Syntax receiveMsg

Description This function must be called from the enterCode.

receiveMsg gets the first message from the task’s message queue.
If there are no messages, the function returns an empty vector.

Example data = receiveMsg;
if ~isempty(data)

...
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