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Abstract— Faster-than-Nyquist (FTN) signaling is a trellis cod-
ing method that maintains the error rate while reducing signal
bandwidth. The combined effect is to move closer to capacity.
We study some basic receiver issues: How to model the signaling
efficiently in discrete time, how much the Viterbi receiver can
be truncated, and how to combine the method with an outer
code. The methods are modeling for minimum phase, minimum
distance calculation and receiver tests. Concatenated FTNin a
turbo equalization scenario proves to be a strong coding method.

I. I NTRODUCTION

This paper investigates the design and complexity of re-
ceivers when the transmission method is faster-than-Nyquist
(FTN) signaling, both by itself and in a turbo combination
with convolutional coding. The FTN method sends ordinary
linear modulation signals whose baseband form is

s(t) =
√

Es/T
∑

n

anh(t − nτT ), τ ≤ 1. (1)

Here an are M -ary independent and identically distributed
data symbol values with zero mean and unit variance,Es

is the average symbol energy, andh(t) is a unit-energy
baseband pulse, which for this paper we will assume is
orthogonal to shifts byT . This form underlies QAM, TCM,
and the subcarriers in orthogonal frequency division multiplex
(OFDM). In 1975 Mazo pointed out that binarysinc(t/T )
pulses in (1) could be sent “faster”, with symbol timeτT < T ,
without loss of signal minimum distance. The asymptotic
error probability is thus unaffected. This he called faster
than Nyquist signaling, because the pulses appear faster than
allowed by Nyquist’s orthogonality limit. The receiver thus
encounters intersymbol interference (ISI), and FTN can be
viewed as one of many ways to reduce bandwidth consumption
by means of intentional ISI.

FTN signaling has since been extended in many ways.
The modulation can be nonbinary, the pulses need not be
sinc(·), and in fact they need not be orthogonal at anyT .
An earlier study of receivers is [1]. Furthermore, the FTN
concept can be applied simultaneously in time and frequency:
Many signals of form (1) can be stacked in frequency more
closely than the orthogonal limit, to form an inphase and
quadrature array that still has the isolated-pulse asymptotic
error rate. More details may be found in [2]. In every case
there will be a closest packing (a smallestτ and/or a closest

subcarrier spacing) at which the minimum distance first falls
below the isolated pulse value. This is called theMazo limit
to signaling with thish(t) and alphabet. In this paper we
are concerned with time compression, binary{an}, and the
AWGN channel with noise densityN0/2, and so we are
interested in the smallestτ that yields asymptotic probability
Q(

√

2Eb/N0). The significance of the Mazo limit is that it
defines the narrowest linear modulation bandwidth that attains
the isolated-pulse probability ofh; if receiver complexity is
not a concern, no wider bandwidth need to be used. Note that
the limit is not set by orthogonality.

The paper first sets up a finite, discrete-time model for
the FTN signaling in Section II, and then estimates the
error performance of a truncated Viterbi receiver in Sec-
tion III. Modeling has some extra difficulties because the
usual whitened matched filter approach leads to an unsta-
ble whitener. Section IV then reports some receiver tests
for ordinary FTN signaling. Section V investigates a turbo
equalization scenario consisting of a convolutional encoder,
interleaver and FTN encoder in serial concatenation. It turns
out that there is a strong synergy among these three elements,
in which the convolutional coder/interleaver repairs the ISI
caused by the FTN’s bandwidth reduction and the FTN reduces
bandwidth. The result is a scheme that significantly reduces
both bandwidth and energy. Receiver tests are given.

II. D ISCRETE-TIME RECEIVER IMPLEMENTATION

FTN signaling is essentially a coded modulation that ma-
nipulates analog signals, but it is of course useful to reduce
the transmitter–receiver system to a system with discrete-time
samples, at the symbol rateτT . At least three such methods
can be employed.(i) The whitened matched filter(WMF)
receiver: A receive filter matched toh(t) is sampled each
τT , followed by a noise-whitening filter and then a Viterbi
algorithm (VA). Since the most interesting FTN systems have
infinite impulse response, the VA states must be truncated in
some way.(ii) h(t) is expressed as a superposition of narrower
orthogonal pulses, one eachτT (fractional sampling may be
necessary). A receive filter matched to the narrowband pulse
needs no whitening filter and its samples directly feed the
VA. (iii) The matched filter toh(t) is followed by the so-
called Ungerboeck receiver that accepts colored noise. We



have constructed all these receivers. What is essential is that
the VA work with a minimum-phase discrete model of the
channel: VA truncation and minimum phase are intimately
related. The first two receivers easily adapt to this and reduce
to a similar physical implementation. Method(ii) is probably
easier to design and we study it in a forthcoming paper. Here
we treat method(i).

The WMF receiver scenario comprises the following ele-
ments: Transmit Filterh(t)—AWGN—Receive Filterh(t)—
Sample atnτT—Whitening Filter—Reverse frame—VA. Data
symbols{an} enter the transmit filter as in (1). Both transmit
and receive filters are analog and matched toh(t) (assume
h is symmetric and centered at time 0); the whitening filter
is discrete-time. The sampler creates a discrete time model
of the channel and the FTN and its outputsr are sufficient
statistics for estimating{an}. They satisfyr = a ⋆ g + η; as
z-transforms this isR(z) = A(z)G(z) + N(z). Hereg is the
sampled autocorrelation function ofh(t),

gk =

∫

h(t)h(t + kτT ) dt (2)

and η is colored Gaussian with correlation sequenceg. The
whitening filter decorrelatesη and is constructed fromg by
spectral factorization of its all-zero z-transformG(z) into
V (z)V (1/z∗); for details see [3], [4]. After whitening by the
filter 1/V (1/z∗), what remains can be expressed as

r̃ = a ⋆ v + w, (3)

or R̃(z) = A(z)V (z) + W (z), wherew is white Gaussian
noise with varianceN0/2. The so-called WMF model of the
channel isV (z), andv represents causal ISI with the property
v[n] ⋆ v[−n] = g.

Many spectral factorizations are possible. Becauseg is
a correlation, the factorization can take place such that
V (1/z∗) has zeros strictly within the unit circle; the whitener
1/V (1/z∗) is thus stable1 and the channel model becomes
V (z) with all zeros outside the unit circle. This is in fact
the maximum phase model forg, which is a strong inconve-
nience for truncated decoders. However, it can effectivelybe
converted to a minimum phase model by decoding the signal
blocks backwards, and we assume this is done.

We thus can construct a practical whitener and minimum
phase discrete model provided that there existsV (z) with all
zeros outside the circle, but this is often not directly possible
with FTN signaling for a fundamental reason. Important
practical pulsesh(t), such as the root raised cosine (root RC),
have spectrum equal to zero outside a certain bandwidth; the
root RC pulse with excess bandwidth factorβ, for example, is
zero outside(1+β)/2T Hz. Under FTN signaling at the higher
rate 1/τT , this value shrinks in comparison to the folding
frequency1/τT of the whitener, and there will eventually be
a null zone in the range((1+β)/2T, 1/2τT ) Hz. We have that
the spectrum|H(j2πf)|2 is |G(ej2πf )|, and thus a finite order

1There are mathematical solutions to the WMF receiver when the zeros lie
on the unit circle, but we take as a practical requirement thewhitener to be
strictly stable, that is, all its zeros must be inside.

G(z) can place spectral zeros at only finitely many frequencies
and this only by violating stability.

Many practical cases fall into this difficulty. How can a
model be constructed? In fact,G(z) need only produce a
whitener and model that is reasonably close to the spectrum
of h(t). The test is that the Euclidean minimum distance and
ultimately the receiver error rate should not be affected, and
this has proven possible to achieve. One method is to find a
finite G(z) approximation with quartets of zeros on the unit
circle, using e.g. the Matlab routineroots. The zeros must
occur in quartets becauseV (z) and V (1/z∗) each require a
conjugate pair. The model may then be refined by splitting
the quartet of zeros so that one conjugate pair is slightly
inside the circle and one is outside. The positions can be
chosen to reduce the stopband spectrum ofh. A second method
constructs an all-zero filterV (z) whose spectrum lies within
anǫ of the required root RC spectrum. There exist, e.g., convex
programming routines that compute this quickly.

As examples, here are models for root RC withβ = .3
whenτ is respectively0.703 and0.5. Both theseh(t) have null
spectral regions. The first is at the Mazo limit, withd2

min = 2,
and was derived by hand with the root quartet method. The
second has the much smaller distance1.016 and is found by
convex programming. They play a role in the next sections:

v = {.750, .625,−.190,−.040, .085,−.049, .015,−.006} (4)

v = {.130, .484, .706, .368,−.178,−.228, (5)

.083, .125,−.057,−.056, .043}

III. E UCLIDEAN M INIMUM DISTANCE AND THE

TRUNCATED VA

Many useful FTN methods use a pulse with an infinite time
support. Since the whitener and model are approximate and
the VA is truncated, it is important to verify that the Euclidean
minimum distance of the signal set has not significantly
changed from the theoretical value with the analogh(t). Algo-
rithms that estimatedmin both for signals of form (1) and for
the discrete time forms = a⋆h are well known (see [5]). We
will not describe them here except to say that the problem is of
size3L for length-L binary signals and that distance depends
only on the difference∆a = ∆an−K , . . . , ∆an between
transmitted and erroneous symbols through the formula

d2 =
∑

|qi|
2, qi = ∆a ⋆ v at i (6)

For a signaling system working at the Mazo limit we require
d2
min = 2, but FTN signaling with lower minimum distance is

also of interest.
A truncated VA of memorym works with only the most

recentm+1 path symbols, that is, with model tapsv0, . . . , vm.
One must distinguish two kinds of truncated VA. If the branch
labels at stagen are constructed by

∑m

k=0
vkan−k, from only

these taps, the VA is more properly called a mismatched
receiver, because it constructs labels from a different model
than the transmitter uses. Finding mismatched minimum dis-
tances has been explored for some years (see e.g. [5], Section



5.5). The receiver can be much disturbed by the symbols
it cannot “see”; our calculations of the mismatched distance
show that this first kind of truncated receiver has much inferior
performance for the kind of pulses in (4)–(5).

A better receiver is one thatknows the full model, even
though it does not use it in the VA state description. Consider
stagen branch labels each generated from somea by

sn =

m
∑

k=0

an−kvk +

mtot
∑

m+1

an−kvk (7)

wheremtot is the total model memory. The first term stems
from the VA state symbols while the second is an offset created
by the earlier symbol history; an offset is associated with each
survivor state in the VA memory but is itself not the state. This
sort of trellis search was proposed in the 1970s (see [6]) and
applied by several authors to channel decoding in the 1980s;
perhaps the best known paper is Duel-Hallen and Heegard
[7]. They calculate a minimum distance, which we calldDH,
for the offset VA receiver2; more precisely, they derive an
asymptotic error rate of the formQ(

√

d2
DH

Eb/N0).
We find thatdDH closely predicts the behavior of practical

FTN receivers and it gives a theoretical indication that the
VA receiver with proper design can endure severe truncation.
A modern approach to findingdDH is as follows. The key
observation is that a VA forces at each stage a choice of
survivor into each state. The standard VA analysis, whether
full or truncated, finds the choice with the highest probability
of error and computes the probability in terms of a distance.
At a given state, the transmitted path and a neighbor path
can only merge after their state symbolsan have been the
same for m stages. As an example, the paths with sym-
bols S, . . . , S, +1,−1 and S, . . . , S,−1, +1 have difference
0, . . . , 0, 2,−2 (S, . . . , S denotes same symbols), and cannot
merge under state memorym = 2 until the difference is 0
for two more stages. It is the distance at this point that makes
the decision, and this is the firstm + ℓ square convolution
outcomes in eq. (6) with∆a = {2,−2}, whereℓ = 2 is the
length of∆a. A full VA will not force the merge until later,
and the square distance (6) is carried out to more terms, which
is a larger number. Estimating the worst case distance consists
of trying out all suspect error difference events, with (6) carried
out m + ℓ terms. An efficient search is to take as candidates
those differences that have distances in the untruncated case
less than, say,2d2

min; these are found by the ordinary minimum
distance algorithm. Only these candidates are explored for
their truncation properties. The search is efficient because very
few differences in this sort of code structure have distancenear
the minimum.

For the FTN case in (4), which is root RC at the Mazo
limit, the procedure yieldsd2

DH = 1.90 and1.98 underm = 1
and 2, that is, under VA truncation to 2 and 4 states. Since
the full d2

min is 2, this shows that a truncated VA with only
2 states nearly reaches the Mazo limit, which carries with it
a bandwidth reduction of 30%. For the case in (5), which is

2In [7], the receiver is called a DDFSE receiver.

a 50% bandwidth reduction,d2
DH = .60, .83, .86, .93, .95, .98

underm = 2, . . . , 7. About 32 states are thus enough for the
50% reduction.

Of course, the procedure here is only an estimate, and real
decoders have other dynamics, notably error propagation. It is
necessary to construct and test a receiver.

IV. T RUNCATED VA RECEIVER TESTS

We have constructed an offset VA receiver of the form in
(7) and tested it with the straightforward FTN systems in (4)–
(5) over the simulated AWGN channel. Regardless of theh(t),
the sequence reaching the VA is always minimum phase. Size
800 frames of random±1 symbols were encoded, and enough
frames were taken to give 20–100 error events. The frames
were terminated before and after bymtot ‘+1’ symbols. An
error event is taken to begin when the receiver output state
splits from the transmitter state path, and it ends when the
output rejoins in the sense of the full model, i.e., aftermtot

symbols are the same.
Figure 1 plots the observed error event rate3 againstEb/N0

in dB for the severe FTN case withm = 2, 3, 7. For the3, 7
cases, thedDH-causing difference sequence is2,−2, 2 which
has a multiplicity factor of 1/4; consequently, the error event
rate estimate isQ(

√

d2
DH

Eb/N0)/4. This with the respective
dDH is shown as two solid lines. The most common event
was indeed observed to be{2,−2, 2}. At m = 2 the error
event situation is more confused, and the estimate line is
Q(

√

d2
DH

Eb/N0). On the average, an error event contained
3–5 symbol errors, with the higher numbers corresponding to
smaller VA state memory. The bit error rate is thus 3–5 times
the event rate.

The plot for the Mazo limit case (4) for the samem is
similar, but less exciting because all them lead to about the
same event rate. For either FTN case, the VA state size needs to
be very much larger if the VA input is converted to some phase
other than the minimum one. Taken together, the results show
that thedDH procedure is accurate, the truncated state size can
be small, and error propagation and other event difficultiesare
not a threat.

V. TURBO EQUALIZATION BASED ON FTN SIGNALING

In this section we investigate FTN signaling as part of
a turbo equalization system. The transmitter consists of the
sequence Rate 1/2 Convolutional Encoder—Interleaver—FTN
Encoder. A block ofK information bits is first encoded
by a rate1/2 convolutional code; this produces2K code
symbols. These feed a size2K interleaver. The symbol vector
u is formed by mapping the interleaver output onto a 2PAM

3Error event rates must be carefully computed. The rate is thenumber of
distinct events divided by the number of “healthy” stages where events are free
to start. The latter is the number of events plus the number ofstages where
the transmitter and receiver outputs agree in state. Studies with many trellis

codes have shown that this rate accurately predictsµQ(
q

d2

min
Eb/N0) over

a wide range ofEb/N0, whereµ is the multiplicity for thedmin-causing
difference event.
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Fig. 1. Error event rates for FTN system (5) vs.Eb/N0 in dB (dotted lines),
showing VA truncation to 4,8 and 128 states (m = 2, 3, 7). Performance
predicted bydDH shown for comparison (solid lines).

alphabet but in principle any PAM alphabet can be used.
Finally, the transmitted signals(t) is constructed according
to (1). We investigate only the (7,5) convolutional code and
we set the block sizeK = 5000.

Decoding is done via standard turbo equalization [8]. In [9]
and [10] it has been shown that recursive precoding leads to
additional gains in turbo equalization but such a precoder has
not been employed here. The performance of the considered
system can therefore never be better than the performance
of the underlying convolutional code. However, for FTN this
performance is obtained at a considerably higher bit rate. By
studying the EXIT charts [11] of the system the convergence
threshold can be determined: The system will converge to
the outer code performance as soon as there is an open
convergence tunnel between the EXIT curves for the FTN
system and the outer code. Then the error performance can be
measured by actual receiver tests. The pulse shapeh(t) used
here is root RC with excess bandwidth0 ≤ β ≤ 1; if β = 0 a
sinc pulse is obtained. The one sided baseband bandwidth is
(1 + β)/2T . One aim of the section is to establish the bestβ.

We have observed an open convergence tunnel between the
EXIT curves for all τ above a certain threshold. Above it
the error performance of the concatenated system is virtually
identical to the that of the outer convolutional code. The
threshold depends on the SNR; in this paper we use the
SNR where the (7,5) code alone achieves BER10−5, that is,
Eb/N0 = 5.85 dB. The EXIT chart in Figure 2 shows a case
near the thresholdτ , where the convergence tunnel is narrow.

In Figure 3 turbo equalization receiver tests are shown
for β = .1, .2, .3, .4. The component decoder for the FTN
signaling is a BCJR algorithm that truncates the ISI response
to memory 6 (64 states); 10 iterations in the turbo equalization
have been performed. We plot the BER versusτ . The critical
thresholds where the error rate departs from≈10−5 are clearly
seen and lie in the range.30–.43 for the differentβ.

In order to compare differentβ we must take the bandwidth
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Fig. 2. An EXIT chart atEb/N0 = 5.85 dB, showing extrinsic vs. a priori
information for block length 5000. Dashed curve is from rootRC pulse with
β = .3 andτ = .32; solid curve is from (7,5) outer convolutional code.
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Fig. 3. Receiver tests for systems based on root RC pulses with excess
bandwidthβ. All systems operate atEb/N0 = 5.85 dB.

consumption into account. If system based onβ = .4 can
have more compression than one based onβ = .2, it cannot
necessarily be claimed thatβ = .4 is better, since.4 uses
more bandwidth. We must plot the BER against the normalized
bandwidth, which isW/R, whereW is the one-sided baseband
bandwidth andR the data bit rate. We haveW/R = ((1 +
β)/2T )/(1/2τT ) = (1 + β)τ . In Figure 4 we show the same
plot as in Figure 3 but now against the normalized bandwidth.
As can be seen, the bestβ are β = .4 and .3, which are
slightly better thanβ = .2 and .1. This has significant practical
importance since largerβ are easier to implement.

Although it is not reproduced here, we have obtained a
similar outcome to the above whenh(t) is a short, finite-
support pulse, such as a triangle. Discrete-time modeling is
easy with such pulses, but their bandwidth is relatively wide.

If a full complexity BCJR decoder is used as component
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decoder for the inner code (the ISI mechanism), we are limited
to a rather small algorithm, that is, truncation to a rather
short length (which prohibits the sinc pulse). We are therefore
in the early stages of testing a reduced complexity MAP
equalizer called theM∗-algorithm.4 This recently proposed
[12] algorithm has shown very good performance on ISI
channels. The algorithm retains onlyM out of theS states at
each trellis depth, but rather than eliminating the other states
they are merged into theM survivor states. This keeps the
number of+1s and−1s on the remaining trellis branches in
balance.

VI. CONCLUSION

We have investigated a number of issues that arise in the
construction of a receiver for FTN signals, when the FTN
is employed alone and when it is part of a turbo equaliza-
tion system. The emphasis throughout was systems based
on practical narrowband root RC pulses. First, a workable
discrete time model was derived for pure FTN signaling.
Our model was based on a whitened matched filter; several
other approaches exist, and these should be investigated in
future work, since they may lead to a lower complexity at
the same error rate. Next we resurrected an older truncated
VA receiver and performed an FTN distance analysis. The
receiver and its distance were closely verified by actual tests.
These show that strong truncation is possible if the VA input
is minimum phase, and that the FTN bandwidth reduction
can be purchased with little receiver complexity. Finally,
we constructed a turbo equalization system based on FTN.
Its receiver is more complex, but there is a strong synergy
between the convolutional and FTN elements of the signaling.
With the simple (7,5) convolutional code, energy savings of4
dB and bandwidth reduction of 30%both can be achieved.

4Note that the alphabet sizeM and theM∗ in the algorithm are unrelated.
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