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Design of Optimal Low-Order Feedforward

Controllers

Martin Hast, Tore Hägglund

Department of Automatic Control,
Lund University, Box 118, SE-22 100 Lund, Sweden

Abstract: Design rules for optimal feedforward controllers with lead-lag structure in the
presence of measurable disturbances are presented. The design rules are based on stable first-
order models with time delays, FOTD, and are optimal in the sense of minimizing the integrated-
squared error. The rules are derived for an open-loop setting, considering a step disturbance.
This paper also discusses a general feedforward structure, which enables decoupling in the design
of feedback and feedforward controllers, and justifies the open-loop setting.

Keywords: Feedforward design, optimal control, load-disturbance rejection, lead-lag filter.

1. INTRODUCTION

Feedforward is an efficient way to reduce control errors
both for reference tracking and disturbance rejection,
given that the disturbances acting on the system are
measurable. This paper treats the subject of disturbance
rejection. Due to model uncertainties, feedforward cannot
eliminate the disturbance and it is therefore often used
along with feedback control.

For the design of feedback controllers a large number of
design methods exists. For design of PID-controllers there
exists a large number of analytical methods for choosing
the control parameters, see e.g., (Åström and Hägglund,
2004), (Skogestad, 2003) or (Ziegler and Nichols, 1942).
However, there seems to be a lack of simple methods for
tuning feedforward controllers.

The design of low-order feedforward controllers has previ-
ously been addressed by e.g., (Isaksson et al., 2008) and
(Guzmán and Hägglund, 2011). (Isaksson et al., 2008) pro-
poses an iterative design procedure, to minimize a system
norm in the frequency domain, that takes the feedback
controller into account. (Guzmán and Hägglund, 2011)
provides simple tuning rules for feedforward controllers,
taking the feedback controller into account, in order to
reduce the integrated absolute error, IAE.

This paper presents an analytic solution to the problem of
designing a feedforward lead-lag filter which minimizes the
integrated square error when the system is subjected to a
measurable step disturbance. The design rules are derived
for FOTDs. The resulting feedforward controller is optimal
in an open-loop setting. In general, feedforward controllers
should be designed taking the feedback controller into
account since they interact.

In (Brosilow and Joseph, 2002) a feedforward structure
that separates the feedback and feedforward control de-
sign, was presented. This idea has been adopted in this
paper and justifies that the designed controller, while op-
timal in the open-loop case, gives good performance when
used in conjunction with feedback control. This structure

makes use of the same process models that is used for the
design of the feedforward controller. The structure have
similarities with Internal Model Control, IMC, see (Garcia
and Morari, 1982). Robust feedforward design within the
IMC framework has addressed by (Vilanova et al., 2009).

2. FEEDFORWARD STRUCTURE

This section describes different structures for feedforward-
ing from measurable disturbances. Firstly, the most com-
mon open-loop and closed structures are discussed. Sec-
ondly, a feedforward structure that separates the design
of feedforward and feedback controllers, as presented in
(Brosilow and Joseph, 2002) is discussed.

2.1 Open-Loop Behavior

Consider the open-loop structure in Fig. 1 where d is the
measurable disturbance, y is the system output and u is
the system input. The transfer function from d to y is given
by

Go(s) = P2(s)
(

P3(s)− P1(s)Gff(s)
)

. (2.1)
In order to eliminate the effect of the disturbance d the
feedforward controller should be chosen as Gff (s) =

P3(s)P
−1
1 (s). This controller is not always possible or

desirable to realize, as e.g., the order of P1(s) is greater
than the order of P3(s), the time delay of P1(s) is greater
than the time delay of P3(s) or if P1(s) has zeros in the
right-half plane.

2.2 Feedforward - Feedback Interaction

Compensating for a measurable disturbance using only an
open-loop feedforward structure is seldom desirable. Due
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Fig. 1. Closed-loop structure.
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Fig. 2. Closed-loop structure.

to model errors and unmeasurable disturbances a feedback
controller is needed. Connecting a feedback controller
C(s), see Fig. 2, renders the following transfer function
from d to y,

Gcl(s) =
P2(s) (P3(s)− P1(s)Gff(s))

1 + P2(s)P1(s)C(s)
. (2.2)

When it is possible to realize perfect feedforward Gff =
P3(s)P

−1
1 (s) no problems will arise since (2.2) will be zero.

However, when the perfect feedforward is not realizable
the closed-loop behavior will differ from the open-loop be-
havior given by (2.1). Ways of modifying the feedforward
controller in order to get a satisfying system response from
the closed-loop system has been presented in (Isaksson
et al., 2008) and (Guzmán and Hägglund, 2011).

2.3 Non-Interacting Feedforward Structure.

In (Brosilow and Joseph, 2002) a feedforward structure,
equivalent to the one in Fig. 3, was presented. Dropping
the argument s, the transfer function from d to y is given
by

Gcl =
P2P3 + P2P1(CH −Gff)

1 + P2P1C
. (2.3)

Choosing H as

H = P2P3 − P2P1Gff, (2.4)

the closed loop transfer function (2.3) then equals

Gcl = P2(P3 − P1Gff) = Go.

The closed-loop response from a disturbance d will thus
be the same as the response in the open-loop case in
(2.1) and the feedback controller, C, will not interact with
the feedforward controller, Gff. By using the structure in
Fig. 3 with H chosen as (2.4) it is possible to design the
feedforward controller by just considering the open-loop
response from d. If the feedback controller has integral
action the steady-state response will be y = r + H(0)d.
Therefore it is desirable to choose H(0) = 0.

The method of subtracting the feedforward response from
the controller input is common when improving system
response from reference signals, cf. (Åström and Hägglund,
2006).
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Fig. 3. Modified closed-loop feedforward structure.

3. OPTIMAL FEEDFORWARD CONTROL

In this section optimal feedforward controller parameters,
based on stable FOTDs, in the case of a step disturbance

d, will be derived. Using the structure in Fig. 3 with H
chosen in accordance with (2.4) we consider optimization
over the structure in Fig. 1. The rules are derived for the
case P2 = 1. In applications where this is not the case, P2

can be incorporated into P1 and P3 followed by first-order
approximations, cf., (Åström and Hägglund, 2006). The
optimality measure is the integrated square error,

ISE = ‖e‖22 =
∫

∞

0

e2(t) dt. (3.1)

A vast number of other optimality criteria could be consid-
ered, cf., (Åström and Hägglund, 2006). The ISE measure
is an established performance measure and was chosen
since it enables analytical solutions for finding the min-
imal cost for the setting considered in this paper. The
drawbacks with the ISE is that it may yield large control
signals and prolonged time for steady state.

The processes Pi(s) are assumed to be FOTDs, i.e.,

Pi(s) =
Ki

1 + sTi

e−Lis, i = 1, 3

Li ≥ 0, Ti > 0

P2(s) = 1.

(3.2)

The feedforward controller has the following structure

Gff(s) = Kff
1 + sTz

1 + sTp

e−sLff . (3.3)

There are in total four parameters to be determined in
order to minimize (3.1). We require that Tp should be
non-negative since negative values of Tp would give an
unstable system response. For the case of L1 ≤ L3 perfect
feedforward, i.e., no control error, is obtained with the
following choice of parameters:

Gff(s) =
K3

K1

1 + sT1

1 + sT3
e−(L3−L1)s.

The following will therefore focus on the case when L1 >
L3 and hence, perfect disturbance rejection is not possible.
The time delays in the process models can, without loss of
generality, be shifted so that L = L̂1 = L1 − L3 > 0 and
L̂3 = 0, Furthermore the reference signal r can, without
loss of generality be regarded to be zero.

Given a unit step disturbance d the output of the system
is given by

Y (s) = (P3(s)− P1(s)Gff(s))D(s) (3.4)

where D(s) is the Laplace transform of a unit step. Denote
the output response by inverse Laplace transform of (3.4),
y(t) = L−1(Y (s)). The optimization problem can be
formulated as

minimize J =

∫

∞

L

y2(t) dt (3.5a)

s.t. Tp ≥ 0 (3.5b)

Lff ≥ 0. (3.5c)

(3.5b) and (3.5c) are included in the optimization formu-
lation to ensure a stable and causal feedforward controller.

3.1 Optimal Feedforward Time Delay

Assume that the time delays are such that perfect distur-
bance rejection is not possible. Adding time delay in the
feedforward controller would increase the time in which



there is no control action and thus increase the ISE. The
time delay should therefore be chosen as

Lff = max(0, L3 − L1). (3.6)

3.2 Optimal Stationary Gain

In order to ensure thatH(0) = 0 and for the integral (3.5a)
to converge the gain in the feedforward controller has to
be chosen as

Kff =
K3

K1
. (3.7)

3.3 Optimal Tz

Evaluating (3.5a) yields an expression with the following
structure

J(Tp, Tz) = q1T
2
z + q2Tz + q3. (3.8)

Introducing

a =
T1

T3
(3.9a)

b = a (a+ 1) e
L
T3 , (3.9b)

the expressions for q1, q2 and q3 can be seen in Appendix,
(A.1). Since (A.1a) is positive, by the assumptions in (3.2),
(3.8) has a unique minimum with respect to Tz which can
be determined by completion of squares:

J(Tp, Tz) = q1(Tz +
q2
2q1

)2 − q22
4q1

+ q3

for which the minimum occurs at

Tz(Tp) = − q2
2q1

=
(b− 2a)T3 + bTp

b(T3 + Tp)
(Tp + aT3). (3.10)

The optimal Tz can also be expressed as

Tz(Tp) = (Tp + T1)

(

1− 2T 2
3

(T1 + T3)(T3 + Tp) e
L
T3

)

.

By using the optimal Tz, (3.8) reduces to

J(Tp, Tz(Tp)) = Ĵ(Tp) = q3 −
q22
4q1

, (3.11)

see (A.2) for complete expression, from which the last
controller parameter, Tp, is to be determined. Since Tz is
dependent of Tp it is not clear at this moment that Tz > 0,
i.e., that the controller will be minimum-phase. This will
be shown in Sec. 3.8.

3.4 Optimal Tp

Differentiating (3.11) yields

dĴ

dTp

=
K2

3a
2T 2

3

2 b2(T3 + Tp)3(aT3 + Tp)2

×
(

(4a2 − 2a− b)T 2
3 + 2Tp T3(3a− 1− b)− (b− 2)T 2

p

)

×
(

(2a+ b)T3 − (b − 2)Tp

)

. (3.12)

Equating (3.12) to zero to find the stationary points yields
the following three:

T ∗

p1
=

3a− 1− b+

√

(a− 1)
2
(1 + 4b)

b− 2
T3 (3.13a)

T ∗

p2
=

3a− 1− b−
√

(a− 1)
2
(1 + 4b)

b− 2
T3 (3.13b)

T ∗

p3
=

2a− b

b− 2
T3. (3.13c)

The optimal choice for Tp will either be one of the three
stationary points or the boundary, Tp = 0.

The boundary point as Tp → ∞ is in practice the same as
no feedforward and will therefore be discarded as a possible
solution since

lim
Tp→+∞

J = +∞.

The following subsections are devoted to finding which of
the solutions that is optimal. A summary of the resulting,
optimal, algorithm can be found in Sec. 4.

3.5 Conditions for Positive Stationary Points

To fulfill (3.5b) we only consider a stationary point (3.13)
as a candidate for optimality if it is positive.

Case I: T ∗

p1
> 0. From (3.13a), we can conclude that the

denominator is positive if b > 2. Note that e
L
T3 > 1 ⇔ b >

a(a+ 1). Denote the numerator of (3.13a) by n1 i.e.,

n1 = 3a− 1− b+
√

(a− 1)2(1 + 4b).

In order to determine the sign of T ∗

p1
we first examine when

n1 changes its sign.

n1 = 0 ⇔
b+ 1− 3a =

√

(a− 1)2(1 + 4b) ⇔
b2 − 2

(

2a2 − a+ 1
)

b+ 4a (2a− 1) = 0 ⇒
b1 = 2

b2 = a (4a− 2).

Assume a < 1. Then a(4a − 2) < a(a + 1). Hence, both
numerator and denominator of T ∗

p1
can only change signs

at b = 2. By evaluating n1 for a < 1 and for arbitrary
b 6= 2 we can conclude that T ∗

p1
is negative for a < 1.

Assume instead a > 1. Then a(a+1) > b1 and n1 can only
change its sign for b = b2. Furthermore, the denominator
is positive for a > 1 since b > 2. By evaluation of n1 for
arbitrary a > 1 and b < a (4a − 2) we can conclude that
n1 > 0. Since the denominator is positive for a > 1, T ∗

p1
is

positive if

b < a (4a− 2) ⇔ e
L
T3 <

4a− 2

a+ 1
.

This means that T ∗

p1
is positive when

T1 > T3 and L < T3 ln

(

4a− 2

a+ 1

)

. (3.14)

Case II: T ∗

p2
> 0. Denote the numerator and denomina-

tor in (3.13b) by n2 and d2 respectively. The numerator is
negative since

n2 = 3a− 1− b−
√

(a− 1)2(1 + 4b) <

3a− 1− a(a+ 1)−
√

(a− 1)2(1 + 4b) =

−(a− 1)2 −
√

(a− 1)2(1 + 4b) < 0.



The sign of T ∗

p2
is thus only dependent on d2. Since

b > a(a+ 1), d2 will be positive for a > 1. For a < 1,

T ∗

p2
> 0 ⇔ d < 0 ⇔ b < 2 ⇔ e

L
T3 <

2

a(a+ 1)
.

To summarize, T ∗

p2
is positive when

T1 < T3 and L < T3 ln

(

2

a(a+ 1)

)

. (3.15)

Case III: T ∗

p3
> 0. By inspection of (3.13c) we can

conclude that T ∗

p3
is positive if and only if a < 1 and

2

a+ 1
< e

L
T3 <

2

a(a+ 1)
.

T ∗

p3
is positive when

T1 < T3 and

T3 ln

(

2

a+ 1

)

< L < T3 ln

(

2

a (a+ 1)

)

.
(3.16)

3.6 Conditions for Optimal Tp

A stationary point, T ∗

pi
, is a local minimizer if and only

if the second derivative of (3.11) with respect to Tp is

positive, i.e., d2Ĵ
dT 2

p
> 0. Since the cost function (3.11) has

three stationary points and approaches infinity when Tp

approaches infinity, the cost function can have no more
than two local minima.

Solution 1. From the inequalities (3.14), (3.15) and
(3.16) we can conclude that if a > 1, T ∗

p1
is the only

positive stationary point. Since (3.14) is the only sta-
tionary point for a > 1, this stationary point cannot
be a maximum since (3.5a) approaches infinity when Tp

approaches infinity. Furthermore,

dĴ

dTp

(0) = K2
3

(b − 2a)(b+ 2a− 4a2)

2b2
. (3.17)

If a > 1, then b > 2a and subsequently

dĴ

dTp

(0) < 0 ⇔ b+ 2a− 4a2 < 0 ⇔

e
L
T3 <

4a− 2

a+ 1
.

(3.18)

From (3.14) and (3.18) we therefore conclude that T ∗

p1
,

given by (3.13a), is optimal when it is positive.

Solution 2 From (3.14) and (3.15) we can conclude
that T ∗

p1
and T ∗

p2
cannot simultaneously be positive. Fur-

thermore, when T ∗

p2
is positive, T ∗

p3
is either negative or

corresponds to a maximum, see the next section.

In order to determine when Tp = T ∗

p2
is a better solution

than Tp = 0, take the difference between the corresponding
costs as

Ĵ(T ∗

p2
)− Ĵ(0) = 2aK2

3

n

d

Ĵ(T ∗

p2
) < Ĵ(0) ⇔ 2aK2

3

n

d
< 0

where expressions for n and d can be found in the Ap-
pendix, (A.3). From these expressions we conclude that
d > 0. Since T ∗

p2
is negative for a > 1, consider only the

case a < 1. Whether T ∗

p2
is better than Tp = 0 or not is

determined by the sign of n. Solving the equation n = 0
gives the following solutions for b

b∗ = a+
√
a. (3.19)

Hence, n can only change its sign for b = b∗. By evaluation
of n with a < 1 and both b < b∗ and b > b∗ we can
conclude that J(T ∗

p2
) < J(0) if a < 1 and b < a +

√
a.

Hence, Tp = T ∗

p2
is the optimal solution when

a < 1

and e
L
T3 <

√
a+ a

a (a+ 1)
⇔

L < T3 ln

√
a+ a

a (a+ 1)
.

Solution 3 Inserting T ∗

p3
given by (3.13c) into (3.10)

yields Tp = Tz i.e., the static feedforward controller

Gff(s) =
K3

K1
. (3.20)

The second derivative of (3.11) with respect to Tp evalu-
ated in Tp = T ∗

p3
is

d2Ĵ

dT 2
p

(T ∗

p3
) = −K2

3 (b− 2)5 a2

4 (a− 1)
3
b3

. (3.21)

T ∗

p3
is a minimum point if (3.21) is greater than zero. For

a > 1 this is equivalent to

a (a+ 1) e
L
T3 −2 < 0 ⇔

e
L
T3 <

2

a(a+ 1)
< 1.

Since both L and T3 are positive this condition is never
fulfilled.

For a < 1 we can conclude that in order for T ∗

p3
to be a

minimum point the following condition must hold

L > T3 ln

(

2

a (a+ 1)

)

.

The feedforward strategy given by (3.20) does not give a
lower cost than the strategy given by the controller with
Tp = 0 since

Ĵ(T ∗

p3
)− Ĵ(0) =

K2
3(b − 2a)2

2b2
aT3 ≥ 0.

3.7 Special Cases

Two cases have been disregarded in the analysis above.
Firstly, the case when a = 1, i.e., the process time
constants are equal, and secondly, the case where b = 2,
i.e., when the denominators of (3.13) are zero.

Case I: Equal time constants, T1 = T3. In the case of
equal time constants in the processes, a = 1 and (3.11)
simplifies to

Ĵ(Tp) = K2
3

Tp T3

(

e
L
T3 −1

)2

2 (Tp + T3) e
2L
T3

from which we conclude that Tp = 0 is the optimal solution
since L > 0 by assumption.



Case II: b = 2. If b = 2, (3.12) reduces to

∂Ĵ

∂Tp

= K2
3T

4
3

(

(2a+ 1)T3 + 3Tp

)

(a− 1)2

2(T3 + Tp)3(aT3 + Tp)2
a2

for which there is only one stationary point,

T ∗

p = − (2 a+ 1)

3
T3,

which is less than zero. Hence, if b = 2, Tp = 0 is the
optimal solution.

3.8 Optimal Tz Revisited

Since the optimal Tz, given by (3.10), depends on Tp it
is unclear whether Tz for some set of parameters can be
negative or not. We here set out to prove that it for all
process parameters will be positive. Introducing (3.9) in
(3.10) yields

Tz =
(b− 2a)T3 + bTp

b(T3 + Tp)
(aT3 + Tp). (3.22)

Since Tp ≥ 0 and b > a(a+1) we can conclude that Tz > 0
if a > 1.

If a < 1, Tz will be positive when e
L
T3 > 2

a+1 . When

e
L
T3 < 2

a+1 , T
∗

p2
is the optimal solution since

2

a+ 1
<

√
a+ a

a (a+ 1)
.

The sign of Tz is determined by the sign of

(b− 2a)T3 + bTp (3.23)

Inserting Tp = T ∗

p2
in (3.23) yields

T3

b− 2

(

− (3− a) b− 4a− b

√

(a− 1)
2
(1 + 4b)

)

.

Recalling that

e
L
T3 <

a+
√
a

a(a+ 1)
⇒ b − 2 < a+

√
a− 2 < 0

we can conclude that when T ∗

p2
is the optimal solution Tz

will be positive and thus Tz will be positive for all values
on the process parameter.

4. DESIGN SUMMARY

Below follows a summary of how to choose the parameters
in the feedforward controller in order to minimize the
integrated square error (3.5a).

(1) Kff =
K3

K1
.

(2) Lff = max(0,−L), L = L1 − L3.

(3) • Introduce a =
T1

T3
and b = a (a+ 1) e

L
T3

• If a > 1 and b < 4a2 − 2a

Tp =
3a− 1− b+

√

(a− 1)
2
(1 + 4b)

b − 2
T3.

• If a < 1 and b <
√
a+ a

Tp =
3a− 1− b−

√

(a− 1)
2
(1 + 4b)

b − 2
T3.

• Else, Tp = 0.

(4) Tz(Tp) = (Tp + T1)

(

1− 2T 2

3

(T1+T3)(T3+Tp) e
L
T3

)

.
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Fig. 4. Output and control signals for Example 1.

Note that even though a small Tp can be optimal, it is not
necessarily practical or possible to realize such a controller.
The high-frequency gain is given by

Kff
Tz

Tp

.

If the high-frequency gain is too large, choose a larger
Tp and recalculate Tz until the high-frequency gain is
satisfying.

5. DESIGN EXAMPLES

Example 1. Optimal Open-Loop Feedforward Control.
Consider the open-loop in Fig. 1 with

P1(s) =
1

1 + s
e−0.5s, P2(s) = 1, P3(s) =

1

1 + 2s
(5.1)

and unit step d disturbing the system at t = 1. Using
the design rule from Sec. 4 gives the following optimal
feedforward controller

GISE
ff (s) =

1 + 2.35s

1 + 3.02s
. (5.2)

For comparison, two other feedforward controllers are
simulated. The second controller is tuned in accordance
with the rule presented in (Guzmán and Hägglund, 2011).
This rule sets Tz = T1 and tunes Tp in order to reduce the
IAE. The IAE-reducing feedforward controller is given by

GIAE
ff (s) =

1 + s

1 + 1.71s
. (5.3)

The third controller is given by

Gnaive
ff (s) =

1 + T1s

1 + T3s
=

1 + s

1 + 2s
, (5.4)

which is the optimal controller if the time delay is disre-
garded. The output signals along with the control signals
can be seen in Fig. 4. The performance measures from the
simulation can be seen in Table 1. The ISE-minimizing
feedforward controller out-performs the two other con-
trollers, not only in terms of ISE but also in IAE.

Table 1. Performance
measures. Ex. 1.

Strategy ISE IAE

GISE

ff
0.022 0.267

GIAE

ff
0.034 0.313

Gnaive

ff
0.058 0.502

Table 2. Performance
measures. Ex. 2.

Strategy ISE IAE

GISE

ff
0.013 0.260

GIAE

ff
0.021 0.346

Gnaive

ff
0.037 0.452

No ff 1.13 3.158



0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

 

 

0 2 4 6 8 10 12 14 16 18 20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

ISE optimal

IAE reducing

Naive

No ff

O
u
tp
u
t,
y

Time, t

C
o
n
tr
o
l
si
g
n
a
l,
u

Fig. 5. Output and control signals for Example 2.

Example 2. Closed-Loop with FOTD Approximations.
To examine how the design-rules handle high-order dy-
namics, consider the same P1 and P3 as in the previous
example but with

P2(s) =
1

0.5s+ 1
.

Incorporating P2 into P1 and P3 with subsequently FOTD
approximations, (Åström and Hägglund, 2006), renders
the following approximations

P̂1 =
1

1 + 1.31s
e−0.69s, P̂2 = 1, P̂3 =

1

1 + 2.25s
e−0.25s.

(5.5)
Based on these approximations a feedback controller,C(s),
has been tuned using the AMIGO method. The resulting
PI controller is

C(s) = 0.38 (1 +
1

1.21s
).

The optimal feedforward controller for the process approx-
imations (5.5) is given by

GISE
ff (s) =

1 + 2.82s

1 + 3.46s
. (5.6)

H was based on the first-order approximations, i.e.,

H = P̂2P̂3 − P̂2P̂1G
ISE
ff

As before, for comparison, the two other feedforward
controllers given by

GIAE
ff (s) = 0.99

1 + 1.31s

1 + 1.84s
(5.7)

and

Gnaive
ff (s) =

1 + 1.31s

1 + 2.25s
, (5.8)

where (5.8) was used with the same structure as (5.6) with
H as

H = P̂2P̂3 − P̂2P̂1G
naive
ff .

For simulation of (5.7) the structure given in Fig. 2 was
used. The result from simulations can be seen in Fig. 5
and the performance measures in Table 2.

6. CONCLUSIONS

In this paper we present design rules for a lead-lag feed-
forward controller that minimizes the integrated squared
error in the case of stable first-order process models with
time delay, affected by a measurable step disturbance in
an open-loop setting. A control structure that separates
feedback and feedforward design has been discussed.
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Appendix A. MISCELLANEOUS EQUATIONS

q1 =
1

2

K2
3

Tp + aT3
(A.1a)

q2 = K2
3

(2a− b)T3 − bTp

b(T3 + Tp)
(A.1b)

q3 =
K2

3

2b2(T3 + Tp)(Tp + aT3)
·
(

(

a(a+1)2+b(b−4a)
)

a2T 3
3

+
(

a(a+ 1)3 + b2(a+ 3)− 4ab(a+ 2)
)

aTpT
2
3

+
(

(a(a+ 1)− 2b)2 + 3b2(a− 1)
)

T 2
pT3 + b2T 3

p

)

(A.1c)

Ĵ(Tp) =
K2

3T3a

2 b2(T3 + Tp)2(Tp + aT3)

×
(

(

a(a+ 1)2 + b(b− 4a)
)

T 3
p + a2(a− 1)2T 3

3

+
(

a(a+ 2)(a+ 1)2 − 4ba2 − 4a (b+ 1) + 2 b2
)

T3T
2
p

+
(

(2a2 − b)2 − a(a− 1)2(2a− 1)
)

T 2
3 Tp

)

(A.2)

Ĵ(T ∗

p2
)− Ĵ(0) =

2K2
3 a T3

(1− a)(b + 1 +
√
1 + 4b)(3 +

√
1 + 4b)2b2

×
[

(

−(16 + 10b)a3 + (16 + 26b+ 10b2)a2

− (4 + 17b2 + 10b+ 2b3)a+ 4 b2 + 5/2b3
)
√
1 + 4b

− (4b2 + 38b+ 16)a3 + (42b2 + 54b+ 16 + 4b3)a2

− (33b2 + 4 + 18b+ 19b3)a+ (b2 + 19/2b+ 4)b2
]

(A.3)


