
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Using PCA and Global Smoothing to Explore Differences between Global Vegetation
Models

Lindström, Johan; Ahlström, Anders; Blom, Emma

Published in:
Proceedings of the 58th World Statistics Congress of the International Statistical Institute (ISI 2011)

2011

Link to publication

Citation for published version (APA):
Lindström, J., Ahlström, A., & Blom, E. (2011). Using PCA and Global Smoothing to Explore Differences
between Global Vegetation Models. In Proceedings of the 58th World Statistics Congress of the International
Statistical Institute (ISI 2011) (pp. 3946-3952). International Statistical Institute.
http://2011.isiproceedings.org/papers/951032.pdf

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/d111e8fc-f7cf-405a-8b9a-0d9253eda6fc
http://2011.isiproceedings.org/papers/951032.pdf


Using PCA and Global Smoothing to Explore Differences

between Global Vegetation Models

Lindström, Johan

Lund University, Centre for Mathematical Sciences

Matematikcentrum, Box 118, 221 00 Lund, Sweden

E-mail: Johan.Lindstrom@matstat.lu.se

Ahlström, Anders

Lund University, Department of Earth and Ecosystem Sciences

Sölvegatan 12, 223 62 Lund, Sweden

E-mail: Anders.Ahlstrom@nateko.lu.se

Blom, Emma

Lund University, Centre for Mathematical Sciences

Matematikcentrum, Box 118, 22100 Lund, Sweden

E-mail: —

Abstract

A common method for comparing the result of different global circulation models (GCMs) under

different emission scenarios is to study global climate response variables, such as mean temperature.

An interesting alternative measure of climate sensitivity is to study the biosphere’s response to the

different climate scenarios. The Lund-Postdam-Jena (LPJ) global vegetation model and its extension

LPJ-GUESS is a dynamic global vegetation model that can be coupled to GCMs and used to explore

the effect of varying climates on vegetation and carbon uptake.

Using the output from different GCMs under different emission scenarios LPJ-GUESS can be

used to generate global vegetation and carbon uptake patterns that are specific to each forcing climate

scenario. We investigate if important regional and global differences exist between the vegetation

patterns from different GCMs and emission scenarios. An important question is if potential differences

are primarily due to the different emission scenarios or to the different GCMs.

In order for us to carry out the above analysis we need to both reduce the noise in the LPJ-

GUESS predictions and reduce the vast amount of data. To accomplish both these goals we compute

smooth principal components. A problem when computing the PCA and the smoothing is that LPJ-

GUESS output is generated on a regular longitude-latitude grid, implying that both the size and

distance between grid cells vary. To handle this irregular data on a sphere we use a Gaussian Markov

random field (GMRF) approximation of Thin Plate Splines (TPS) that generalises the TPS to general

manifolds (such as a sphere). The well known computational advantages of GMRFs greatly aids the

analysis, given the large amount of data obtained from LPJ-GUESS.

Introduction

An important question in climate research is the potential effects of climate change. A popular

measure when comparing the effects of different global circulation models (GCMs) under different

emission scenarios is the increase in the global mean temperature (Boer & Yu, 2003). Although

a simple summary measure, this and other global summary statistics might not capture important

regional variations (see Boer & Yu, 2003). Further, studying only changes in climate variables —

either at the global or local scale — does not provide information regarding the biosphere’s response

to those changes.
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To evaluate the biosphere’s potential respons we have used the output from GCMs as driver

for a global vegetation model (LPJ-GUESS, see Smith et al., 2001, for details). The output from

LPJ-GUESS under different forcing then gives an indication of how the biosphere would respond to

different climate scenarios.

The overarching question is if climate change leads to an increase or decrease in the biosphere’s

uptake of CO2. A decrease in the biosphere’s CO2 uptake would adversely effect atmospheric CO2-

levels; causing a potentially serious feedback effects for global warming (see Cox et al., 2000).

The goal of this initial analysis is to investigate the differences between the biosphere’s response

for different combinations of GCMs and greenhouse gas (GHG) emission levels. Specifically we are

interested in how much of the spatial variability that is due to differences in emissions and how much

is due to differences in the GCMs.

The data

For this study we used the output from four different GCMs (CM4, ECHAM5, CCSM3, and

HADCM3; see Marti et al., 2006; Roeckner et al., 2003; Collins et al., 2006; Gordon et al., 2000,

respectively). Each GCM was run under 3 of the Intergovernmental Panel on Climate Change’s

(IPCC’s) emission scenarios (A1B, B1, and A2; see Nakicenovic & Swart, 2000) for a total of 12

possible future climates. Here A2 has ever increasing GHG emission, while both A1B and B1 have

emissions that initially increase before peaking and declining, with B1 having the lowest emissions.

All simulations were initially spun-up and forced over the historical period (1901–2000) with the CRU

ts 3.0 dataset (Mitchell & Jones, 2005). At 2001 the GCM-scenario data was superimposed on the

CRU 1961–1990 climatology using the delta-change approach.

Given the 12 climate scenarios we used LPJ-GUESS to simulate carbon fluxes (see below) due

to terrestrial vegetation. The simulations where carried out for a regular longitude/latitude grid with

a 0.5◦ resolution, giving a total of ∼60′000 grid cells containing vegetation. The flux in each grid cell

was aggregated to a future 30 year average over the years 2071–2100; giving us the average carbon

flux over 30 years per m2 for each cell.

The resulting values are very noise with big differences between neighbouring cells. The noise

is essentially due to Monte-Carlo type errors, and most of the variability could have been reduced

by a longer run of LPG-GUESS. However, the net ecosystem exchange (NEE; see (1) below) is a

fine balance between large fluxes of uptake and release of carbon in the ecosystem, and to achieve a

noteworthy reduction in noise would require a very considerable increases in computational time.

Carbon flux

The carbon fluxes simulated by LPJ-GUESS represents the amount of carbon either released by

vegetation (positive values) or sequestrated (negative values); see e.g. Fig. 2.

The major components of the ecosystems carbon cycle consist of: gross primary production

(GPP), i.e. carbon that is sequestrated, mainly through photosynthesis; autotrophic respiration (Ra),

carbon released due to the plants’ metabolism; heterotrophic respiration (Rh), the release of carbon

by microbes and other organisms that consume dead and decaying biomass; and wildfires (F), which

constitutes an additional process that releases a sizable fraction of carbon each year. The resulting

NEE is defined as

(1) NEE = Ra + Rh + F − GPP,

and provides a measure of the net carbon exchanged between the ecosystem and the atmosphere.
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Theory and Analysis

The main idea in the analysis is to use smoothing splines followed by a principal component

analysis (PCA) to suppress the noise and extract common spatial patterns for the NEE fields. By

regressing the original NEE fields on the PCAs and applying an ANOVA type analysis to the regression

coefficients we can then separate the variability into common, GCM, emission scenario, and individual

effects.

First we need some notation; let yij(sk) denote the NEE from the ith GCM and jth emissions

scenario in the grid square centred at sk and Yij is a column vector containing {yij(sk)}
N
k=1. There is

ni = 4 different GCMs and nj = 3 emission scenarios. Finally the area of each grid square is denoted

ak.

Spline smoothing using Gaussian Markov random fields

Wahba (1981) noted that a natural extension of Duchon splines (1976) to the sphere can be

formulated as solutions to the stochastic partial differential equation (SPDE) Dm/2x(s) = W , whereD is the Laplacian, W is Gaussian white noise and m = 2 essentially gives thin place splines. Several

authors (e.g. Kimeldorf & Wahba, 1970; Nychka, 2000) have already noted the similarities between

spline smoothing and (Gaussian) spatial-processes. Further Whittle (1954, 1963) pointed out that

Gaussian fields with Matérn covariance are solutions to the SPDE (k2 −D)m/2 = W , where the range

is ∝1/k. This equality has been used by Lindgren et al. (2011) to construct Gaussian Markov random

fields (GMRFs) that approximate fields with Matérn covariances. The above can be used to create

GMRFs that approximate the splines proposed by Wahba (1981).

Starting with the grid centres we triangulate the sphere, adding a few points over the oceans and

close to the poles. Following Lindgren et al. (2011) we then create a latent GMRF on the triangulation.

Seeing the NEE fields as noisy observations of a smooth latent field the model becomes

X ∈ N
(
0,

(t2Q)−1
)

Y|X ∈ N
(
AX,s2S)

.(2)

Here Q is the precision of an intrinsic GMRF (Rue & Held, 2005, chap. 3) obtained by taking k = 0

and m = 2 in the SPDE, A is an observation matrix picking out the points in the triangulation that

correspondes to grid cells, and S is a diagonal covariance matrix that accounts for the varying area

of the grid cells. The the diagonal elements of Sigma are Skk = a−1
k /

(
N−1

∑
i a

−1
i

)
.

The spline smoothing of Y is now obtained through the conditional expectation

(3) E
(
X

∣∣Y; t2,s2
)

=
(t2Q + A⊤(s2S)−1A

)−1(
A⊤(s2S)−1Y

)
=

(lQ + A⊤S−1A
)−1(

A⊤S−1Y
)

,

where l = t2s2, with larger values of l giving smoother reconstructions. Thus the smooth fields, as a

function of l, are Y = A E(X|Y; l); see e.g. Fig. 2.

Weighted principal component analysis

Having obtained spatially smooth(er) NEE fields a weighted PCA (wPCA) is utilised to de-

termine the major patterns of spatial variability. The weighting is due to the area of the grid cells

(Quadrelli & Wallace, 2004). The wPCA is computed for standardised data, Ŷ ij = (Y ij − 1mij)/sij,

where 1 is a vector of ones, mij = (1⊤S−11)−1(1⊤S−1Y ij), and sij =
(
(Y ij − 1mij)

⊤S−1(Y ij − 1mij)/N
)1/2

.

Given standardised data the wPCA is computed using a singular value decomposition (Aguiar &

Moura, 2003)

U = S1/2Ũ, with S−1/2Ŷ ij = ŨSṼ
⊤

, where Ũ
⊤

Ũ = I and Ṽ
⊤

Ṽ = I.(4)

Additionally U is orthonormal under the weighted scalar product U⊤S−1U = I.
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Cross-validation to determine smoothing

To determine the optimal value of l a leave one out cross-validation is used. For each of the 12

fields the remaining 11 are used to compute a wPCA of the smooths, Y . The weighted least squares

(WLS) of the left out original field against a regression matrix consisting of an intercept plus the

leading principal components (PCs) — i.e. the first columns of U — is then computed. The total

weighted RMSE of the WLS residuals is then minimised w.r.t. l. Using 5 or more components givesl ≈ 7 · 10−6.

Weighted regression and ANOVA separation

The leading M PCs — given a smoothing based on the optimal l — are now used to create a

regression basis Û =
[
1 U·,1...M

]
, and regression coefficients for each field are obtained through WLS

as gij = (Û
⊤S−1Û)−1(Û

⊤S−1Y ij) with residuals Yij − Ûgij = eij.(5)

The regression coefficients are then decomposed into common, GCM, emission, and individual (or

interaction) terms using ANOVAgij = c + ai + bj + abij.(6)

Here ai, bj, and gij denote deviations from the common effect, and they all sum to zero. Using (6)

each field can be divided into a common contribution (Ûc), contributions from the GCMs (Ûai) and

scenarios (Ûbj), individual parts (Ûabij), and residuals (eij). Further, the (weighted) sum of squares

for the total and for each component can be computed as

(7)

SStot =
∑

ij

(Yij − m)⊤S−1 (Yij − m) , SScom = ninj

(
Ûc − m)⊤S−1

(
Ûc − m) ,

SSgcm = nj

∑

i

a⊤i Û
⊤S−1Ûai, SSres =

∑

ij

e⊤ijS−1eij,

where m = (ninj)
−1

∑
ij mij; SSsce and SSind are computed similarly using bj and abij.

The decomposition of the sum of squares for different number of PCs in Û is illustrated in Fig. 1.

An example of the decomposition using 8 PCs for CM4 with the A1B emissions scenario is given in

Fig. 2, and Fig. 3 shows the decomposition of NEE into effects that are due to either the GCMs or

the emission scenarios.

Results

As seen in Fig. 1 spatial patterns that can be attributed to the GCMs consistently explain

more of the variability in NEE fluxes than patterns that are due to the emission scenarios. Fig. 3

clearly illustrates that the contributions from GCMs are both more spatially diverse and larger than

the contributions from the scenarios. The largest differences between the GCMs is over the Amazon

rain-forest, with lesser deviations for the African rain-forest, northern Eurasia, Alaska, and Canada.

The differences over the Amazon are particularly concerning since this is one of the Earth’s most

productive ecosystems.

This preliminary study illustrates that ecosystem responses simulated under different climate

scenarios might have more in common with the GCMs used than with the emissions scenarios. Further

study is needed, both to fully quantify these differences and to further investigate why different GCMs

give substantially different ecosystems responses.
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Figure 1: The amount of the SSE explained by each part of the ANOVA, as a function of the number

of PCs used in regression basis; zero denotes only an intercept. For reference SStot = 11′020 due to

the noisy data.

Figure 2: Decomposition of the NEE when LPJ-GUESS is driven by the output from CM4 using the

A1B scenario (negative values indicate uptake). From top to bottom on the left, we show the original

data, the smooth, and the common contribution (Uc). On the right we have the emission scenario

(Uai), the GCM (Ubj), and the individual (Uabij) contribution. We see that the effect due to the GCM

is much larger than the effect due to the scenario. Note that the colour-scale differs between the left

and right column.
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Figure 3: The different contributions to the NEE (negative values indicate uptake) highlighted by the

ANOVA. From top to bottom on the left the effect common to all 12 cases, followed by the effects

due to the three different emission scenarios is shown. On the right the effect due to the different

GMCs is illustrated. The difference between GCMs is much larger than the difference due to emission

scenarios.
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