LUND UNIVERSITY

Embedded Systems and FPGAs for Implementation of Control Oriented Models,
Applied to Combustion Engines

Wilhelmsson, Carl

2009

Link to publication

Citation for published version (APA):
Wilhelmsson, C. (2009). Embedded Systems and FPGAs for Implementation of Control Oriented Models,
Applied to Combustion Engines. [Doctoral Thesis (monograph), Faculty of Engineering, LTH]. Lund University.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

« You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/b0b44644-9ce8-4bc9-bf5a-2237134b78d3

Embedded Systems and FPGAs
for Implementation of
Control Oriented Models
Applied to Combustion Engines






Embedded Systems and FPGAs
for Implementation of
Control Oriented Models

Applied to Combustion Engines

Carl Wilhelmsson

Division of Combustion Engines
Department of Energy Sciences
Lund University
Lund, November 2009



Till min Ella och min familj

Division of Combustion Engines
Department of Energy Sciences
Lund University

Box 118

SE-221 00 LUND

Sweden

ISBN 978-91-628-7957-0
ISSN 0282-1990
ISRN LUTMDN/TMHP--09/1068--SE

© 2009 by Carl Wilhelmsson. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund, 2009



Abstract

Performance demands put on combustion engines are ever increasing, e.g.
demands on emissions and fuel consumption. The increased demands to-
gether with new combustion concepts increase the need for feedback engine
and combustion control. Mathematical models are considered important in
order to implement high performance feedback control, as well as to per-
form diagnostic functions in vehicles.

Various implementation platforms which can be used to implement math-
ematical models in vehicles are described in this this thesis; embedded pro-
cessors, FPGAs and ASICs. Which of these implementation platforms to
choose must be decided based on the intended application and current de-
mands on performance. Embedded systems, ASICs and FPGAs are discussed
based on literature found in the field, covering a wide span of considera-
tions. Furthermore a number of considerations which are important when
implementing algorithms and logic in embedded processors and FPGAs are
described.

The theory is put into practice in the thesis, implementing a heat release
calculation on an FPGA and developing and implementing a NOyx model in
an embedded processor. To be able to implement a fast NOx model several
techniques were used. Parts of the model were tabulated, difficult operators
such as division were avoided and the properties of fast C code was kept in
mind.

This thesis combines the areas of automatic control, electronic hardware
design and development of embedded software, and applies it to combus-
tion engine control. The work undertaken indicate different possibilities wh-
en implementing high speed control oriented models in FPGAs and embed-
ded processors. This thesis aims to fill a gap between state space models,
common in automatic control, and high fidelity physical models, commonly
used for simulation, by providing a method to develop high fidelity control
oriented models which are low in computation demand and implementable
in FPGAs and embedded processors.



Abstract

ii



Acknowledgements

The first person I would like to thank for his support and understanding is
Per Tunestal. Per has been an great mentor for me and he has always pro-
vided help and encouragement when needed, he has simply done a perfect
job as my supervisor and without him I would not have been able to write
this thesis. Per is also a good friend and we have shared a lot of great expe-
riences in Japan, California, the rest of the US and back home in Sweden.

I want to thank professor Rolf Johansson for his untiring support when
writing modeling and control oriented papers. Anders Widd has been my
‘colleague’ at the automatic control department, his contribution to the NOx
model is greatly appreciated. Professor Anders Rantzer has been my assis-
tant supervisor and the contacts with him have always been positive. The
help of Leif Andersson has been valuable while typesetting using the won-
derful IBTEX document preparation system. Krister Olsson has helped ac-
quiring computers and what ever goes along, he has also continuously pro-
vided sly analysis of the surrounding world. Gunvi, Maj-lis, Nina and Ingrid
have all helped me to keep the unavoidable paperwork going.

The department has a lot of young employees and the atmosphere is
openminded and pleasant. I especially want to thank Thomas for good friend-
ship on and off work, sharing loads of lunch breaks and a great interest in
performance motorbikes. Andreas, Hikan, Leif and Jari were all very good
friends at work before they moved on to new challenges. Clement, Sasa,
Magnus, Thomas and I had a nice time in NYC during what came to be
my last conference journey. Patrick was in Japan and joined the department
much in the same way I did, I wish him the best of luck in the future. The
technicians, especially Bertil and Tom have helped me a lot in the workshop,
keeping up my interest in workshop work through different projects such as
a diving torch.

I want to thank my friends at Toyota, especially Moriya Hidenori for
tutoring me both on and off work in Japan 2004, putting his own life in
second hand sharing a fantastic half year with me in Susono. It was a long

1ii



Acknowledgements

time ago but the memories are precious and the stay in Japan is what came
to cause my PhD studies. Yanagihara Hiromichi, also with Toyota, helped
me to get to Japan and has maintained contact with me ever since, keeping
an eye on me and my research. Ohata Akira, my supervisor at Toyota during
that time deserves appreciation as well.

Finally I want to thank my whole family which is very precious to me. I
know you wonder what I really do, from time to time I am not really sure
my self... I want to thank my love Ella for sharing her life with me, Ella
has patience with me, my stubbornness, curiosity and restlessness in a way
which I never even hoped to find. Ella,  hope to share the rest of my life with
you. My brothers, Nils and Per, as well as my parents, Leif and Ingrid, are
very important persons in my life, they have always been and will always
be. My ‘father-in-law’ Thomas keeps feeding the wild hogs so that I can stay
at the desk and focus on work.

Friends are important to have, in good times and in bad. I have good
friends who deserve attention, Erik, Ola and Stefan among others.

To those not mentioned here I am not less grateful.

Carl

iv



Contents

Preface . . . . ... . .. ... ..
Scope . . ...
Limitations . . . ... ... ... ... ... o o
Contribution . . . ... ... ... ... ... .. .. 0 ..
Outline . . ... ... .
Attributed Publications . . . ... ... ... .. ... .0 L.
Related Publications . . . . . .. ... ... ... ... .. ...

1. Introduction .. ... ... . ... ... ... ... .. . ...
1.1 The Internal Combustion Engine . . . . .. ... ... ..
1.2 Combustion Engine Feedback Control . . . ... ... ..

2. Embedded Systemsand FPGAs . . . . ... ... .........
21 Embedded Systems . . . .. .. ... ... ... .. ..
22 FPGAs . . . . . .
2.3 Embedded Processors, FPGAs and ASICs . . . . ... ..
24 Algorithmic Considerations for Embedded and FPGA Im-

plementation. . . .. ... ... . oL L oL
2.5 Summary . . .. ... L

3. An FPGA Implemented Heat Release Computation . . . . . . .
3.1 Experimental Setup . . . ... ... ... ... ... ...
32 FPGA Layout . ........................
3.3 Experimental Results . . . .. ... .............
34 Discussion . .. ... ... ... ... . ...
3.5 Summary . . .. ...

4. Developmentand Embedded Implementation of a Physical NOy
Model . . ... ... ... .. .

4.1 TheModel . . .. .. ... .. .. .. . ... .. .. ....
4.2 The Algorithm Implementing the NO Model . . . .. ..
4.3 Experimental Platform . . . ... ... ...........

O NGl WD~ -

—_
= \O

N — = =
N g 01 U1

24
28

29
30
32
35
37
40

41
41
52
56



Contents

Ay oo

Vi

4.4 Results and Performance . . . . . . .
4.5 Discussion . . ... ... .......
4.6 Summary . . ... ... ... ... ..

Concluding Remarks . . . . ... ... ...
Bibliography . . . . . .. ... . ... ....
Abbreviations . . . ... ... ...
Symbols . ................ ...
C Code Listing, Floating-Point NOy Model

59
63
70

73
75
79
81
83



Preface

Scope

To improve control and on board diagnosis of combustion engines math-
ematical models are needed. These mathematical models need to be com-
puted in some sort of electrical system on board the vehicle. The common
method to implement computations in electronic systems is to use some sort
of processor (known from e.g. personal computers). Processors are flexible
and easy to develop software for but they are not suited for all types of
problems. In some cases where the algorithms are very computationally de-
manding alternatives to processors may be a better solution. The Field pro-
grammable Gate Array (FPGA) is an intermediate between processors and
the non-reconfigurable Application Specific Integrated Circuits (ASICs). FP-
GAs consist of electronic hardware which can be reconfigured and they may
well provide a good platform for implementation of demanding algorithms,
especially in combination with processors and ASICs.

When implementing a mathematical model in electronic computation
systems it is important to reform the model so that it can be computed effi-
ciently. Increasing the computational efficiency decreases the computational
load and reduces the requirements and, thus, the cost of the electronic sys-
tem. If the properties of the computation system are kept in mind from the
beginning it is possible to steer the development in the right direction at an
early phase. This reduces the risk of ending up in a dead end when moving
on from the development phase to the implementation phase.

This work was conducted to study how to efficiently implement control
oriented models in embedded processing systems (embedded systems) and
FPGAs. Two different mathematical models were implemented as case stud-
ies. The first model, a heat release analysis, was mathematically rewritten in
order to be implemented more easily in an FPGA environment. The second



Preface

model was a NOy emission model which was developed with the intention
to implement it on an embedded processor. Both model and resulting al-
gorithm were developed with computational efficiency in mind. This work
was performed to indicate a possible development practice which can be
used to develop efficient physical models in embedded systems.

Limitations

This work was conducted to show possible methods to develop control ori-
ented and mathematical models which are computationally efficient but still
maintain fidelity. To do that some background knowledge about the various
electrical systems had to be explored and explained, even though no claim
is made of providing an exhaustive description of these systems. Embedded
systems and FPGAs are very complex systems and it is not possible to fully
describe these systems in this work. The description given should be under-
stood as an “appetizer’ describing parts which are considered important for
the concept studies performed. Similarly, this work was not intended to de-
velop combustion engines as such and the engine background provided in
the thesis is hence very rudimentary.

The implementation of the heat release was intended as a concept study,
showing the potential performance when implementing control related al-
gorithms on FPGAs. It was not intended as a state of the art heat release
analysis which is why development work ended when a functional version
was finished; there is potential to develop the FPGA based heat release much
further in terms of precision.

The NOyx model was developed with the intention to obtain high com-
putational efficiency in an embedded (processor) system. The contribution
is hence a control-oriented model and should be read in the context of on-
line on-board modeling. It is not an effort to exhaustively model combustion
physics and chemistry. The main intention with the model was to show a
method to develop high fidelity physical models which are implementable
on embedded systems and some limitations were hence applied; EGR was
not taken into account and the validation of the NOx model was performed
on a smaller data set than would be desirable if the actual model would be
the most important part of the result.



Contribution
Contribution

This work aims to fill the gap which exists between developers of models
and control algorithms and embedded programmers or electronic hardware
designers. It shows how a model can be developed and implemented in
a controlled manner, maintaining the original precision of the model and
obtaining a computationally efficient end result through keeping the imple-
mentation platform in mind during the process.

To be able to select an appropriate implementation platform for on board
mathematical models it is important to know which options exist and the
strong and weak points of the different options. To this end, properties of
embedded processors and FPGAs were studied in detail. A literature re-
view was performed which indicates differences and similarities between
embedded systems and FPGAs.

In automatic control theory there are systematic approaches to reduce
the complexity of models. In this work, an alternative approach is used, the
model is developed with the limitations of an embedded systems in mind
from the very beginning. Using detailed knowledge of the model as well
as detailed knowledge of embedded systems, the intended implementation
platform, it is possible to develop and implement a model which is compu-
tationally efficient without sacrificing model precision. The novelty with this
approach is that the complete development flow, starting with mathemati-
cal concept and ending with a fixed point version of the model implemented
in C, is carried out with the important implementation limitations in mind.
Using such a strategy means that the ‘gap” which frequently exists between
algorithm developers and embedded programmers is bridged, enabling a
better end result. The resulting model excels in terms of computation speed,
true inter engine cycle performance was obtained using a ‘normal” embed-
ded processor, while still producing the correct output.

If the model would be too computationally demanding, even when de-
veloped for an efficient implementation from the beginning, it is possible
to use another implementation platform such as FPGA or ASIC. An FPGA
or ASIC implementation can be made much faster than the corresponding
processor implementation. The implementation of a heat release algorithm
in an FPGA is one of the contributions in this theses, showing performance
which was several orders of magnitude faster than previous similar work.



Preface
Outline

This thesis is written as a monography which means that no previously pub-
lished papers are included in the thesis. Nevertheless material from previ-
ous publications is covered. All publications by the author that have con-
tributed to this thesis are listed under the caption ‘Attributed Publications’
bellow.

The first chapter encountered by the reader is the introduction, putting
the work into context by giving the background to combustion engine feed-
back control. There are two sections about internal combustion engines.
Internal combustion engines as such are described very briefly in the first
section. The second section describes combustion engine feedback control.
Heat release analysis, cylinder pressure measurement and NOy models are
described in detail in the same section.

The second chapter describes embedded systems and Field Programma-
ble Gate Arrays. The properties of embedded processors are described in
the first section. The second section describes FPGAs in somewhat more
detail, since FPGAs represent a newer and less known environment than
embedded processors. The history, the architecture of the actual device as
well as different architectural considerations on the design level and finally
design tools and methods are discussed. There is a section that describes
the similarities and differences between embedded processors, FPGAs and
ASICs. Developing algorithms intended for embedded systems or FPGAs
requires a number of special design considerations and those are treated in
the last section of the second chapter.

The third chapter deals with the work presented in the first and second
papers covered by this thesis, namely an FPGA implementation of a heat
release analysis algorithm. The chapter describes the experimental setup,
the design tools used, the test environment as well as the algorithm used
and its actual implementation on the FPGA. Finally, the performance of the
final system is described and discussed. This work was intended as a “proof
of concept’ study.

The fourth chapter describes the work which was undertaken to develop
and implement an on board implementable NOy model. These results were
originally presented in paper three and four among the attributed papers.
Firstly the model is described in general, including model assumptions,
mathematical concept and equations. Secondly the algorithm which was de-
veloped to implement the model is described; The different changes which
had to be made in order to implement the model efficiently, e.g. tabulating
parts of the model. A description of the experimental platform (embedded
system) follows. Finally the results from the tests with the original model as
well as the the embedded implementation of the model are described and
discussed. Some concluding remarks end the thesis.

4



Attributed Publications

Attributed Publications

Model based engine control using ASICs

Engine Control, Simulation and Modeling (E-COSM) - Rencontres Scientifiques
de I'IFP

Carl Wilhelmsson, Per Tunestél, Bengt Johansson
Division of Combustion Engines, Department of Energy Sciences, Faculty of
Engineering, Lund University

Poster presented by the first author and Per Tunestal at the New Trends
in Engine Control, Simulation and modeling, Rueil-Malmaison, France, Oc-
tober 2006

FPGA Based Engine Feedback Control Algorithms

Fédération Internationale des Sociétés d’Ingénieurs des Techniques de I’ Automobile
(FISITA) Technical paper F2006P039

Carl Wilhelmsson, Per Tunestél, Bengt Johansson
Division of Combustion Engines, Department of Energy Sciences, Faculty of
Engineering, Lund University

Presented by the first author at the 31st FISITA World Automotive Congress,
Yokohama, Japan, October 2006

A Physical Two-Zone NOx Model Intended for Embedded
Implementation

Society of Automotive Engineering (SAE) Technical Paper 2009-01-1509

Carl Wilhelmsson, Per Tunestél, Bengt Johansson
Division of Combustion Engines, Department of Energy Sciences, Faculty of
Engineering, Lund University

Anders Widd, Rolf Johansson
Department of Automatic Control, Lund University

Presented by the first author at SAE World Congress, Detroit, MI, USA, 2009



Preface

A Fast Physical NOy Model Implemented on an Embedded System

Engine Control, Simulation and Modeling (E-COSM) - Rencontres Scientifiques
de I'IFP

Carl Wilhelmsson, Per Tunestal
Division of Combustion Engines, Department of Energy Sciences, Faculty of
Engineering, Lund University

Anders Widd, Rolf Johansson
Department of Automatic Control, Lund University

Presented by the first author at the New Trends in Engine Control, Simu-
lation and modeling, Rueil-Malmaison, France, October 2009

Related Publications

Combustion Chamber Wall Temperature Measurement and Modeling
During Transient HCCI Operation

Society of Automotive Engineering (SAE) Technical Paper 2005-01-3731

Carl Wilhelmsson, Andreas Vressner, Per Tunestdl and Bengt Johansson
Division of Combustion Engines, Department of Energy Sciences, Faculty of
Engineering, Lund University

Gustaf Sarner, Marcus Aldén
Division of Combustion Physics, Faculty of Engineering, Lund University

Presented by the first author at the Power train & Fluid Systems Conference
& Exhibition, San Antonio, TX, USA, October 2005

The Effect of Displacement on Air-Diluted Multi-Cylinder HCCI Engine
Performance

Society of Automotive Engineering (SAE) Technical Paper 2006-01-0205
Jari Hyvonen, Carl Wilhelmsson, Bengt Johansson
Division of Combustion Engines, Department of Energy Sciences, Faculty of

Engineering, Lund University

Presented by Bengt Johansson at the SAE 2006 World Congress & Exhibi-
tion, Detroit, MI, USA, April 2006

6



Related Publications

Operation strategy of a Dual Fuel HCCI Engine with VGT

Japanese Society of Automotive Engineering (JSAE) Technical Paper 20077035,
SAE Technical Paper 2007-01-1855

Carl Wilhelmsson, Per Tunestél, Bengt Johansson
Division of Combustion Engines, Department of Energy Sciences, Faculty of
Engineering, Lund University

Presented by the first author at the JSAE/SAE International Fuels & Lu-
bricants Meeting, Kyoto, Japan, July 2007

An Ultra High Bandwidth Automotive Rapid Prototype System

Proc. International Federation of Automatic Control (IFAC), pp. 563-570, Techni-
cal Paper AAC07-057

Carl Wilhelmsson, Per Tunestél, Bengt Johansson
Division of Combustion Engines, Department of Energy Sciences, Faculty of
Engineering, Lund University

Presented by the first author at the Fifth IFAC Symposium on Advances
in Automotive Control, Aptos, CA, USA, August 2007

Control-Oriented Modeling of Homogeneous Charge Compression
Ignition incorporating Cylinder Wall Temperature Dynamics

Proc. 9th International Symposium on Advanced Vehicle Control, pp. 146-151

Anders Widd, Rolf Johansson
Department of Automatic Control, Lund University

Per Tunestal, Carl Wilhelmsson
Division of Combustion Engines, Department of Energy Sciences, Faculty of
Engineering, Lund University

Presented by the first author at 9th International Symposium on Advanced
Vehicle Control, Kobe, Japan, 2008



Preface



1

Introduction

As the reader may know internal combustion engines have been the dom-
inating energy source in mobile applications for something like a century.
The reader is probably also familiar with the great threat to the environment
which is posed by mankind’s wasteful use of energy. Internal combustion
engines are a part of this energy waste and their contribution to the environ-
mental harm is exaggerated by the fact that most normal types of combus-
tion engines emit both carbon dioxide (CO;) and other harmful compounds
like oxides of nitrogen (NOy), hydrocarbons (HC), carbon monoxide (CO)
and paticulate matter (PM). Due to environmental issues, the green house
effect and increasing fuel prices, there is a strong urge to improve the in-
ternal combustion engine. A very important factor for improving the en-
vironmental and economical performance of engines is feedback control of
various engine parameters.

1.1 The Internal Combustion Engine

Traditionally there have been two different kinds of engines, the Otto engine
(the normal spark ignited gasoline engine) and the Diesel engine. Obviously
there are enormous amounts of results and written publications regarding
these two engine types and the best place in literature to start for the inter-
ested reader would be [Heywood, 1988]. This section briefly describes the
Diesel engine and the Homogeneous Charge Compression Ignition (HCCI)
engine which seem to be the most promissing combustion concepts in a
world where demands on engine performance are ever increasing. The au-
thor makes no claims of writing an exhaustive description of combustion
engines as such. Evenso they have to be briefly discussed in order to give
the reader an idea of the frame within which this work has been under-
taken. Introducing the reader to the topic will also reveal the relevance of
this work.



Chapter 1. Introduction

The Diesel Engine

Diesel engines are becoming increasingly popular due to their high effi-
ciency and thus low fuel consumption. The Diesel engine cycle involves
compression of intake air during the compression stroke which increases
the temperature and pressure. Fuel is injected directly into the cylinder after
the compression stroke has almost completed. Diesel combustion is hence of
diffusion type; [Andersson, 2008] gives a good introduction to Diesel com-
bustion. The Diesel engine has high thermodynamic efficiency due to lean
operation and high compression ratio. Fuel (to work) conversion efficiency
is hence about 20% higher for a Diesel engine, compared to a corresponding
gasoline engine. The main drawback with Diesel engines is higher emis-
sions of NOy and PM, which is caused by locally high temperatures and
local excess of fuel in the fuel spray. Removing these emissions is more diffi-
cult in Diesel engines than in gasoline engines. A three way catalyst, which
is used to remove almost all harmful emissions from gasoline engines, can
not be used since Diesel engines are run with an excess of air (more air than
needed to fully combust the fuel). There are a number of techniques to re-
duce the emissions of Diesel engines, including special catalysts and traps
removing NOx or PM. Essentially there is a tradeoff between NOy emis-
sions, PM emissions and efficiency in a Diesel engine. The legislation has
been less strict for Diesel engines compared to gasoline engines for a long
time but new legislation which is uniform for both gasoline and Diesel en-
gines is however on the way forcing development of cleaner Diesel engines.
Meeting future emission legislation for Diesel engines will require control
of the actual engine and the combustion, as well as peripheral systems such
as catalysts or exhaust gas recirculation.

The HCCI Engine

The Homogeneous Charge Compression Ignition engine was first suggested
by [Onishi et al., 1979]. It can best be understood as a hybrid between the tra-
ditional Otto and Diesel engines. Pure HCCI engines are operated with a ho-
mogeneous mixture of fuel and air, as an Otto engine. However unlike Otto
engines, there is no throttling of the intake air, and there are no spark plugs.
The fuel mixture is instead ignited by the increased temperature originating
from compression of the intake charge, as in a Diesel engine. In theory this
operation principle combines the high efficiency from Diesel engines with
the low emissions from Otto engines. Soot emission is avoided because of
the homogeneity of the mixture and the absence of locally rich combustion
zones. Nitrogen oxide emission is avoided because of the decreased peak
in-cylinder temperature due to the diluted operation of the engine and the
absence of stoichiometric zones. In practice HCCI combustion can be ob-
tained in a large number of ways, each with different benefits/drawbacks

10



1.2 Combustion Engine Feedback Control

compared to traditional Otto and Diesel engines.

Even though it has many good features, the HCCI engine also has some
limitations. The operational principle unfortunately suffers from very high
combustion rates, causing noise as well as wear on engine hardware. An-
other issue with the HCCI principle is low combustion efficiency at low
load. This causes high emissions of unburned hydrocarbons and carbon
monoxide. Since the HCCI combustion process is unstable in many oper-
ating points feedback combustion control is needed to operate an HCCI en-
gine in parts of its operating range. Such combustion control can be per-
formed in numerous ways using different actuators and sensors.

1.2 Combustion Engine Feedback Control

Internal combustion engines have, ever since they were first developed,
been under feedback control. In fact feedback control of combustion engines
is an ‘enabler’ for the success of the entire engine concept. An engine which
can not deliver a controlled amount of energy at a controlled engine speed
is of no use. In the beginning feedback control was achieved using mechan-
ical means such as Watt’s speed governor. The performance demands put
on combustion engines are however increasing rapidly and the importance
of combustion engine feedback control is increasing with the performance
demands.

[Kiencke and Nielsen, 2000] as well as [Guzzella and Onder, 2004] pro-
vides very interesting sources of information regarding automotive con-
trol systems, particularly concerning mathematical modeling and feedback
control of the engine and driveline. Mathematical models of various inter-
nal phenomena are commonly used when performing automotive control.
Models are mainly used for three purposes; calibration, analysis and con-
trol. Physical models are often preferred over ‘black-box” (empirical) models
due to their more general nature, provided that assumptions and simplifi-
cations are well chosen. The calibration effort when porting a well designed
physical model from e.g. one engine to another is much less than the cor-
responding effort to port a black-box model. Also, a good physical model
may well be used outside its proven area of verification if the assumptions
are still valid in the new context.

An early view of state of the art gasoline engine control was provided
by [Powell, 1993]. For the Diesel engine similar work has just recently been
undertaken, e.g. [Lewander et al., 2008] who attempted cylinder pressure
based control of a modern Diesel type combustion concept, using model pre-
dictive control. Many interesting results, starting with [Olsson et al., 2001],
have been published on HCCI control using various feedback control tech-
niques. [Shaver et al., 2004] utilizes a physically based model for HCCI con-

11



Chapter 1. Introduction

trol. Results using identified models instead of physically based ones have
been published e.g. by [Bengtsson et al., 2006], using Model Predictive Con-
trol (MPC) with an identified model for HCCI control.

Many of these authors used model assisted controllers, meaning that
mathematical models of the combustion process and/or other sub phenom-
ena in the engine system are contained in the control system, being continu-
ously updated to reflect the current state of the engine system. The point is
that embedded mathematical models play an increasingly important role in
engine control to improve the performance of gasoline and Diesel engines,
and to be able to implement new combustion concepts, e.g. HCCI. The non-
linear and unstable nature of HCCI combustion and other low temperature
combustion concepts, together with the fact that actuators with high control
authority sometimes are missing poses a great challenge to researchers in
the field.

Cylinder Pressure Measurements

Cylinder pressure is a very powerful measurement signal when conduct-
ing engine feedback control and modeling. [Tunestal, 2000] quotes the late
Professor A. K. Oppenheim who stated that cylinder pressure is like “the
heartbeat of the engine” and measuring it is like carrying out “engine car-
diology”. The author recognizes this to be an excellent explanation of the
importance of the cylinder pressure signal. From cylinder pressure all sorts
of important parameters can be computed, and cylinder pressure is the most
important measurement in this context.

Cylinder pressure is typically measured using a piezoelectric pressure
transducer. The piezoelectric effect causes a quartz crystal to give away a
small charge when exposed to an external force. Such a pressure transducer
is typically connected to a charge amplifier which converts the small charge
generated by the piezoelectric effect to a measurable voltage. A charge am-
plifier however can not be constructed without some leakage current and
the leakage current will cause a drift in the DC level of the pressure sig-
nal. Due to this drift the output signal from the charge amplifier has to be
treated in order to obtain the correct absolute level of the pressure. Several
methods can be used to calculate the correct absolute pressure, [Randolph,
1990] accounts for three different commonly adopted methods. [Tunestal,
2007] offers a detailed explanation of how to treat the signal from a cylinder
pressure transducer and intruduces a fourth, very accurate, method.

Heat Release Analysis

If the pressure within a cylinder is known it is possible to calculate the re-
leased heat within that cylinder using thermodynamic equations as shown
by [Gatowski et al., 1984], performing a Heat Release (HR) analysis account-
ing for losses. Losses accounted for includes heat transfer to the combus-

12



1.2 Combustion Engine Feedback Control

2500
HRD = CA 90% — CA 10% max Q.

2000} 90%
)
3
% 1500¢ Qmax Q,=min Q.
v
© 50%
$ 1000 4
(]
2
< 500
g
3 10%

0
CA 10% CA 90% min Qy,
_500 L L L L L 1 1
=20 -15 -10 -5 0 5 10 15 20
CA 50%

Figure 1.1 A typical heat-release trace (the integral of Eq (1.1)) with the important
combustion phasing (CA50%) indicated. CA50% is defined as the instance when half
of the total heat has been released (half of the combustion has taken place). Bottom axis
in the figure has the unit Crank Angle Degree meaning that CA50% has the same unit.

tion chamber walls and mass loss caused by leakage past the piston rings.
Heat transfer losses are often computed based on the results presented by
[Woschni, 1967]. For feedback control purposes the different losses are often
neglected as discussed by [Bengtsson et al., 2004] The reason being that com-
bustion phasing (see Fig. 1.1), which is the most important feedback control
candidate calculated using HR analysis, can be calculated with enough ac-
curacy even neglecting these losses. Controller complexity and hence execu-
tion time can in this way be reduced. This ‘simplified” calculation is shown
in Eq. (1.1), where p represents cylinder pressure, V

dQ v dV 1 dp
%——7_1;?%—1——7_1VE (1.1)
[Tunestal, 2000] develops a preintegrated form of Eq. (1.1) which has
some numerical benefits compared to the original form of the heat release.
Furthermore an auto-tuning heat release method was recently developed
in [Tunestal, 2007], avoiding the main drawback with [Gatowski et al., 1984]
and [Woschni, 1967] which is ad hoc parameter tuning. This thesis contributes
by implementing the preintegrated heat release in an FPGA, aiming for very
high computation speeds.

13



Chapter 1. Introduction

NOy Models

Controling Diesel combustion and/or after treatment systems is a challenge
and mathematical models which are able to compute e.g. NOx or PM forma-
tion and which can be implemented in the computing systems available in
vehicles may be needed. To model PM emissions is more difficult than mod-
eling NOy emissions. Evenso there is, to this day, according to [Guzzella and
Onder, 2004], no physical time resolved (non average value) NOyx model
simple enough for on-board vehicle use. The reason is that physical NOy
models generally require a lot of complex computations which frequently
are iterative by nature, e.g. nonlinear equation systems describing equlib-
rium chemistry. Engine controllers often do not have that much "spare’ com-
putation time (obviously) and on board NOy formation models are out of the
question using conventional implementation platforms and models.

Several authors have made attempts at finding NOx models which are
physical (or at least semi physical) and still usable in engine control units
e.g. [Andersson et al., 2006] and [Ericsson and Westerberg, 2006], the second
being based on the first. The claim of [Andersson et al., 2006] is ‘realtime’
performance of the partially precalculated multi zone model. The evaluation
platform was however a (for the time) high spec desktop computer, avoid-
ing many of the obstacles present in on-board computation systems. The
main idea with the models of the two authors is to compute the adiabatic
flame temperatures in the different zones (more than two). These tempera-
tures are then compensated in different steps according to partly physical,
partly empirical relationships which are precomputed and stored in tables.
The relationships are intended to correct the burned zone temperature for
incomplete combustion, wall heat transfer and dissociation. Another NOx
model was developed by [Egnell, 1998] who utilizes conservation of energy
iteratively to find a burned zone temperature. The iterative energy balance
is solved partly in advance and tabulated as a function of global A and EGR
content. The chemistry part of the model, which is the part that computes
acctual NOy formation is based on an equlibrium chemistry model found
in [Bensson and Whitehouse, 1979]. This thesis expands the previos work
with a novel NOx model which is inspired by previous publications but has
a format making it much more computationally efficient.

14



2

Embedded Systems and
FPGAs

2.1 Embedded Systems

The ‘normal’ processor technology is well known to many people, if not
through its internal operation it is known for being the ‘heart’” of personal
computers. A processor is a sequential device which executes a program
consisting of a number of instructions. The number of clock cycles it takes
the processor to compute a certain instruction differs depending on the ar-
chitecture of the processor. Best case is one instruction per clock cycle but
this is not the average rate of instruction completion. A processor is nor-
mally programmed using a high level programming language, each high
level language instruction consists of several low level ones which in turn
are executed on the processor. Hence, a high level instruction would nor-
mally need many clock cycles to complete.

The benefits with such an operational principle is that the processing de-
vice is very general. A large number of different programs can be composed
using different instructions in different orders and it is possible to describe
what the processor is supposed to do on a behavioral level, using a high
level programming language. Many different problems can be solved on
the same device without modifications to the actual hardware, the different
programs can just be stored in a memory.

An Introduction to Embedded Systems

Embedded systems is a broad term which is used in many different con-
texts. The term is used to describe information processing devices (proces-
sors) embedded into products where the processor is not the main part of
the product, even though it may be a necessary part. The presence of an

15



Chapter 2. Embedded Systems and FPGAs

embedded processor is typically not obvious for the end user of the prod-
uct. Computers (PC, server or computing cluster) are hence not embedded
systems. There is a rich literature about embedded systems e.g. [Marwedel,
2003] or [Vahid and Givargis, 2002]. Examples of embedded systems could
be mobile phones, DVD players, GPS receivers or ABS controllers and en-
gine control units in cars. The last application is the one targeted in this
thesis. There are many common properties which loosely define embedded
systems, the properties which are relevant in this context are;

e Embedded systems are information processing systems embedded in
a larger product.

e Embedded systems are often connected with the environment using
sensors and actuators.

e Embedded systems have to be efficient, from a code size, run time or
cost perspective.

e Embedded systems are often dedicated to one, single, application.
e Embedded systems must meet realtime constraints.

e Embedded systems are typically reactive, meaning that they respond
to their environment and must execute at a pace decided by the envi-
ronment.

Embedded processors typically perform tasks like control, user interac-
tion and information flows handling. Humans in developed countries have
daily contact with a large number of embedded processors (in the range of
50 or more) and embedded processing devices are present in virtually any
product which has an electronic system.

Design Tools used in Embedded Systems

The tools used to develop software intended for embedded systems are es-
sentially the same as the ones used to develop software for other processor
environments. Programming languages such as C, C++ or JAVA can be used
to write code describing the intended bahaviour of the program. Compilers
are then used to make computer readable code from the human readable be-
havioral (or high level) code. Different compilers have to be used depending
on which processor technology is targeted. Commonly the GNU C compiler
is used when developing programs for embedded processors. The GNU C
compiler exists in many different versions intended for different processor
technologies.

Embedded processors frequently have some sort of operating system in-
stalled, most commonly rudimentary versions of Linux. It is however not
necessarily so that an embedded processor uses an operating system. Many

16



2.2 FPGAs

$TXILINX®
=11
VIRTEEE(RO b

™ P
XC2VP70

FF | 517CCB0A0S
012793044

Figure 2.1 An FPGA circuit.

embedded processors only run one single application which is made as one
single C program. Another thing which is special with embedded processors
is that user input and output is limited, hence some sort of communication
has to be made available during development in order to allow debugging
and software download.

2.2 FPGAs

An FPGA does not execute instructions at all as a processor does. An FPGA
is a net of logic components which can be configured (and reconfigured) in
a way so that the device performs a specific task. Input is presented to the
FPGA device through input signals. The input signals propagate through
the logic and internal connections of the device and finally the result is
present on the outputs of the device. One strength of the FPGA technology
compared to the processor is the inherited suitability for problems which
are of parallel nature. Another strength of using FPGAs is that they com-
monly outperform a corresponding processor implementation in terms of
e.g. speed. This is due to the fact that the actual design is made using the
hardware directly and the overhead which is introduced in a processor in
order to fetch and decode instructions etc. is avoided.

There are a large number of different considerations to make when im-
plementing an algorithm or logic in FPGAs, such as hardware selection and
design tool selection. [Todman et al., 2005] and [Compton and Hauck, 2002]
have published surveys of FPGA design considerations covering these top-
ics, this section provides a brief overview.

17



Chapter 2. Embedded Systems and FPGAs

FPGA History

The FPGA was first invented in the mid 1980s by Ross Freeman, who also
was one of the founders of the large FPGA company Xilinx. Early FPGAs
can be regarded as, often larger, versions of a similar device called Complex
Programmable Logic Device (CPLD). The CPLD on the other hand is a larger
and more modern version of the Programmable Array Logic (PAL). Leaving
the rudimentary PAL out of the picture it can be said that it is not only the
size that differs between the FPGAs and the CPLDs, the architectures differ
as well. FPGAs have a more flexible architecture than CPLDs. FPGAs often
feature a more complex interconnect between the internal units than CPLDs.
Another difference might be that FPGAs often contain other components
than pure logic functions e.g. distributed memory, adders, multipliers or
other similar components, in many cases increasing the performance of the
FPGA compared to the CPLD. FPGAs have evolved rapidly since the first
ones and modern FPGAs can host designs with an equivalent gate count of
many million gates. More and more complex peripheral devices are added
to FPGAs, e.g. processor cores, Digital Signal Processing (DSP) blocks, even
mixed mode FPGAs exist containing analog and partly analog parts, e.g.
Analog to Digital Converters or analog filters.

Hardware Level Architecture

The internals of an FPGA typically consist of a large number of different
(more or less) configurable functional units linked together by a net of con-
figurable interconnect, together sometimes called a reconfigurable fabric (sh-
own in Fig. 2.2). The functional units are ‘were it happens’ meaning that
the actual logic is implemented using these functional units. The reconfig-
urable interconnect is used to transport intermediate results between the
different reconfigurable units. Different FPGAs have different architectures
for their reconfigurable fabric. Two extremes can be identified; fine grained
and coarse grained architectures. The same kind of distinction in architec-
ture exists both for the reconfigurable interconnect and the functional units.
Selecting between fine grained and coarse grained interconnect and func-
tional units essentially is a tradeoff between flexibility which gains from a
fine grained architecture and speed or overhead (efficiency) gaining from a
more coarse grained architecture. A fine grained fabric can be adapted to a
larger variety of different tasks as the configuration possibilities are more
detailed. A more coarse grained fabric on the other hand is not as adaptable
but will be more efficient for the problems where they are well suited, as the
existing hardware is more specialized for these cases.

A fine grained functional unit consists of a multiple input lookup table
which can be configured to implement any logic function. These functional
units are put together in clusters which in turn are interconnected via par-

18



2.2 FPGAs

allel connections with neighboring clusters. The reconfigurable interconnect
provides global signaling to clusters positioned in other parts of the FPGA
circuit. A coarse grained architecture would typically be multipliers, differ-
ent kinds of arithmetic or logic units or large shift registers. These coarse
grained blocks are considerably more efficient for their specific task com-
pared to performing the same task using a number of fine grained lookup
tables. The coarse grained blocks might on the other hand not be of any
use at all if the application does not include e.g. a large multiplication. A
reconfigurable fabric can be either homogeneous, meaning that the com-
plete fabric consists of the same kind of functional units, or heterogeneous.
A heterogeneous fabric contains different kinds of functional units instead
of one type. A heterogeneous architecture can contain multipliers, adders
and of course distributed processor cores, all this to complement the basic
functional units and to increase performance. Modern FPGAs are normally
heterogeneous, containg both fine grained and coarse grained blocks on the
same circuit. The best mix between different functional units strongly de-
pends on the intended application and the FPGA vendors supply different
variants, which variant represents the best fit must be decided from time to
time.

The reconfigurable interconnect connecting the different units within an
FPGA can, as the functional units, either be fine or coarse grained. In a fine
grained interconnect structure it is possible to control the routing wire by
wire but with a coarse grained structure it would only be possible to route
a bundle of wires per control bit. As before a coarse grained structure is
less flexible but demands less overhead than the more flexible fine grained
interconnect structure. On modern FPGAs there are normally several dif-
ferent communication meshes with different granularity forming some sort
of overlapping ‘network’ on the FPGA. The intention with this overlapping
communication network is mainly to decrease the power consumption of
the chip (by decreasing the fan out of the logical units) as well as to enable a
more efficient routing on the chip.

FPGA Design Tools and Methods

Basic FPGA design tools are essentially same as digital ASIC tools. Today
there are two largely different ‘levels” at which FPGA (as well as digital
ASIC) design is carried out. One way to perform FPGA design is to use
some sort of hardware descriptional language like VHDL. Hardware de-
scriptional languages are fairly complicated to work with since the designer
has to describe how to connect digital logic in order to obtain a certain func-
tionality. When writing a computer program the programmer describes the
actual behavior of the program, rather than which digital logic to use to
achieve the desired bahaviour. Performing circuit design is hence a more
complicated task than writing a computer program why it takes more time

19



Chapter 2. Embedded Systems and FPGAs

g L g L

Logic Connect Logic Connect ——
Block Block Block Block ——
Ay A T
—— Connect Switch Connect Switch
—— Block Box Block Box
T TTT1T TTTTIT
Il il Il 1]
Logic Connect Logic Connect ——
Block Block Block Block ——
A Ty A
—— Connect Switch Connect Switch
—— Block Box Block Box
1T TTT1T
M 1111 M 1T

Figure2.2 A typical generic reconfigurable fabric with switching units and functional
units or logic blocks.

and more specialized knowledge. In recent years FPGA and ASIC technol-
ogy have evolved very rapidly while the development of the design tools
has not evolved as much. The consequence is that it is getting increasingly
difficult to utilize the full performance of digital circuits, one speaks of the
design gap. To meet the design gap new tools which enable circuit design on
a higher level of abstraction (behavioral level) are emerging. The term for
these tools is EDA, Electronic Design Automation. Typically these tools use
commonly known programming languages such as C or C++ to perform cir-
cuit design. Before continuing it is crucial that the reader understands that
even though traditional programming languages such as C, C++ or JAVA
are used for high level hardware design, no program is run on the FPGA.
Code written in these languages is synthesized into a connection scheme
used for the reconfigurable fabric within e.g. an FPGA.

Low Level Design  The most common design method for FPGAs or ASICs
is to use some sort of hardware description language for describing the cir-
cuit at Register Transfer Level (RTL). Typically one of the two hardware de-
scription languages VHSIC Hardware Design Language (VHDL), (VHSIC =

20



2.2 FPGAs

Very High Speed Integrated Circuit) or the Verilog hardware descriptional
language are used. VHDL is exhaustively described in [IEEE, VASG: VHDL
Analysis and Standardization Group, 2007] and Verilog is described in the
same manner in [IEEE, P1800, System Verilog Work Group, 2001]. Perform-
ing design at register transfer level means that the intended application is
described using flip flops with combinatorial logic in between. These flip
flops are usually triggered by the global clock and the result is hence a syn-
chronous digital circuit implementing the intended functionality. VHDL or
Verilog code can be written in a normal text editor much the same way as
any other programming language. In most cases a more complete design
tool would however probably be used. For most FPGA devices vendor spe-
cific toolboxes exist, normally allowing the designer to design circuits either
purely from VHDL (or Verilog) or using a mix of VHDL code and some sort
of graphical interface allowing the designer to partly draw the design using
wires and different building blocks. These building blocks can either be de-
fined by personal VHDL code or defined in advance in libraries, such blocks
could be gates or flip flops. Once the code is finished it is synthesized to a
netlist which in turn is treated by some sort of tool (a back end tool) which
is specifically developed for adapting the netlist to the actual FPGA or ASIC
technology used. The back end tool generates a physically realizable form
of the design from the netlist. In the case of FPGAs the physically realizable
form would typically be the configuration data which is to be loaded onto
the actual FPGA (the bitstream).

High Level Design  High level design tools typically generate an FPGA
design based on a high level programming language or some other behav-
ioral description of the intended design. [Todman et al., 2005] shows exam-
ples using C, C++ or JAVA as host languages. These tools work according to
three different principles. They are either annotation and constraint driven,
annotation free or work according to the source directed compilation prin-
ciple. The main idea with the annotation and constraint-driven approach is
to use annotations and constraints in combination with the source code in
the original language to generate the design. The annotation and constraint
driven approach has the benefit that the source code originally intended for
a normal microprocessor would only need minor modifications to be used
as description code for hardware. Compilers which are annotation free also
exist. General C, C++ or JAVA code can be used, meaning that no code re-
vision is needed regardless of if the code is intended for hardware or for a
micro processor. Annotation-free compilers have the great benefit that code
can be moved from a processor core to an FPGA without modifying it at
all, a property which is ideal when designing mixed processor hardware
systems. The source directed approach on the other hand adapts the host
language to better suit the FPGA environment for example by extending the

21



Chapter 2. Embedded Systems and FPGAs

language with suitable operators and types.

Another type of high level design tools are those based on Data Flow
Graphs. Data Flow Graphs (DFG) are typically used within the automatic
control (technical computing) and DSP communities. There exist a number
of DFG based FPGA tools which are specialized to suit development of DSP
like systems, these tools can of course be used for other purposes as well.
One tool which has to be mentioned here is Simulink (Simulink is an exten-
sive plug-in tool for Matlab), Simulink is based on the idea of DFGs and is
hence very well suited for development of DSP and automatic control sys-
tems. Since Simulink is a tool which is already very well established within
the technical computing and DSP community and extensively used for other
purposes than FPGA development many of the large FPGA manufactures
have made plug in versions of their tool chains adapted for use together
with Simulink, enabling hardware design within the well known and easy
to use Simulink environment. Besides Simulink there are other tools which
are based on the DFG principle which are specialized in or adapted to DSP
design for FPGAs.

2.3 Embedded Processors, FPGAs and ASICs

FPGAs are said to be a ‘poor mans ASIC’ meaning that FPGAs are mainly
used when it is considered too expensive to develop an ASIC with the same
functionality, which is true in one sense. FPGAs are an attractive way to
obtain near ASIC performance even in applications where traditional ASIC
design is not feasible. However, FPGAs also have a number of benefits over
traditional ASIC, the startup cost is much smaller and so is the time it takes
to complete a design and have the products available on the market. In addi-
tion, FPGAs have some completely new features compared to ASICs. FPGAs
can be reconfigured and the content of FPGAs can hence easily be changed
during the lifespan of the system. Some FPGAs even have the capability to
be reconfigured at runtime, meaning that it is possible to change the logic
inside the FPGA on the fly depending e.g. on operation mode.

Naturally this added flexibility comes at a cost, according to [Kuon and
Rose, 2007] FPGAs consumes about 18 — 35 x as much silicon area, 14 — 87 x
as much dynamic power while it is 3.4 — 4.6 x slower than the corresponding
ASIC implementation. Nevertheless FPGAs can be expected to increase their
importance as a high performance digital platform. Probably not mainly as
a platform for high performance pure digital logic but as a versatile im-
plementation platform for e.g. embedded processing systems. A heteroge-
neous FPGA chip including embedded processor kernels large amounts of
memory and reconfigurable FPGA fabric, all embedded on a single chip (so
called system on chip) is a very attractive solution for many applications.

22



2.3 Embedded Processors, FPGAs and ASICs

In many FPGA systems, current and future, some sort of processor kernel
might well be present. Several different motivations exist for mixing proces-
sor(s) and FPGA(s) in a single system. FPGAs, or synchronous digital logic,
are not well suited for all types of tasks, spontaneous, iterative tasks with
variable length, e.g. loops or control of data flow, are difficult to implement
efficiently in an FPGA. Such tasks are preferably implemented on a proces-
sor while computationally expensive, time critical and parallel tasks benefit
greatly from an FPGA implementation.

There are five different ways of integrating a processor core with the re-
configurable fabric of an FPGA, Fig. 2.3 shows four of them identified by
[Compton and Hauck, 2002], the last one was added by [Todman et al.,
2005]. Communication between the processor and the reconfigurable fab-
ric may be established through the standard Input/Output (I/O) units of
the processor. The FPGA is then called a ‘standalone processing unit’. There
are two types of intermediate structures, meaning that the processor can ac-
cess the reconfigurable fabric without having to use the standard I/O units.
The variant called ‘attached processing unit” is, communication wise, a bit
slower than the version called ‘Co processor” which features direct com-
munication between the processor core and the reconfigurable fabric. The
fourth architecture, called FU (functional unit), features a reconfigurable fab-
ric which is present on the same chip as the processor. The functional unit
can be connected to the internals of the processor in different ways. Such
an architecture enables very high communication speed between the pro-
cessor core and the reconfigurable fabric. The fifth possible way to connect
a processor and reconfigurable fabric resembles the fourth architecture, but
instead of adding a piece of reconfigurable logic to a processor, a processor
is added (implemented) onto the reconfigurable fabric of an FPGA. The two
last versions of FPGA processor connection schemes can be altered in two
ways, the processor can be either a hard core meaning that a fixed part of
the device contains a processor which is constructed on the same chip as the
reconfigurable fabric, or a soft core. Soft core processor meaning that the pro-
cessor structure is implemented on the reconfigurable fabric, the complete
chip hence consists of reconfigurable fabric, but on a piece of that reconfig-
urable fabric a processor is constructed using the reconfigurable fabric for
its implementation. One of the benefits with the latest two design structures
is that it is possible to customize the actual processor internals, e.g. to add
custom instructions to the instruction set of the processor. This principle is
called soft instruction processors or flexible instruction processor.

The nature of the applications does of course decide which of the five
different architectures above that is to prefer. [Compton and Hauck, 2002]
provides a very good description of the benefits and drawbacks with the
different structures. Using Architecture one for example the communication
between the processor and the reconfigurable fabric is slow, hence this ar-

23



Chapter 2. Embedded Systems and FPGAs

chitecture is suitable for systems where large chunks of work can be treated
by the reconfigurable fabric independently. The attached processing unit of
architecture two has the same properties as a normal processor would have
had in a multi processor system. Architecture three, the Co processor archi-
tecture, is typically also capable of performing calculations independently
from the processor core but it has access to the same memory and other facil-
ities as the processor core. Architectures four and five would be best suited
when communication between the processor and the fabric needs to be vig-
orous, for example when the reconfigurable fabric is used to customize the
processor in some way and communication hence needs to be very efficient.
According to [Todman et al., 2005] systems according to Architecture one
are the most common in commercial FPGA platforms.

Combining reconfigurable logic with embedded processors can surely
be powerful. There is however not one single best way to put together these
systems. Deciding whether to use a conventional embedded processor, a
mixed custom system implemented either on an FPGA or on an ASIC must
be made depending on the intended application, production volume, algo-
rithm complexity, speed grade etc. In an application where speed or power
consumption is not the main focus a normal embedded processor may be
enough, providing the cheaper and more flexible solution. If speed is of im-
portance but the production volume is low an FPGA system might be the
best way to go. And when demands on speed as well as power consumption
are large and the product will be produced in large volumes ASICs would
probably be the way to go. Each of these technologies have their application
window but it is safe to conclude that the application window of FPGAs will
increase in the future. Design of embedded systems are gradually develop-
ing from being just design of software intended for processors embedded in
products to some sort of software/hardware co design.

2.4 Algorithmic Considerations for Embedded and FPGA
Implementation

Many of the considerations which have to be made when implementing al-
gorithms using embedded processors and micro controllers are similar to
the ones which have to be made using FPGAs and ASICs. Some consid-
erations and tradeoffs are however different. Handling of dynamic fixed
point number format, removing ‘troublesome’ operators and extracting par-
allelism in the algorithms are suggestions given by [Monmasson and Cirstea,
2007] aiming for a more efficient implementation of (control) algorithms us-
ing FPGAs. Basically the same things are important when implementing al-
gorithms in embedded processors, besides extracting parallelism in the al-

24



2.4 Algorithmic Considerations for Embedded and FPGA Implementation

Workstation

. . s Standalone Processing Unit
Coprocessor Attached Processing Unit : ssng_

upupupupupe)

b g
e

g CPU |4 Memory H- /0 |— L L

H g Caches I Interface E E E

3]

Figure 2.3 Four different architectures commonly used in mixed proces-
sor/hardware systems. The different architectures have different properties
regarding for example communication speed and flexibility and are hence suitable in
different situations.

gorithm which is not needed in a single processor environment.

Algorithm Reformulation

Implementing efficient algorithms in embedded systems, DSP or FPGA en-
vironments takes a lot of consideration since the infrastructure in these sys-
tems commonly is more limited compared to desktop computers. Hence,
the algorithm has to be written to suit the intended target system. The best
way would be to keep the limitations of the final system in mind through-
out the algorithm implementation process, commonly algorithms are how-
ever adapted to the system after they are fully developed. Examples could
be that embedded processors lack floating point support or that the word
length available to represent numbers is limited. Certain operators are more
demanding e.g. multiplication and division, these operators should be re-
placed with less demanding operators if possible. Multiplication and divi-
sion by numbers which are powers of two can be replaced with bit shift.
Complex operations such as square root, natural logarithm etc. are prefer-
ably computed offline and tabulated. These measures can be taken even if
the system used actually has the possibility to perform the desired com-
putations, in order to gain efficiency. Frequently floating point arithmetics
e.g. takes more time than fixed point arithmetics, especially if the proces-
sor /hardware lacks floating point support. The execution time which is sav-
ed in this way could mean the difference between being able to use a cheaper
low-spec processor or a more expensive high-spec processor.

Avoiding difficult arithmetics is a good idea even when using FPGAs.
Even if dedicated digital logic could be designed to compute e.g. trouble-
some operators, it will take a significant effort to implement unnecessarily

25



Chapter 2. Embedded Systems and FPGAs

difficult logic. The simplified version of an algorithm would still be more
efficient even in an FPGA environment.

Number Representation

Internal number representation is important whether using fixed-point num-
bers for algorithm implementation or algorithms implemented with floating-
point numbers. Floating-point numbers are convenient to use since the pro-
grammer or designer does not need to worry about which scaling different
variables have. However, floating point number representation is frequently
less efficient than the corresponding fixed point number representation due
to the fact that floating point numbers come with a larger over head. This
can be said both from a calculation speed point of view and from a chip area
point of view, both using embedded systems and FPGAs. Hence algorithm
implementation is preferably made using fixed point arithmetics in these
environments, to gain speed and save resources.

Implementing algorithms in FPGAs provides the possibility to arbitrar-
ily select the internal number representation within each step of the calcula-
tion. The same is not possible in processors where it does not make sense to
use a word length which isn’t a multiple of the ‘natural” word length (word
size) of the processor architecture used. In FPGAs or ASICs it is on the other
hand possible to find an optimal fixed point representation for the internal
data path, given an algorithm. An optimal internal data path means a data
path which supplies sufficient accuracy using minimal internal word length.
Finding the optimal word length within each step of the calculation is a dif-
ficult optimization problem which is subject to research efforts, e.g. [Hervé
etal., 2005] and [Cantin et al., 2006]. Excessive word length consumes mem-
ory, time, power and chip area. [Cantin et al., 2002] states that in complex
DSP designs, as much as 50% of the design time is spent deciding the in-
ternal number format in different steps of the algorithms. It is obvious that
it is desirable to automate the time consuming and error prone task to de-
cide internal number representation of an algorithm. The above mentioned
publication contain a survey of ways to automate the search for an optimal
internal number representation and [Todman et al., 2005] also discusses this
subject. Normally the word length of the integer part is decided based on the
dynamic range needed, deciding the word length of the fractional part takes
some more consideration. Three different approaches can be used to select
the fractional word length, it can be decided based on analysis of DFGs, it
can be decided based partly on analytical methods and partly based on sim-
ulations and it can be selected based on methods relying only on simula-
tions. Deciding the number representation of an algorithm based on simula-
tion is performed by firstly simulating it using floating point number repre-
sentation (so called ‘golden model’). Fractional word length is then decided
based on the simulation and a fixed point simulation is run. The outcome

26



2.4 Algorithmic Considerations for Embedded and FPGA Implementation

of the fixed point simulation is compared to the golden model e.g. using an
error function. The process of deciding fractional word length, performing
fixed point simulation and evaluating the outcome can be iterated e.g. until
system specifications are met. The criterion for stopping the iteration can be
expressed as an error function value or as a limit of the difference between
the fixed point and floating point simulation.

The simulation based methodology has the drawback that it does not
guarantee that no overflow will occur or that the specification will be met
for any other cases than the ones reflected by the ‘test bench” used. The rea-
son is that the test bench in most cases can not reflect all possible inputs en-
countered during the complete lifetime of the system and performing sim-
ulations using a test bench that covers the complete possible set of inputs
would be too time consuming. There are a few ways to improve the per-
formance of the test bench in order to make it more likely that most of the
input dynamics are taken into account during the simulations. Pseudo ran-
dom inputs can be used in the test bench. In some cases it might be possible
to calculate the mean and standard deviation of each operand and, based
on the results, add bits to the data path to avoid overflow. It is possible to
increase the constraint more than necessary to gain some ‘margin’ for over-
flow. One way is to perform ‘cascade simulation’, where a possible data path
is found using a very limited test bench. A test bench that is as complete as
can be tolerated is then used to verify this data path for a large part of the
input range. The gain with ‘cascade simulation’ is that it is not necessary to
perform every data path iteration using an extensive test bench thus saving
simulation time.

Extracting Parallelism

Extracting parallelism in an algorithm is a way to speed up computations in
FPGAs or ASICs. If there are parallel structures in the algorithm, meaning
two or several parts of the algorithm which can be computed independently
at the same time, it is possible to implement these as parallel computation
branches on FPGAs or ASICs. The same thing is possible in multiple proces-
sor embedded systems but not in single processor systems. Implementing
algorithms in parallel is beneficial from a computation time point of view
but it has the drawback that more hardware is often needed compared to a
non parallel approach.

If the designer has detailed background knowledge of the algorithm it
is possible to manually extract parallel branches. However, there are also a
number of automated tools, as described in [Damaj, 2006], which extracts
parallelism in algorithms. The benefit with automated tools is that they are
able to detect parallelism at levels which are very difficult to detect, even
with detailed knowledge about the algorithm.

27



Chapter 2. Embedded Systems and FPGAs
2.5 Summary

This chapter covers embedded processors and FPGAs. The term embedded
systems was defined and several properties common for embedded systems
were discussed. FPGAs were described a bit more in detail, being the less
known system. Strengths, issues, design considerations and design tools
have been discussed. An FPGA is a reconfigurable hardware device and it
works in the same way as any electric circuit; signals propagate through it.
Comparing FPGAs to embedded processors it is found that the embedded
processor is a more general device since it can carry out a set of general in-
structions, this property makes the processor flexible and easy to develop
software for. An FPGA is more difficult to develop designs for, the possible
performance of the implementations is however greater using FPGAs.

Design of software intended for embedded processors are typically per-
formed using some sort of behavioural computer languare such as C or C++.
When designing applications for FPGAs the connection between different
components on the FPGA is specified using some sort of hardware descrip-
tional language. Hence FPGA design is carried out using a structural de-
scription rather than a behavioural one, tools are however emerging which
enable behavioural FPGA design using e.g. C.

This chapter ended with a number of algorithmical considerations which
are suitable to keep in mind when implementing logic in FPGAs as well as
algorithms in embedded processors. When implementing computations in
these environments it is important to find an efficient representation of the
internal numbers. To find a good number representation can be very difficult
and time consuming. It is also beneficial to remove operators which are more
demanding e.g. division and to try to rewrite the intended algorithm so that
it can be efficiently implemented e.g. using precomputed lookup tables.

The following two chapters presents two different case studies imple-
menting control related algorithms utilizing the methods described above
to perform efficient implementation of the algorithms.

28



3

An FPGA Implemented
Heat Release Computation

For successful control of e.g. HCCI (and other low-temperature combustion
concepts) it is the common opinion that a closedloop combustion control
system with fairly large complexity is needed as described in Chapter 1. One
or more models/calculations will need to be maintained online by the clos-
edloop combustion control system. This and the ever increasing complexity
of normal engine control systems constitute the background to the proof of
concept study to be presented in this chapter. From the previous chapter it
is understood that an FPGA could well serve as a very useful tool for imple-
menting e.g. closedloop combustion control systems and their strengths are
extra valuable in situations when speed is important. The intention with this
chapter is to show this possibility and at the same time implement a part of a
future closedloop combustion control system, namely the heat release anal-
ysis. The reasons for implementing a HR computation rather than any other
computation are twofold. The HR, or rather the combustion timing CA50%
which is calculated from the HR, is considered the most important feedback
variable in engine control in general and in HCCI control in particular. HR
calculation is, from an automotive perspective, regarded as a computation-
ally expensive operation which in many cases can not fit within the highly
loaded normal engine control units. It is hence desirable to show a method
to calculate HR in a fast and accurate way, not loading the engine control
unit and with a speed unmatchable by normal engine control units or other
processor based embedded systems. The potential of FPGA implemented
computations/models and the concept of using FPGAs for control oriented
modeling /computation is simultaneously proven by this proof of concept
study.

29



Chapter 3. An FPGA Implemented Heat Release Computation
3.1 Experimental Setup

The experimental setup necessary for these experiments consists both of
software and hardware. The hardware parts are made up of an FPGA pro-
totype board, a signal simulator simulating the engine pulses and cylinder
pressure and an expansion module for the FPGA board featuring Analog to
Digital Converter (ADC) and Digital to Analog Converter (DAC) and some
surrounding circuitry infrastructure. The FPGA system is connected to a
Personal Computer through a JTAG cable, enabling display of debugging
data, FPGA /PC co simulation and reconfiguration of the FPGA. The design
of the FPGA configuration and the hardware co simulation were carried out
in Matlab/Simulink with the aid of a Simulink toolbox supplied by Xilinx,
‘Xilinx System Generator DSP” (SGDSP). In order to generate an FPGA de-
sign from the Simulink diagrams the Xilinx development suite “Xilinx ISE’
was also needed.

FPGA System

The main part of the setup is the experimental card fitted with the FPGA.
The card is a Commercial Off The Shelf (COTS) product supplied by ‘Avnet’,
the (rather long) name of the card is ‘Memec Xilinx Virtex-4 LX XC4VLX25-
SF363 LC Kit". As understood the card holds a “Xilinx Virtex-4 LX XC4VLX25-
SE363 LC” FPGA, which holds 24,192 logic cells, 168 Kb distributed RAM
memory and a maximum clock speed of 100 MHz. Besides the above men-
tioned the card holds a number of peripheral devices; 16 Mb Serial Flash for
FPGA configuration, 64 Mb SRAM and a ‘P160” expansion header, among
other things.

Desired FPGA configuration is either loaded directly onto the FPGA or
stored in a serial flash memory. If the configuration is stored on to the serial
flash it is automatically reloaded onto the FPGA at power up. There are of
course other solutions for the FPGA reconfiguration that may be more suit-
able in production automotive applications. Configuration both of the serial
flash and directly of the FPGA are carried out through the JTAG interface.

The necessary ADC and DAC were not included on the basic FPGA
board. To gain access to the analog world, a circuit board was fitted in the
‘P160” expansion header. This board was, as the FPGA board, supplied by
‘Memec/Avnet’ and named 160 Analog Kit'. The board featured dual ADCs
and dual DACs all made by ‘Burr-Brown’, the ADC was a high speed 12 bit
pipelined (a refinement of the successive approximation technique) ADC,
the DAC also had a resolution of 12 bit. The clock signal was supplied from
the FPGA which runs at 100 MHz, limiting maximum ADC_ to 50 MHz
and DAC to 100 MHz. The surrounding circuitry, on the ADC channels,
consisted of an input buffer, a low-pass filter and a single ended to differen-
tial amplifier. The differential amplifier had an output buffer and a low-pass

30



3.1 Experimental Setup

output filter. The expansion card was less suited for the intended application
than expected at the time of purchase and modifications were made to the
input circuitry of the AD channels. The issue was high-pass filter action on
the input which removed the relatively low frequency that was of interest in
this application, the DAC channels were however left without modification.

The total FPGA system price was at the time of purchase ~ €700 and
must hence be considered as a low cost system, it was nevertheless a high
performance system!

Design Tools

As briefly mentioned earlier the design of the FPGA HR algorithm was car-
ried out in Matlab/Simulink with the help of SGDSP. SGDSP contains a
number of Simulink blocks implemented in both Simulink and VHDL. Us-
ing these blocks it was possible to generate VHDL from a Simulink diagram.
FPGA layout with the help of Simulink in DSP applications was discussed
by [Todman et al., 2005]. Please note that it was not possible to implement
standard Simulink blocks in the FPGA, it was necessary to possess a VHDL
implementation of the blocks to implement, which was somewhat limiting.
Running the hardware co simulation (compare Hardware In the Loop simu-
lation HIL) during the debug process, it was however possible to implement
standard Simulink systems on the PC, communicating data with the FPGA
through the JTAG interface. This was a handy feature during the debug-
ging process. After co simulation of the system, generic VHDL files could
be created from Simulink, processed by the relevant FPGA design tools and
downloaded to the serial flash.

Test Environment

Desktop tests were carried out during the development. The interface to
the simulated/real engine consisted of three signals, Crank Angle Degree
Pulses (CADP), Top Dead Center Pulses (TDCP) and analogue cylinder pres-
sure p. Current engine position was assumed to be measured with 0.2 Crank
Angle Degree (CAD) accuracy, the engine (simulator) hence produced 5
CADRP every physical CAD. Besides CADP the angle sensor was assumed to
produce one TDCP every time the engine completed a thermodynamic cy-
cle, i.e. two revolutions for a four stroke engine. Fig. 3.1 provides an overview
of the experimental setup. This engine interface is similar to the setups of
[Olsson et al., 2001], [Bengtsson et al., 2004] and [Bengtsson et al., 2006].
During the development and testing p was simulated using recorded
cylinder pressure traces, both a motored and a fired trace were available. The
basis for p were pressure traces recorded from the 121 Scania engine used by
[Olsson et al., 2001], geometric data of this engine can be found in Table 3.1.
The engine simulator simulated CADP, TDCP and p synchronously at an
engine speed of 1200 rpm. p was simulated with a vertical resolution of 8

31



Chapter 3. An FPGA Implemented Heat Release Computation

EEER g 4
Oscilloscope

Signal

conditioning H

L

Figure 3.1 FPGA experimental system overview.

bit, horizontal resolution was 720 samples, that is one sample each CAD.
Digital to analog conversion was carried out with the help of a R/2R ladder
and the output of the device was buffered. The original pressure trace was
somewhat distorted due to the limitations of the engine simulator which
was developed in house.

3.2 FPGA Layout

The design that was implemented in the FPGA can be viewed as a DSP
design, no processor core was present in the system. It would however of
course be possible to implement the HR algorithm on the reconfigurable
fabric of a mixed processor/hardware system. The DSP design approach
was selected due to the relative simplicity of the calculations and the system.

Algorithm

A net HR (Q7¥}) calculation was implemented on the FPGA, that is the HR
calculation disregards heat transfer losses, crevice losses and blow by. Heat
transfer losses are typically caused by convective energy loss to the combus-
tion chamber walls. Crevice losses are caused by trapping air and fuel mix-
ture in the crevices between the piston and the cylinder wall, thus getting
cooled down and avoiding combustion. Blow by is fuel and air that escapes
the cylinder past the piston rings down to the crank case. The reason for
neglecting all losses in this work was to somewhat simplify the implemen-
tation. Since [Bengtsson et al., 2004] finds that Q'ﬁflg is sufficient for feedback
purposes this simplification was regarded as legitimate.

32



3.2 FPGA Layout
The calculation of Q/¢; was carried out in a non conventional manner.
The conventional way to calculate Q¢ is through the integration of Eq. (1.1)
as described by [Gatowski et al., 1984]. For signal processing applications
it is however inconvenient to include the pressure derivative in the cal-
culation since the process of differentiating a measured signal infers se-
vere noise issues, especially in combination with a high ‘over-sampling’
rate. Instead of using Eq. (1.1) it was possible to calculate Qs through
Eq. (3.5). Eq. (3.5) originates from the conservation of energy and is moti-
vated through Eq. (3.1)-Eq. (3.4). This promising optional method to calcu-
late the HR was first presented in [Tunestal, 2000].

du =dQ —dw
dU = nCydT = nCodT =dQ —dW = dQ = nCpdT + pdV (3.1)
dW = pdV
pV = nRT = Ld(pv) =dT (3.2)
nR
R _ nR 782 1
1
! ’ V) dv =
_ 1 o[ pav=
Y= 1 -/95tart P startp
= L OVO) — pOaar)VOawr)) + [ p(0) 2~
= v 1 p P\ Ustart start GStMP 10 =
1 1
’)’ 1 —p(0 )+ /mm m(P(Gsturt)V(gsturt)) (3.5)

Calculated on-line Estimated constant, added off-line

33



Chapter 3. An FPGA Implemented Heat Release Computation

Implementation

Fixed point arithmetics was used throughout the implementation of the HR
calculation although no automatic word-length determination was used (or
available in Simulink at the time). Fixed point settings were determined ad
hoc by studying internal signals during the implementation, no large sim-
ulation with the purpose of finding optimal fixed-point settings was car-
ried out. To avoid racing phenomena the different internal computational
branches were synchronized by adding unit delays and Simulink-specific
synchronization blocks in the data path. Keeping Eq. (3.5) in mind, two
multiply operations, p(8)V(0) and p(0)dV /df, were computed in parallel
within the FPGA. The integration (summation) acting on p(0)dV /df was by
necessity computed subsequently and p(6)V () had to be delayed one sam-
ple to make up for the time it takes to update the summation, all to avoid
racing. Finally, the two parts of Eq. (3.5) are added to obtain the part of the
result which is calculated online. When Eq. (3.5) was implemented the parts
of the equation that were known in advance were not calculated online in
order to simplify the equation as much as possible, thus gaining speed. In-
stead they were mapped as a function of current engine CAD and stored in
the distributed RAM of the FPGA, this goes for V and dV /df. The algorithm
output was not active during the complete engine cycle, Q% was enabled
between 300 CAD to 400 CAD (a complete engine cycle is 720 CAD).

The time resolution is also of high algorithmic interest and this has to be
noted. The described setup had the properties of an asynchronous system
since the engine delivers CADPs at one clock speed (which varies with the
engine speed) and the FPGA board ran at a totally different one, meaning
that the FPGA clock was asynchronous with the CADP. This is an uncon-
ventional approach in an engine control system. The described calculation
of Q¢, demands, as understood from Eq. (3.5), some synchronization be-
tween the calculation of Q7¢, and the engine position (in order to retrieve
the correct V and dV /df). This synchronization was provided through a
CADP counter, a simple incremental counter which was reset on the rising
edge of TDCP. Overrun detection was also provided on this CADP counter
in order to detect issues with the CADP and TDCP. The output of the CADP
counter indicated the current position of the engine and it was used as index
for the tabulated values of V and dV /d6. In this manner the FPGA system
had all the information needed for the calculation of Q¥ without synchro-
nizing FPGA clock pulses with the CADP.

The clock speed of the ADC was, as previously noted, 50 MHz. This was
hence the sampling rate of p. This is by far a higher sampling rate than the
update speed of V and dV /df, meaning that a number of Q//¢f samples were
calculated in vain. The outcome was a system that calculates Q7 based on
the same p, V and dV values several times, a system with very high rate of

34



3.3 Experimental Results

o
5
A 4
o

ADC OF —— PV PPV

Q

ADC2 Multiplication cumSum Pdv
o PV+cumSum PdV
TDC  cumSum PdV/

cAD

GPIO_0| oC avout cumSum PdV
nmm
u
GPIO_1 cAD CAD
nmm TDCout

YV

2 v
I3 -

or Configurable Subsystem System
Manager Generator

ErrHandle

Figure 3.2 The DFG implementing the HR. The figure describes the top level of the
implemented algorithm/system, it is important to note that each block at this level
contains a lot of logic’s. The two different parallel branches making up the computa-
tion are not obvious from the top view.

over sampling. The parallel nature of the FPGA however still made this the
preferred way to perform the design. The FPGA simply outputs Q¢ sam-
ples at 50 MHz no matter what, meaning that the inferred latency, counted
in number of FPGA cycles was constant regardless of the engine speed. The
commonly used method to synchronize the engine and the control electron-
ics by clocking the control electronics from engine driven pulses (i.e., CADP)
was not used here since it would completely destroy the largest benefit of us-
ing the FPGA, which is low computational latency. It was not at all necessary
to synchronize the clock of the FPGA with the CADP since it was possible to
maintain sync with the engine with help of the CADP counter. Disregarding
the synchronous thinking between the engine and FPGA board enables very
low latencies without any major drawback.

3.3 Experimental Results

The major result of this investigation was of course the successful implemen-
tation of the described HR algorithm in the FPGA environment. The imple-
mentation was very small in terms of occupying resources on the FPGA, and
an equivalent gate count of 14400 gates which means that approximately
2 — 4% of the resources on the FPGA were needed. The performance of the
implementation is a point that can not be stressed enough, a p sample that
arrives to the FPGA from the ADC is, considering the timescale of an engine,

35



Chapter 3. An FPGA Implemented Heat Release Computation

Number of Cylinders 6
Swept Volume 11 705 [em3]
Compression Ratio 18:1
Bore 127 [mm)]
Stroke 154 [mm)]
Connection Rod 255 [mm)]

Table 3.1 Geometric properties of the Scania engine.

Pisp = 1464.84 [Pa] Vigp = 5.05% 1077 [m?]
dVigy = 1.74%107° [m3/CADP) Qisp = 3.85[]]

Table 3.2 the resolution of the input and output variables.

calculated immediately. Immediately in this context means 12 FPGA clock
cycles, FPGA. = 100 MHz — 120 ns. This, in other words, means that
when the ADC has delivered a sample on the FPGA pins it takes 120 ns be-
fore the FPGA has delivered the corresponding Q7¢; sample on the pins of
the DAC! In 120 ns, an engine revolving at 1200 rpm moves 0.000864 CAD.
If the engine were revolving at 24000 rpm it would move 0.01728 CAD! The
latency between an arriving p sample and the output of the corresponding
Qy¢l sample is in other words negligible. Since it is possible to measure the
Ql¢k with as high frequency as p and concurrently with p, it is well moti-
vated to call the system a ‘virtual Q sensor’ meaning that Q¢ is calculated
the instant p is measurable. It is difficult to measure the latency through the
FPGA with standard measuring equipment, the calculation of the latency
is based on the fact that it is possible to extract precise latency information
from the Simulink layout. To give an indication to the numbers mentioned
Fig. 3.3 is included. Fig. 3.3 shows p output from the engine simulator to-
gether with the output of the FPGA (or virtual Q sensor), the fist cycle is
a motored cycle and the following cycle is a fired one. p and Q/¢h are syn-
chronously sampled, the sampling is not halted and no data is cut away
between the two corresponding cycles. It is easily understood from Fig. 3.3
that Q1% is calculated with very low latency with respect to p.

Besides very low latency the system features a very high throughput. If
the engine would be able to produce pressure at a rate high enough it would
be possible to perform 12 complete (120*5 points) HR analysis each CAD at
1200 rpm. The limit of the throughput is the ADC conversion speed.

The last point of the results is the correctness of the output. To verify

36



3.4 Discussion

5 Measured emulated P
oyl

X 10 :

0 L 1
400 500 600 700 800 900 1000 1100
CAD []
Corresponding Q measured from FPGA
T

500 : 8
O\ﬁ m ]

400 500 600 700 800 900 1000 1100
CAD [7]

Figure 3.3 Output from the FPGA system when the combustion is suddenly switched
on, showing true in cycle performance. Q% was computed between 300 CAD and 400
CAD.

the correctness 100 cycles are sampled to the PC. Due to poor quality of the
pulses originating from the engine simulator some cycles however had to
be removed due to sudden steps in the middle of the calculation. The num-
ber of disregarded cycles are in the range of 20-30 cycles depending on the
mood of the engine simulator. Fig. 3.4 shows all the sampled cycles that are
not damaged. As understood from the figure most of the calculated cycles
hold a high enough signal quality to be used in a feedback control loop.
Fig. 3.5 shows the average of the cycles shown in Fig. 3.4. It also shows the
corrected values calculated offline using Matlab. As understood from the

figure the FPGA implemented algorithm was able to calculate Q/f} accu-

net

rately enough. When FPGA output and Qffz computed offline using Mat-
lab, were compared to a Q¢ computed using Eq. (1.1) they were found to

agree as visble in Fig. 3.5.

3.4 Discussion

The results in Fig. 3.3 - Fig. 3.5 show that implementation of Eq. (3.5) was
successful. As previously noted some cycles were removed from the results
before presentation. The intention of the final system was of course that ev-
ery cycle would be calculated perfectly, which also is achievable, better edge

37



Chapter 3. An FPGA Implemented Heat Release Computation

6 Measured emulated P
x 10 o

8 T

0 . . . . . . .

320 330 340 350 360 370 380 390 400
CAD []

Corresponding Q measured from FPGA

2000 ; ; ; ; ;

0 ‘ ‘ ‘ ‘ ‘
320 330 340 350 360 370 380 390 400
CAD []

Figure 3.4 Non average results corresponding to figure 3.5. Q¢ was computed be-
tween 300 CAD and 400 CAD.

5 Average measured emulated P,
x 10 vl
8 T
—Pcomb
—_ Pno Comb
[
a
®

a

0 i i i i i i i

320 330 340 350 360 370 380 390 400

CAD []
Corresponding average Q measured from FPGA and off-line calculated by PC
1500 T T T T T
PC chmh
10001 | ——FPGA Q. g
= 500} pC Qno Comb
© FPGA Qno Comb

0

-50

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
320 330 340 350 360 370 380 390 400
CAD []

Figure 3.5 Average output from the FPGA system compared to the corresponding
values corrected in the PC.

38



3.4 Discussion

detection logic in combination with better quality of the positioning pulses
would do enable this. The reason for the erroneous cycles are considered
mainly to be issues with the engine simulator. As it was difficult to find
a suitable signal simulator, the simulated engine had to be developed in
house, and even though it performs acceptable on average some cycles are
not true to the real engine and it is these cycles that were removed. The cy-
cles were removed based on a derivative threshold of the measured Q”He]t2
As shown in Fig. 3.4 some bad cycles do however still persist (bad cycles
meaning cycles that have a sudden jump in the middle of the signal).

Besides the issue with bad cycles an offset problem was present, in Fig. 3.4
there appears to be different bias on the different cycles of Q¢%. This offset
problem was explained by the ADC circuitry infrastructure which was in-
tended for usage in very high frequency systems. The signal paths to the
ADC hence blocked the very low frequency cylinder pressure signal. The
input circuitry thus had to be replaced by an in house alternative which
unfortunately suffered from a slight problem with the input bias which ex-
plains the ‘cycle-to-cycle’ variation of Q7¢; in Fig. 3.4.

Removing erroneous data and computing average over the correct cycles
gave Fig. 3.5. Fig. 3.5 shows that the FPGA system despite the noted issues

on average performs well. The difference between QU} calculated offline

net

using Matlab and Q7 calculated by the FPGA was not large, at least not in
the case with combustion. Q) in the motored case proved less consistent
between the Matlab computations and the FPGA. The explanation for this
was considered to be the bias present on the input of the ADC. This bias
issue will strike differently depending on the signal level. Since the signal
level is lower in the motored case the error will also be larger.

Most of the difference between the corrected Q'fffz and the FPGA QU¢}
can be explained by the above noted problem. The fact that fixed point num-
bers had to be used in the implementation is not thought to account for any
large error in the signal as motivated by Table 3.2. From the table it is clear
that despite the limited input word length of only 12 bit the resolution (rep-
resented by the value of the Least Significant Bit (LSB)) was enough. p;g
was calculated based on a 60 bar pj,x assumption. If py,.x would be 200 bar
it would give p;s; =~ 0.05 bar).

Even though the resolution was regarded as accurate enough the FPGA
environment still caused some problems during the implementation phase.
System generator DSP is a tool that should be used with care; both FPGA
internal number representation and the internal timing of the FPGA were
very difficult to manage. The transparency of the tool is simply not good
enough to enable the designer to design the FPGA layout in a controlled
manner. Many issues had to be solved ad hoc causing delays in the design
work.

39



Chapter 3. An FPGA Implemented Heat Release Computation
3.5 Summary

An FPGA implementation of a HR model was performed and discussed.
The HR was selected before other models since combustion phasing calcu-
lated from the HR is considered to be the most important feedback candi-
date for combustion control. A reformulated HR was implemented, remov-
ing the pressure derivative from the equation due to noise issues. The com-
putation was implemented on a Xilinx FPGA residing on an experimental
card holding the necessary peripheral hardware. Matlab/Simulink with the
Xilinx plug in tool ‘System Generator DSP’ was used for the development.
Simulink and System Generator are promising tools for FPGA design but
they appeared to be not completely mature at the time, making the imple-
mentation task more difficult. The outcome was nevertheless an FPGA im-
plemented HR model having an extraordinary performance. One pressure
sample is computed and the corresponding HR sample is output from the
FPGA within 120ns, the throughput of the system is 50 M Hz, limited by the
AD converter. Considering the time scale of an engine the HR is computed
almost instantaneously and the term “virtual HR sensor’ is well motivated.

40



4

Development and Embedded
Implementation of a
Physical NOx Model

4.1 The Model

The model developed in this chapter is a two-zone model, one burned zone
in which the NOx formation takes place and one unburned zone composed
of only air, as indicated in Fig. 4.1. The burned zone temperature was com-
puted using knowledge about the number of moles in the different zones
and the global temperature as well as the temperature of the unburned zone,
under the assumption of isentropic compression, rather than using an itera-
tive energy balance approach. Using this method the physical interpretation
can be maintained while the algorithm is significantly simplified.

If the pressure in the cylinder is known, which is a basic condition for
much combustion engine related modeling, it is possible to compute the
global temperature as well as the temperature of the unburned zone using a
number of assumptions. Furthermore it is possible to compute the number
of moles in the burned zone using conventional heat release analysis. It is
also possible to compute the total number of moles in the combustion cham-
ber and hence the number of moles in the unburned zone. When the num-
ber of moles in the unburned zone, burned zone and globally are known
as well as the temperature globally and in the unburned zone it is possible
to compute the temperature of the burned zone. A more extensive model
of the combustion is hence not needed to compute the temperature of the
burned zone. It is possible to avoid a direct computation of burned zone
temperature and the related complex and iterative numerical solution of an

41



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

Figure 41 The model works according to a two-zone concept. NO is formed in the
inner, burned, zone marked in red. The unburned zone is marked in blue.

energy balance normally used to determine burned zone temperature and
mole content.

In this context a common simplification is that NOy emissions are mainly
composed of nitrogen oxide, NO, [Heywood, 1988]. Hence notation is that
NO is modeled, rather than NOy, and that NO emission is equivalent to NOyx
emission. NO formation results from high temperatures in the gases result-
ing from the combustion, hence the burned zone temperature of the combus-
tion products is a key variable for computing NO emissions. The methods
for computing NO, knowing the burned zone temperature, are fairly well
known and straight forward, [Egnell, 1998], [Heywood, 1988] and [Bensson
and Whitehouse, 1979]. The algorithm from [Egnell, 1998] was used, but it
has been significantly rewritten to increase precision and reduce numerical
problems. It has also been corrected for varying burned zone volume. The
final step is to solve the differential equation which gives the NO content of
the burned zone and recalculate the local NO content to a global one.

Assumptions

All of the assumptions made are listed below for clarity, they are mentioned
where needed in the model description as well. Their impacts on the result
are discussed later on.

o Theideal gaslaw is valid for each zone separately and for the complete
combustion chamber.

o The pressure is uniform throughout the cylinder.

42



4.1 The Model

o The gas temperature just after Inlet Valve Close is roughly equal to the
intake temperature.

e The number of moles in the combustion chamber is not significantly
changed by the combustion.

o The temperature of the unburned zone is assumed to vary according
to an isentropic (polytropic) relationship.

o The ratio of specific heats, vy is assumed to be constant in the unburned
zone.

o The heating value of the fuel is known.
e [so-octane is used to model Diesel-fuel.
o The combustion efficiency is 100%.

o Combustion takes place at a constant local A, which is assumed to be
known.

e Species in the burned zone are in equilibrium.

e NOy emissions mainly consist of nitrogen oxide, NO.

Zone temperatures and number of moles

One of the novel features with this model compared to earlier work is the
computation of burned zone temperature. A two-zone approach together
with uniform pressure and the ideal gas law for each zone individually as
well as for the complete combustion chamber (the sum of both zones) al-
lows computation of the burned zone temperature according to Eq. (4.2).
The proof is formed in two steps; first Eq. (4.1) is formed by applying the
ideal gas law to the burned zone and the unburned zone. Using Eq. (4.1)
and the ideal gas law for the complete combustion chamber together with
the observation that the sum of the volumes of the burned and unburned
zones must equal the total volume of the combustion chamber it is possi-
ble to form Eq. (4.2). We now have an equation for the temperature of the
burned zone, Tj,, that depends on the number of moles in the complete com-
bustion chamber, ¢, in the burned zone, 1, and in the unburned zone, 1,
as well as the global temperature in the combustion chamber, T, as well as
the temperature of the unburned zone, Ty;.

pVbz = nbzﬁsz

p(Vuz + Vi)
PVuz = nyzRTy;

} = Nz Tuz + np; Ty, = (4.1)

43



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

Viz + 'V
Nyz Tyz + nszhZ = p(u27~hz)

R
Viz + Vi, = Vg o
pVe = ngﬁTg
Nyz = Ng — Npz
MuzTuz + (ng - nbz)Thz =
\%
_ Pz Vi) _ PV ngTy <=

R R
ngTy = (ng — npy) Tyz + 1y, Ty, <=

_ ngTy — (ng —npy,)Tyz

Ty, 1y (4.2)
z

poVo

np = ——
“TRn V=1, = PV 4.3)

noR
11

Tyz = TgO( P ) U (4.4)

Given the cylinder pressure and assuming that the gas temperature in
the cylinder just after Inlet Valve Close (IVC) is roughly equal to the in-
take temperature it is possible to compute the initial state in the cylinder.
The initial state here refers to initial global temperature, Ty, and the total
number of moles of air in the cylinder at IVC, ng. The number of moles
in the entire combustion chamber 1y can be computed using the ideal gas
law based on a reference point just after IVC. Assuming that the number
of moles is not significantly changed by combustion the global number of
moles is known from g throughout the complete cycle. This assumption is
motivated through [Egnell, 1998] where it e.g. is stated that natural gas com-
bustion at A = 1.5 changes the number of moles in the combustion cham-
ber by approximately 0.5% which is negligible in this context. Furthermore
the global temperature can be computed from the cylinder pressure and the
global number of moles using the ideal gas law, all according to Eq. (4.3).

Unburned zone temperature (T,;) is computed using a reference point
during the cycle and the assumption of an isentropic relationship, Eq. (4.4),
similarly to the previously mentioned study. The temperature and pressure
reference (Tgo and pgo) used to compute the temperature of the unburned
zone are acquired just before the combustion has started to reduce the effect
of losses, e.g. heat losses and mass losses. The ratio of specific heats, 7 is
assumed to be constant.

44



4.1 The Model

Global temperature
2000 T T T

1000+ - / -

[K]

=)

T

1 1 1 1 1 1 1
gBO 340 350 360 370 380 390 400 410
o [CAD]
Unburned zone temperature
1500 T T T

[K]

1000 4
e

uz

T

500 I I I I I I I
330 340 350 360 370 380 390 400 410

o [CAD]
Burned zone temperature
4000 T T T

2000F Ar—\

0 i i i i i i i
330 340 350 360 370 380 390 400 410
o [CAD]

Toz K]

Figure 4.2 In-cycle zone temperatures of the three different zones resulting from the
described method, 100 cycles.

The number of moles in the burned zone, n;,, is obtained from heat re-
lease analysis. The global temperature, the unburned zone temperature and
the burned zone temperature for one operation point is shown in Fig. 4.2.
Corresponding average temperature traces of the different zones are shown
in Fig. 4.3.

Number of moles in the burned zone One way to compute the number
of moles in the burned zone is to use heat-release analysis to compute the
amount of released energy. Assuming that combustion does not change the
number of moles significantly, it just ‘moves’ moles from the unburned zone
to the burned zone, it is possible to compute the number of moles in the
burned zone from the heat release. It does, however, require some further
assumptions. The fuel energy must be known and the combustion efficiency
is assumed to be 100%. The local air/fuel ratio at which combustion takes
place, A, must also be known. Knowing the exact local A is difficult, A, is
hence introduced as a tuning parameter in the model in a fashion similar
to [Egnell, 1998]. Hence combustion is assumed to take place at a constant
local A. Note that A is a calibration variable even though it has a phys-
ical interpretation. The intention is to keep A.; fixed at the value which
gives the best NO prediction on average for a number of data points, and
which is within physically justified limits. The heat release equation used,
Eq. (4.5), represents an integrated version of the apparent heat release equa-
tion in [Gatowski et al., 1984] assuming constant 7. It was first presented in
[Tunestal, 2000] and was previously applied in Chapter 3.

45



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

Mean values of the zone temperatures
T T T

3000

2500

2000

TIK]

1500

1000

500 ‘ ‘ ‘ ‘ ‘ ‘ ‘
330 340 350 360 370 380 390 400 410
o [CAD]

Figure 4.3 100 cycle average in-cycle zone temperatures of the three different zones
resulting from the method described.

1 « A%
Q= P | 1;7(06)V(rx) + “Stmp(rx)ﬁd(x
1
- —(p(“sturt)v(“sturt)) (4.5)
¥—1
mbz bz
_ b bz f M
A S VA 73
mzz = mijfz)msufr -
bz Q
m =
F 7 Quav
Q Mf/\“safr
= I+ 4.6
Ny QLHVMf M, ) (4.6)

Both heat losses to the combustion chamber walls and the effect of vary-
ing 7y are neglected in this step, in the sense that they are not explicitly mod-
eled, in order to decrease the computational load. The heat release was then
normalized against the energy content of the injected fuel. In this way the

46



4.1 The Model

Heat release
1000 T T T T T
=2
o 500 /_—'————-
0 : - - -
330 340 350 360 370 380 390 400 410
a [CAD]
Burned zone mole content
0.02 T T T
=
E o001
B /“'—'_———————
j=d
. . 1 1

0 i i
330 340 350 360 370 380 390 400 410

a [CAD]
Unburned zone mole content
0.02 T T T
g \
E 001 .

n

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
330 340 350 360 370 380 390 400 410
o [CAD]

Figure 4.4 The heat release and number of moles in the burned and unburned zones
for 100 cycles.

transient response of the heat release can be maintained as well as a full
physical interpretation (meaning that the effect of heat losses is taken into
account implicitly).

Provided an accurate heat-release analysis, it is possible to compute the
number of moles in the burned zone from Eq. (4.6) which uses average mo-
lar masses of fuel and air together with local, burned zone A (A.;;) and the
stoichiometric air/fuel ratio (as,,). Resulting mole content of the burned
zone and unburned zone together with the corresponding heat release are
shown in Fig. 4.4 and every variable needed to compute the burned zone
temperature (Tj,) is hence available.

Computation trigger ~The computation of the number of moles in the burn-
ed zone can not be started directly after IVC and this is the case for some of
the other computations as well. The reason is that the burned zone contains
zero moles until combustion has started and for example Eq. (4.2) will hence
include a division by zero. Hence, a computation trigger had to be intro-
duced in order to avoid numerical problems before combustion has started.
For that purpose, the time instance when 10% of the total heat has been re-
leased (CA10%) was used. Triggering computation by the start of combus-
tion is also sound from a physical point of view; no NO can be formed until
combustion has started.

47



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

Burned Zone Composition

To be able to compute NO formation rate (using Eq. (4.23)) the concentra-
tions of a number of species in the burned zone have to be known. It is pos-
sible to compute those based on the assumption that corresponding species
have reached chemical equilibrium. To compute NO emissions using the
Zeldovich mechanism the equilibrium concentration of free oxygen (O), ni-
trogen (N3) and nitrogen oxide (NO) must be known (see Eq. (4.23)). These
concentrations can be computed as functions of temperature, pressure ratio
and local A (A.;) by taking dissociation reactions into account. The disso-
ciation reactions (meaning the reverse reactions) are considered important
since they provide the most important source of free oxygen available for
NO formation after the combustion event. The approach of [Egnell, 1998]
and [Bensson and Whitehouse, 1979] was used, two reactions, Reaction 4.7
and Reaction 4.8, relative Gibbs energy and carbon, hydrogen, oxygen and
nitrogen balances are put together to form the nonlinear equation system
with six unknown variables shown in Eq. (4.9)-Eq. (4.14).

CO + H,O « H, + CO, (4.7)
1
CO + 502 — CO, (4.8)
aco,H
—2 2 = Ky (4.9)
ACOAH,0
1 8oy P Ky (4.10)
ao,  4co aco, +aco + ay,0 + ax, + 4o, +an,
n = aco, +4co (4.11)
m = Z(LIHZO + aHZ) (4.12)
m
2A(n + Z) = 2aco, + dco + au,0 + 4o, (4.13)
m,_ N
2A(n + 4) = 3773 (4.14)

Where # is the number of carbon atoms and m is the number of hydro-
gen atoms in an arbitrary fuel; C,;H,, (iso-octane was used with n = 8 and
m = 18). P is normalized (cylinder) pressure (P = P%' Py = 1.013-10° Pa)
and a; is a dimensionless number describing the equilibrium concentra-
tion of species i. The two equilibrium constants, Kj;; and K, can be com-
puted from polynomials (the algorithm is explained in detail in [Bensson
and Whitehouse, 1979]). The fact that the partial pressure of each species
has a relation to K;; and K gives Eq. (4.9) and Eq. (4.10). It is also a fact

48



4.1 The Model

that the number of carbon, hydrogen, oxygen and nitrogen atoms involved
in the reactions should remain unchanged. Hence it is possible to state six
equations Eq. (4.9)-Eq. (4.14) which would have to be solved, either at run-
time or in advance using precomputation/tabulation.

In order to enable the solver to find a good solution Eq. (4.9)-Eq. (4.14)
were significantly rewritten using basic algebra. Performing this action gives
Eq. (4.15) and Eq. (4.16) which, for the solver, have a more suitable format
than the previous six equations. In this way the solver can produce a more
accurate solution in much shorter time.

aco, (%5 — an,0)

=K, (4.15)
(n— ﬂcoz)ﬂHzo 4
aco, 2 _ 1 _
n—4aco, (71 + %))\ — %ﬂcoz — %n — %aHzo
2
PK2,

. _ (4.16)
7(3n+m —aco, — an,0) +8.546(n + F)A

Solving Eq. (4.15) and Eq. (4.16) gives the dimensionless equilibrium con-
centrations of CO, and H,O from which CO, H,, O, and N, can be com-
puted.

All of the variables needed to compute ANO/dt are however not yet
known. Ny is known but O and NO have to be found. This requires models
for the reactions forming O from O, (Reaction 4.17) and NO from O, and
N, (Reaction 4.19). Eq. (4.18) and Eq. (4.20) represent an approach similar to
[Egnell, 1998].

0, = 0+0 4.17)

K O,/Ce
PPV 0 Ko = 3_6.1036(%)] =

3.6-10%(=F) [ep, [] (4.18)
VRT '

0, + N, < 2NO (4.19)

49



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

|
>

Equlibrium oxygen concentration
;

A~

x
=
o

N

Coe [molicm?]
N
\

0 | . . | |
330 340 350 360 370 380 390 400 410
o [CAD]

x10°° Equlibrium di-nitrogen concentration

N

Cpe [mollcm3]
2
-
T

0 ; ; ;
330 340 350 360 370 380 390 400 410
o [CAD]

x107° Equlibrium nitrogen-oxide concentration

o ‘ ‘ ‘ ‘
330 340 350 360 370 380 390 400
o [CAD]

[

3

S [mol/cm”]
o
a1
T

Figure 4.5 Equilibrium concentration of the three different species, needed to com-

pute NO formation rate.

= /203ty 8 [] (4.20)

All equilibrium concentrations were computed with an angular resolu-
tion of 0.2 CAD within each cycle, the resulting values are shown in Fig. 4.5.
Knowing equilibrium concentrations of O, NO and N, allows computation

of ANO/dt.

NO formation

Once the equilibrium concentrations of the different species are known it is
possible to compute the NO, formation rate using the Zeldovich mechanism
shown in Eq. (4.23). The Zeldovich mechanism which models Reaction 4.21
and Reaction 4.22 is commonly used for NOy modeling.

O+N, <> NO+N “.21)
N+ 0O, <> NO+O 4.22)

50



4.1 The Model

—38000

_15.2~1013e T e, (1— (89)?)

dcNO ¥
NO
p) - —38000 (4'23)
t 761013 T ¢t
1 O"Np ( CNO )
o 1800 \cE o
1.5-10% T NOCO

During this work it was however discovered that the original rate equa-
tion based on the Zeldovich mechanism, Eq. (4.23), as presented by [Egnell,
1998] and [Heywood, 1988] actually is not valid if the volume of the zone it
is applied to varies! For a two-zone model it is obviously the case that the
volume of the burned zone increases as combustion progresses and more
and more moles are included in the burned zone. Eq. (4.23) hence had to be
rewritten according to Eq. (4.24) (which from now on is denoted the modi-
fied Zeldovich mechanism) in order to be valid even when the volume of the
burned zone varies.

dcno /ot is given by the original Zeldovich mechanism (Eq. (4.23));dV /dt
and V represent volume derivative and volume, respectively, of the burned
zone computed using the ideal gas law and the previously computed tem-
peratures and mole numbers of the burned zone. Solving the modified Zel-
dovich in Eq. (4.24), which can be done for example using a simple Euler
method, gives the NO concentration (the unit is mole/ cm?) of the burned
zone! Typical NO formation and NO concentration traces belonging to 100
consecutive engine cycles can be found in Fig. 4.6. However, it is the con-
centration of NO in the exhaust gases that is to be determined by the model.
Since NO tailpipe emissions commonly are measured as a mole-based frac-
tion the best way to compute overall NO is to compute the number of moles
of NO in the burned zone and divide it by the total, global, number of moles.
The procedure is shown in Eq. (4.25). This actually is the final step of the NO
model. The fraction of NO in the exhaust gases is now known throughout
the engine cycle, a typical NO formation case for the same 100 cycles as
shown in Fig. 4.6 is shown in Fig. 4.7.

deno _ deno |, deno 4V

dt ot oV dt
dNO _ _MNo _ _No \
oV V2 \%
_ INO
CNO = Vv
dCNQ o aCNO CNO av
dt ot V dt (4.24)
Xno = VizeNo (4.25)
ng

51



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

-4 Burned zone NO formation rate

x 10

n 2]
T T
i i

dNO/dt [mol/cm®s]
N

0 H H H i H H
330 340 350 360 370 380 390 400 410
o [CAD]

. X107 Burned zone NO concentration

3
o [mol/cm?]
N
T

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
330 340 350 360 370 380 390 400 410
o [CAD]

Figure 4.6 Burned zone NO formation rate and concentration belonging to 100 con-
secutive cycles.

4.2 The Algorithm Implementing the NO Model

To be able to successfully develop the NO model, the precomputed version
of the model and finally the algorithm implementing the model (both using
floating point and fixed point numbers) it was necessary to divide the devel-
opment into sub stages which were iterated according to Fig. 4.8. One stage
was completed when the resulting design performed as well as the previous
stage. If some fundamental issue was encountered the original model was
modified and reverified before it was possible to proceed down the stages
again. Using such a development flow was necessary to assure correct oper-
ation of the final algorithm. During the implementation process the original
model was converted to an algorithm which can be implemented for example
in the C programming language.

Implementation of the model described above took quite some consider-
ation. The aim was to be able to model NO during the cycle. Having to wait
for the cycle to complete in order to normalize the heat release and compute
the trigger point (CA10%) was hence never an option. To make it possible
to compute the model during the cycle the model had to be made causal,
meaning that it does not use measured values from the future.

Implementing algorithms in embedded systems often takes special con-
siderations as described in Chapter 2. In such environments the infrastruc-

52



4.2 The Algorithm Implementing the NO Model

Global NO fraction
600 T

500

400+

300

X\o PP

200

0 il il il ¢ il il 1 1
330 340 350 360 370 380 390 400 410
a [CAD]

Figure 4.7 Total fraction of NO within 100 engine cycles.

ture is more limited and computations hence must be adapted. For the sake
of limiting hardware use and maximizing speed, simplifications have to be
made to the model when developing the algorithm. Such simplifications
were made e.g. selecting filter coefficients so that they are power-of-two
and computing CA12.5% instead of CA10%, avoiding one division. Last but
not least as large part of the model as possible should be precomputed and
stored in memory to reduce the computational load at runtime.

Making the Model Causal

As mentioned previously the NO computation was triggered by CA12.5%
(as opposed to CA10% for the original model) and the heat release was nor-
malized against the total energy of the fuel injected. To perform these pro-
cedures two points were needed; the minimum and maximum point of the
heat release trace. When computing the NO model off-line, using recorded
data, this will not cause a problem. However since the computations were
to be carried out during the cycle issues arose with the important maximum
and minimum points of the heat-release. A naive way to solve this was to
just use the maximum and minimum points from the previous cycle. Doing
so did however give rise to some practical issues; oscillations occurred in
the two variables. The oscillations could be removed using third-order low-
pass FIR filters on the corresponding variables. Selecting a very short step
response, no amplification and filter coefficients such that division could be
avoided the two filters had virtually no negative impact on the algorithm as

53



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

Golden Model

Sequential and
tabulated Model

Model implemented
in C/VHDL

Figure 4.8 The development flow used to successfully implement the model and al-
gorithm.

HR trace \f—

el

Figure 4.9 The figure explains the operational principle of the causal heat release
including low-pass filters.

such. The filters successfully removed the issues with oscillations and made
it possible to develop a causal version of the algorithm.

Precomputation and tabulation

Since high computation speed is an absolute requirement complex com-
putation such as the nonlinear equation system (Eq. (4.15) and Eq. (4.16)),
the equations used to compute the equilibrium concentration of O and NO

54



4.2 The Algorithm Implementing the NO Model

(Eq. (4.18) and Eq. (4.20)) as well as the Zeldovich mechanism (Eq. (4.23))
have to be avoided at runtime. Even though it may be possible to imple-
ment a fast solver in some sort of electronic hardware it is much easier and
significantly faster to tabulate the result and store it in memory. This action
was performed using the observation that deno/dt actually is a function
of only three variables; burned zone temperature, the pressure ratio in the
cylinder and current NO concentration. By Eq. (4.23) dcno /0t is a function
of Ty,, cNoO/ o Cf\h and c(,. The equilibrium concentrations cﬁz, ¢ and
clo are in turn functions of Ty, P and cyo only. Hence it is possible to
tabulate dcno /0t as a function of Ty,, P and cno. Since the number of in-
put variables was not too large it was possible to use precomputed values
to avoid solving the nonlinear equations and Eq. (4.23) at runtime. In this
context pressure ratio, P, refers to the ratio between cylinder pressure and
atmospheric pressure.

It is very important to point out that the model still remains a physical
model,regardless of the fact that parts of the computations needed for the
model are precomputed. Tables are extensively used in many forms of ad-
vanced computer arithmetics and they are just a complementary method of
performing computations which, in this case, is much faster.

The equations involved were however nonlinear and performing this
pre-computation yields results looking like the surface shown in Fig. 4.10.
An attempt was made to tabulate these functions using evenly (linearly)
spaced breakpoints as a grid, the table look-up was performed using round-
ing towards nearest value. Using such simple logic proved not to work very
well and a second attempt was made using a linearly spaced table together
with trilinear interpolation. Even though it significantly improved the result
it was not good enough. At the same time trilinear interpolation comes at a
high computational cost.

One possibility was to use unevenly spaced table breakpoints and expo-
nential spacing between the breakpoints would have been a logical choice
considering Fig. 4.10. Exponential spacing would however have the draw-
back that it would require significant computation effort to compute the in-
dices when performing look-up in the table at runtime. As an intermediate
approach, avoiding the difficulties of computing exponential indices, piece-
wise linear polynomials were used. The polynomials were selected in an ad
hoc manner studying different surface plots similar to Fig. 4.10. It is impor-
tant to try to keep the order of the polynomials as low as possible to reduce
the number of tests needed to implement the algorithm (thus reducing pro-
gram size or hardware consumption). Another factor to take into account
producing these tables is the fact that most devices have limited amounts
of memory available to store the tables. Naturally we end up in an pre-
cision/consumption trade-off situation when increasing the degree of the

55



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

dNO = f(Tcz,P), cNO = 4.7311e-07 [mole/cm?]

200

Ll
150 .
)
e

g
100 i i il

(!
\

50

ONO/ot [data p]

-50
80

40 100
20 50
T, [data p] 0 o0

P [data p]

Figure 410 The NO formation-rate table visualized as a function of burned zone
temperature and pressure ratio, at constant NO concentration.

polynomials and/or the length of the tables. The three different polynomi-
als which were used as look-up indices are shown in Fig. 4.11.

It was not only the NO formation mechanism that had to be tabulated,
the isentropic relationship (4.4) was also too complex to be computed at run-
time and thus Eq. (4.4) was tabulated as a function of p/ pgo. The combustion
chamber volume and volume derivative were also tabulated as functions of
crank angle. In these cases normal linear tables with round-to-nearest look-
up was sufficient.

4.3 Experimental Platform

Engine Data

Five data points consisting of some 150 cycles each were used for the valida-
tion of the algorithm. The data was obtained on a single-cylinder version of a
passenger-car sized Volvo D5 diesel engine (0.5 1 displacement per cylinder).
The setup is presented in detail in [Horn et al., 2008]. The data points were
taken at increasing loads with varying intake-pressure, no external or inter-
nal Exhaust Gas Recirculation was present. The fuel was standard (Swedish
MKT1) Diesel fuel and the injection strategy was single injection with con-
stant end of injection and varying start of injection. Global A hence varied

56



4.3 Experimental Platform

4000

I3
~ 2000
8
=
0 | | | | | |
0 10 20 30 40 50 60 70
Index []
200
=
a 100 ’/&//,e—————’_’—'——”_—_—_
0 | | | | | |
0 10 20 30 40 50 60 70
Index []
x10°

[

3
o [mole/cm?]
o

(=] ol
T
\\ ‘

o
3
=
o
=
3
N
=]
N
&
w
=]

35
Index []

Figure 4.11 The three different index variables used in the look-up table, circles de-
note a change of polynomial.

between about 4 and 1.5 according to Fig. 4.12. The reader should note that
even though the three last data-points had the same lambda, the load varied
between the points since the intake pressure differed (due to turbo charg-
ing). One could say that the data-points represent a common Diesel load
sweep.

Simulation Environment

All computations and simulations were carried out using Matlab running on
a normal desktop PC. When developing the tabulated version of the model
(the algorithm (ALG)) the original NO model was used as a reference (as
a ‘golden-model’ (GoM)). In this way it was possible to compare internal
variables of the GoM to those of the ALG, ensuring correct operation of the
ALG. In a sense the GoM hence was a part of the setup when developing
the ALG.

Embedded system

As embedded implementation platform, a development platform hosting an
ARM-9 processor (an Atmel AT91SAM9260 device) was used. The processor
was a 180 MHz 16/32-bit RISC processor featuring 64 MB SDRAM and 512
MB Flash memory. The ARM processor family is very common in cost sen-
sitive applications such as mobile-phones and other similar products with
embedded processors. A Linux kernel version: 2.6.26.3 was present on the
processor and the algorithm was implemented in C. Two different versions

57



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

global A

1 Il Il Il
1 2 3 4 5

datapoint

Figure 412 Actual measured, global, A.

Figure 413 The development board used for algorithm test.

were implemented, one version using fixed-point arithmetics and one using
floating point. Applications were compiled using the GNU based ‘CodeS-
ourcery G++" tool chain, data input and output was taken care of using
files. Execution times were measured for 100 cycles (360 000) samples at a
time using the C ‘time.h’ library.

58



4.4 Results and Performance
4.4 Results and Performance

The five data points described above were used to test the performance
of the model. The only parameter available for ‘tuning’ the model, A,
was swept with high resolution between 0.95 and 1.2. NO computation was
performed using both the model and the algorithm with these A, values,
the results are shown in Fig. 4.14. Also included in the figure are dots and
squares indicating the actual measured NO emission for each data point
and a vertical line indicating the average A, giving the highest agreement
with the measured NO values of the five data points. The average A, giv-
ing best agreement between measured NO emission and those computed by
the model is 1.088. The corresponding best A, value computing NO using
the algorithm was 1.096. Using the model and a A, value of 1.088 gives
a maximum error of about 30% and an absolute average error of roughly
20%. Considering the coarse nature of the model and the very complex na-
ture of the physical process this must be considered acceptable at least for
qualitative control and diagnostics purposes.

The previously presented figures (Fig. 4.2-Fig. 4.7) shows crank angle
resolved data originating from data point 3 (which was randomly selected)
using a A, of 1.088. Comparing Fig. 4.3, Fig. 4.6, and Fig. 4.7 on crank angle
base with the work of [Egnell, 1998] or even with [Nishida, 2006] shows
that the transient response of internal variables as well as NO formation
of the developed model corresponds well to previous models and in-cycle
measurement of NO, which is encouraging.

The maybe most important part of the results is without doubt the suc-
cessful development and implementation of the causal and fast version of
the NO model. The algorithm was evaluated by running two different ver-
sions on the embedded ARM processor. One version was implemented us-
ing single precision (32 bit) floating point number representation and the
other using 32 bit fixed point numbers. The two different versions of the al-
gorithm were applied to a representative data point (data point 3) and NO
formation rate and concentration were stored to files and evaluated against
the output of the original reference model (‘golden model’). The floating
point C code implementing the model is found in Appendix C for reference.

Algorithm Accuracy

Fig. 4.15 show the results from to the two different versions of the algorithm
sample-by-sample and cycle-by-cycle. The results were also compared to
the output of the GoM. These comparisons can be found in Fig. 4.16 and
Fig. 4.17. Fig. 4.16 shows 90 cycles average corresponding to Fig. 4.15 com-
pared to the GoM. The top two plots of Fig. 4.17 shows the fractional error
between the causal version of the heat release and the non-causal version
of the GoM, compared sample-by-sample and cycle-by-cycle. The middle

59



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

Global predicted NO as a function of current Aca
1100 v T

—rl
N _r2,
—13
J—rat]

—15

1000

900~

800

700

600

500~

NO [ppm]

400

300

200

1001

[0}
0.9

Figure4.14 The exhaust gas NO content as a function of current A used by the model
(solid lines) and the algorithm (dashed lines).

plots of Fig. 4.17 shows the fractional error of final NO concentration out-
put, again compared sample-by-sample and cycle-by-cycle to the GoM. The
bottom part of Fig. 4.17 show 90 cycle average fractional error of NO con-
centration, NO formation rate and heat release, compared to the GoM.

Algorithm Performance

The intended use of the suggested model/algorithm implies that computa-
tion speed needs to be very high. Benchmark runs were performed on the
embedded ARM processor to measure the time consumption of the algo-
rithm. Each version of ALG was compiled both with and without optimiza-
tion for speed (the gcc -O3 option). When optimizing for speed the size of
the resulting binaries are increased and the program hence consumes more
memory. The different versions were tested upon the ARM processor and
the results are visible in Tab. 4.1. Time consumption for 100 consecutive cy-
cles containing 3600 data points each was measured with a time resolution
of 0.01 s. The table shows three different values for each version of ALG.
The first column shows total execution time for all 360000 samples. Column
two, labeled 1/700, shows the execution time average over the scope when
ALG is somewhat active (between 300 CAD and 440 CAD). Outside this
scope only a few very simple operations are performed, such as conditional
tests and variable declarations. Within this scope parts of ALG are active,
such as the heat release and temperature computations. The last column,

60



4.4 Results and Performance

Table 4.1 Execution times for one sample, measured on the ARM processor.

Algo. Ver. | texee £0.01s o5 +£0.14pus g5 +0.25us
Fix. -O0 0.84s 12.0 s 21.0 s
Fix. -O3 0.53s 7.6 us 13.3 us
Flt. -O0 2.02s 28.9 us 50.5 us
Flt. -O3 1.52s 21.7 us 38.0 us

Fix. = 32-bit fixed point, Flt. = 32-bit floating point.
-O0 = "Normal’ compilation, -O3 = Optimized for speed.

- OCNO’ ARM C float ‘4aCNO’ ARM C fix32

x 10 X 10
@ w
mE 6 mE 6
2 2
g 4 g 4
S S
o2 o2
O O
< L <
0 0
340 360 380 400 340 360 380 400
a [CAD] a [CAD]
Glob. NO frac., ARM C float Glob. NO frac., ARM C fix32
600 600
400 T 400
Q Q.
=N K=N
o o
< 200 & 200
0 0
340 360 380 400 340 360 380 400
a [CAD] a [CAD]

Figure 4.15 The two upper plots show cycle resolved NO formation rate computed
using tabulated C algorithm, floating point (left) and fixed point (right). The two lower
plots show corresponding global concentration of NO.

labeled 1/400, shows the execution time average over the scope where the
actual NO computations are carried out (approximately between 360 CAD
and 440 CAD). A representative sample average computation time, valid
for the complete ALG, would hence be something in between the values in
column two and three.

61



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

62

x10™ Burned zone NO formation rate

——golden m.
[| —— ARM C float )
—— ARM C fix32

(2]

3
6cN O/ ot [mol/cm?’s]
N B

0 1 1 1 1 ; i
330 340 350 360 370 380 390 400 410
o [CAD]
Global NO frac.

500 T T T T ’
——golden m.
_ 40011 —— ARM C float 1
E 50/ ——ARMCfix32 ]
=
2 200( 1
>
1001 1

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
330 340 350 360 370 380 390 400 410
o [CAD]

Figure4.16 Upper part shows 90 cycles average NO formation rate, C algorithm com-
pared to golden model. Lower part shows corresponding global concentration of NO.

HR diff., ARM C float HR diff., ARM C fix32

— 20 — 20

S X

Y 10 ~ 10

LI LI

& 0 o OpFET

340 360 380 400 340 360 380 400
o [CAD] a [CAD]
XNO diff., ARM C float XNO diff., ARM C fix32

g 20 g 20
5§ o 5§ o

o) o

z z
X =20 ; X -20

340 360 380 400 340 360 380 400
o [CAD] o [CAD]
20 T

—_ ————wy—agyr
T T
T or

@

i
370
o [CAD]

-20 i i i
330 340 350 360

i
380

Figure 4.17 Sample by sample and average error between the golden model and the
C algorithm. Left plots show floating point and right ones show fixed point. Upper
plots show heat release, middle plots show global NO fraction. Lower plot shows 90
cycles average errors, floating point in solid and fixed point in dashed lines.



4.5 Discussion
4.5 Discussion

Models are, naturally, rarely perfect. Assumptions which have to be made
represent simplifications of the real world and will hence infer errors. How
large errors can be tolerated varies depending on the purpose of the model.
The errors reported for this model are considered as acceptable for control
and embedded applications. Similarly to the physical world where NO for-
mation depends exponentially on combustion A, the modeled NO formation
depends exponentially on A, as seen in Fig. 4.14. The NO model is thus
very sensitive to this setting which explains the maximum absolute error of
30% even though best calibration A only differs at most by 0.1 (9%) between
the different points. In the light of the exponential dependence between NO
and A, and considering the relatively coarse nature of the model the 20%
average error must be considered as a good result.

It is very difficult to fully verify this work against engine testbed data
which would be desirable. The reason is of course that it is very difficult to
measure the NO actually present in the cylinder during combustion. One
way to perform such a measurement was proposed in [Nishida, 2006], but
this type of equipment was not available to the authors. It is neither possible
to compare end NO of each modeled cycle to NO concentration measured in
the exhaust gas on an engine testbed since NO values measured represent
average values from a number of different engine cycles due to mixing of
exhaust gases. It is also a fact that a typical NO instrument takes approxi-
mately 2 s to respond to a change in concentration (in 2 s at least 40 cycles
have occurred in the engine). The only feasible way to verify an in-cycle NO
model against testbed data is to compare the average, modeled, end NO
value to the measured engine-out NO. This must be done over a time span
where the engine maintains constant operating parameters. These are the
reasons why the ALG was compared to the GoM which in turn was devel-
oped and compared to experimental, testbed, average data.

Taking a closer look at Fig. 4.16 and Fig. 4.17 it is obvious that the tabu-
lated ALG is a sufficient implementation of the original NO model. The out-
put from the ALG (global NO ratio) is in-fact within about £15% compared
to the GoM, compared cycle-by-cycle and sample-by-sample. On average
the ALG performs within a few percent of the GoM as visible in Fig. 4.17,
bottom part. This goes for both the floating-point and fixed point version
of the ALG. The table look-up method also worked very well on average
as indicated by Fig. 4.16, upper part, and Fig. 4.17, lower part. Agreement
between the NO formation rate from the GoM and the one computed using
the exponential table (using the ALG) is excellent both for the floating and
fixed point version of the ALG.

63



Chapter 4. Development and Embedded Implementation of a Physical NOy Model
The Model

Sensitivity to Assumptions It is very difficult to state which of the as-
sumptions that has the largest impact on the performance of the model.
During the work it was however obvious that the model is very sensitive to
variables that affect the total number of moles included in the burned zone,
for example A, to which model-out NO shows exponential dependence.
The total heat release (giving the number of moles in the burned zone) is
also very important in order to get acceptable results from the model, which
was the reason for normalizing the heat release with the total energy content
of the injected fuel.

The error coming from assuming that combustion does not change the
number of moles in the combustion chamber are regarded as very small.
[Egnell, 1998] quantifies the error coming from neglecting the combustion
effect on the number of moles to about 1.5% @ A = 1.

Assuming 100% combustion efficiency and a known energy content of
the fuel are reasonable assumptions which should have a very small im-
pact on the final result. Diesel engines commonly have a very high combus-
tion efficiency and they are run on Diesel fuel with known heating value.
Furthermore the injection system has information about the injected fuel
amount.

Some of the model assumptions are not discussed further since they are
considered to be common practice in the field. These are for example as-
suming chemical equilibrium, assuming that the ideal gas law is valid and
assuming the NOy mainly consists of NO.

It should be pointed out that the impact of errors and assumptions in
the model is that the best calibration A is shifted away from it’s physically
correct value which is considered to be one. The fact that the best calibra-
tion A is very close to one strongly indicates that the assumptions made are
reasonable.

Calibration Local A Commonly some variable(s) is(are) introduced in
models which allows calibration of a model output, meaning that the model
output can be adjusted to fit empirical data. If the number of parameters
that are introduced can be kept small it is beneficial for the validity of the
model and for the model calibration effort. In the suggested approach ac-
tually only one variable is available for calibration, A.;; (the modeling local
A). It is very important to point out that A.;; used in the model is not the
same as the global A for all the gas entering the engine. A, is nor the same
as the actual physical local A categorized by [Dec, 1997]. A.;; has a physical
interpretation even though it is a calibration variable. It can be said to reflect
the average lambda at which combustion takes place, or rather the average
A of the gases which enter the burned zone. Turbulence will introduce gases

64



4.5 Discussion

which do not take part in combustion (not adding to the heat release) into
the burned zone and since there is no account for turbulence in the model
this phenomenon will be accounted for through a slightly leaner average
Acal- A best calibration value of A.;; = 1.088, according to Fig. 4.14, holds
some promise regarding the validity of the model. Best A, is significantly
richer than the real measured global lambda in the five data-points, indicat-
ing that the model captures the stratified nature of Diesel combustion. It is
also not very far from 1.0 which according to [Dec, 1997] is the physical local
A maintained during Diesel diffusion combustion.

Clearly calibration A can not be expected to exactly match the values
physically expected, the calibration A will be affected by the validity of many
different assumptions and will include many effects. Hence even though cal-
ibration A has a full physical interpretation it will not obtain fully physically
correct values! It is important to note that calibration A should rnot exceed the
global A, shown in Fig. 4.12. If it exceeded the global A the use of a stratified,
two-zone, model would have been questionable. Such a case would proba-
bly indicate that some of the assumptions or computation (for example the
heat-release analysis) were erroneous.

Heat release and Mole Numbers The format of the heat release needed to
compute the number of moles in the burned zone (Eq. (4.5)) differs signifi-
cantly from the ‘standard’ heat release equation (see [Gatowski et al., 1984]).
Using a heat release analysis which neglects all the effects of losses (heat
losses, crevice losses and losses due to combustion inefficiency) and neglects
the varying v of the combustion zone has the drawback that the value of the
result may differ significantly from the value expected from the amount of
fuel injected. The precision of the heat release actually appeared to be a se-
vere problem since it is very important to be able to compute the number
of moles in the combustion zone with reasonable accuracy. This issue was
solved by normalizing the output of the heat release against the amount
of fuel actually injected. The amount of fuel actually injected was computed
using fuel flow, it could also be computed from the injector signals with high
accuracy. Normalizing the heat release proved to be an efficient method to
keep the transient response of the heat release while obtaining reasonable
values. The normalization is a very efficient way to reduce the effects that
heat losses and a varying 7y have on the computations, using a value already
available in an engine systems (the injector signal).

Algorithm Trigger ~ Another interesting point of discussion is how the com-
putation trigger (CA10% in the GoM and CA12.5% in the ALG) affects the
result. Using a computation trigger might have some impact on the results,
the best candidate for computation trigger would obviously be CA5% which
however proved to be too sensitive to noise for practical use. Instead CA10%

65



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

was selected as a more stable approach with the drawback of reduced accu-
racy during the early combustion. It is a physical fact that there is no NO
formation before combustion has started since the temperature increase due
to compression is not high enough. It is only when combustion has started
that the burned zone temperature is high enough to form NO. The burned
zone is furthermore infinitesimal during the earliest stages of combustion
and hence very small amounts of NO is formed initially. Hence, it is not
necessary to start the computation of NO before combustion has progressed
for a little while. The peak present in the computation of 9INO/ 9t in Fig. 4.6,
Fig. 4.15 upper parts and Fig. 4.16 is not regarded as an artifact of the method
to start the computations. This peak is instead considered to be a result of
the chemistry model as such. Early in the cycle there is no NO present in
the cylinder, since ONO/9dt is a function of among others current cxo by
Eq. (4.23), it is given that NO formation rate is high when current NO con-
centration initially is low (zero). Triggering NO computation has two clear
benefits, numerical issues caused by zero-division events are avoided and
computation work is saved! We have found no drawbacks with the use of
CA10%, CA12.5% as computation trigger, considering the very small size
(number of moles) in the burned zone before CA10%. Naturally this method
is independent of IVC and which valve strategy is applied. As long as there
is combustion, the model will trigger when the actual combustion takes
place and hence when NO is formed.

Sensitivity to v The ratio of specific heats, v, is an important variable in
this modeling context. The true and correct way to handle v is a matter of
dispute in modeling communities. Assuming an ideal gas, vy is a function of
temperature and it is in many cases important to include this dependence
on temperature.

In this work the fluids are assumed to be ideal gases, v is however as-
sumed to have a constant value! The reason for doing so in this case is to
spare computation time and memory. y was used in two places in the model,
one place is in the heat release which is considered to be the place where a
varying 7 has its largest impact since the temperature in the burned zone is
high. The issue with varying < in this case is however solved by normalizing
the heat release with the amount of injected fuel.

¥ was also used to compute the temperature of the unburned zone. The
unburned zone is however significantly colder than the burned zone. In the
temperature range of the unburned zone 7y does not vary enough to affect
the results. The model as such is hence not significantly affected by the as-
sumption of a constant y and being able to assume a constant 7y actually
was important to obtain a fast model. In the tabulated version of the model
it would be possible to take account for a varying y without decreasing com-
putation speed, since the unburned zone temperature expression was pre-

66



4.5 Discussion

computed and tabulated. It would however add one dimension to the table
which was used and the result is not considered to be affected enough to
motivate this added overhead.

Modified Zeldovich Rate Expression Realizing that a modification to the
commonly used and well known Zeldovich rate expression causes some
confusion a short motivation in the form of logic reasoning follows. Con-
sider a volume containing a certain number of moles of NO. Let us assume
that, at current conditions, no NO is either formed or consumed meaning
that deno/dt = 0 according to the original Zeldovich mechanism. At such
a situation we have a fixed number of NO molecules in a fixed volume. If
the volume changes but the formation of NO molecules still is zero an issue
with the original Zeldovich rate expression arises. In such a case the actual
physical NO concentration will decrease but the original Zeldovich expres-
sion as presented in [Heywood, 1988] will still compute the NO concentra-
tion change to zero since the difference in volume is not included in the
expression!

From this reasoning it undoubtedly follows that the original Zeldovich
rate expression is only valid for constant volume. If the volume varies it has
to be complemented with a term describing the concentration change due
to volume change. This explains the development of the modified Zeldovich
rate expression.

Since previous contributions in the area use a multi-zone approach it
is highly likely that each zone does not vary significantly in volume, the
number of zones just increases. The original Zeldovich rate expression has
hence been valid in those cases.

Modeling EGR Modern Diesel engines commonly use Exhaust Gas Recir-
culation (EGR) to reduce emissions of among others NOx. Any NOyx model
should hence preferably capture the impact of EGR on NOx emissions. It
would be interesting to know how difficult it would be to adapt the devel-
oped model to include the effects of EGR. The answer to this question is
that it would not take much effort to include the effect of EGR. The use of
EGR will basically have an impact on the parts of the model which com-
pute the number of moles in the burned zone, 1;,, and the global number
of moles, ng. When using EGR there will be a number of moles of non reac-
tive gas present in the burned zone which will increase the total number of
moles present in the burned zone, thus lower the burned zone temperature,
Ty,. Hence, the burned zone temperature computations will have to be up-
dated so that it includes the number of moles of non reactive gas entering
the burned zone together with the reactive gas.

The start temperature of the charge would also change when using EGR.
Start temperature estimation would have to be changed accordingly so that

67



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

it computes a correct start temperature of the gas which is important to be
able to compute the global number of moles, 7.

Since the factors that determine NO formation are computed using an
equilibrium chemistry model it is not directly affected by the use of EGR.
The equilibrium chemistry model (and hence the NO formation) depend
only on Ty, p and A (see e.g. [Eriksson, 2004]). This is a very good thing
since it means that the precomputed NO formation table which was used to
implement the algorithm is valid even when using EGR, as long as combus-
tion still takes place at the same local A.

EGR influences combustion by lowering the burned zone temperature
and if the computation of the number of moles in the burned zone and the
global number of moles is updated so that they reflect these changes the
model can be made to work even when using EGR.

The Algorithm

Causal Heat Release The causal version of the heat release appears to
work very well compared to the non causal version used in the GoM. So is
the case both compared sample by sample and on average as evident from
the upper and lower parts of Fig. 4.17. The results from the causal heat re-
lease are always within 3% of GoM during combustion, the average error is
2%. Note that the fairly large fractional error before 360 CAD depends on
division by zero when computing the fractional error. It seems to be safe to
conclude that the causal heat release of ALG works almost as well as the
non causal one of GoM. The computation of burned-zone temperature is
however highly sensitive to errors in the heat release and a part of the dif-
ference in final NO between ALG and GoM on cycle base, seen in the middle
of Fig. 4.17, can surely be attributed to these few percent of deviation in the
heat release. The causal heat release was however necessary in order to com-
pute in-cycle NO

Look-up Tables The use of look-up tables was crucial to obtain an ALG
which was able to compute in the desired time frame. Using the piecewise
linear polynomials to index the NO formation table it was possible to com-
pute NO formation with sufficient accuracy. Attempts made using normal
linearly spaced tables were not able to produce such good result with re-
spect to agreement with the GoM or signal quality of the formation rate.
The exponentially spaced table surely was a key component in developing
the ALG. Some switching noise was present on the NO formation rate signal
(Fig. 4.15 upper part), meaning the noise which is caused by discrete steps
in the table. However none of the noise propagated through to the resulting
cno signal (Fig. 4.15 lower part). The reason for this is that the Euler method
used to solve Eq. (4.24) has strong low-pass characteristics and the switch-

68



4.5 Discussion

ing noise present on the NO formation-rate signal is hence less of a problem,
it is the NO concentration (cnp) and fraction (Xyo) that is of interest.

This method of precomputation and tabulation should not be confused
with the type of empirical calibration tables commonly used in the automo-
tive industry. It is very important to point out that the model remains phys-
ical even though parts of it are precomputed and stored in tables. The table
performs exactly the same mapping between the input variables and the
output variable as the original function would have done, the only differ-
ence is that it is precomputed and hence faster. Neither is the extrapolation
property, which is the strength of physical models, lost. The model main-
tains its capability of extrapolation and there is no need for exchanging the
table e.g. when changing engine.

C Algorithim A very important part of the result is the successful imple-
mentation of ALG in C. Developing the tabulated version of ALG took quite
a lot of consideration. Implementing ALG in C also took some time, espe-
cially the fixed point version. Implementing arithmetics using fixed point
numbers is complicated, internal variables must have a correct fraction length
in order to maintain enough resolution to produce correct results, at the
same time overflow has to be avoided during all steps of the computations.
In this work the fraction length (number of bits used to represent the deci-
mal part) were selected for best precision based on simulations of a number
of different data points in Matlab. These simulations were performed based
on 16-bit word length but the final implementation was performed using
32-bit word length, thus overflow is highly unlikely (there are 16 spare bits).
The 16 spare bits surely leaves the door open for further optimization, either
to increase the precision of the fixed point version or maybe to reduce the
word length of the fixed point version to 16-bit while still maintaining about
the same numerical performance.

Computation Speed and Memory Consumption The goal with this work
was to develop a model and algorithm of such a format and with such low
demands on computational power so as to be computable in an embed-
ded system. The goal was to handle a crank angle resolution of 0.2 CAD
and a maximum engine speed of 4500 rpm (corresponding to the manxi-
mum engine speed of a modern passenger car Diesel engine). This means
that ALG needs to compute one sample faster than 1/ (4500 - 1800/60) =
7.4 us, in order to finish before the next sample arrives. The result from
the tests on the embedded ARM processor in Tab. 4.1 indicate that ALG al-
most meets the goals. The fixed-point version of ALG was able to compute
in-cycle NO formation with the desired crank angle resolution up to about
60/(1800-11-107°) ~ 3000 rpm (the most optimistic way to compute gives
4400 rpm and most pessimistic gives 2500 rpm). The floating-point version

69



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

of ALG would however not be able to cope with engine speeds higher than
about 60/ (1800 - 30 - 107°) ~ 1100 rpm. The fixed point version of ALG
is more than twice as fast as the floating point one, which was expected
since no hardware floating point support was available in the compiler. Us-
ing floating point the processor has to perform every operation twice, once
for each of the two words used to represent a floating point number. Using
fixed point numbers each operation only has to be performed once since a
single number is used. To compute the model at the desired time of 7.4 us
several things could be attempted, one thing that probably would increase
computation speed would be to remove the Linux OS present on the proces-
sor. Another thing that could be done is to slightly reduce the crank angle
resolution. The easiest would however be to use a slightly faster processor
or maybe even to implement the model using an FPGA, which may be more
cost effective.

Memory is another limiting factor in this context. The NO formation-rate
table as well as volume, volume derivative and the table used for the isen-
tropic relationship needs to be stored in memory. Table values were stored
using 32 bit numbers and NO formation table size was 64 - 64 - 32 = 131072
points. The table would consequently need 2° - 26 .25 .32 ~ 4.12 Mb, the
other tables together would need (2 - 3600 4 256) - 32 ~ 0.24 Mb. The size of
the binaries is about 0.80 Mb which means that the current model occupies
about 5.16 Mb = 0.65 MB which is a negligible part of the memory available
on typical embedded processors, as well as the processor used to generate
the results. With some more work it is likely possible to further reduce the
size of the NO formation table about two times to 2.06 Mb = 0.26 MB by
reducing the pressure ratio resolution to five bits.

4.6 Summary

This chapter suggested a model which can be used to compute the NO emis-
sions of a Diesel engine. The model, or algorithm implements a physically
correct NO model which uses a two zone approach to model the stratified
nature of Diesel combustion. A novel approach for computing the temper-
ature of the burned zone was developed. The temperature computation is
based on the ideal gas law applied to the different zones in combination
with assumption of isentropic compression of the unburned zone. Know-
ing the temperature of the burned zone it is possible to compute the NO
formation rate. The well-known Zeldovich rate expression has for that pur-
pose been modified in order to be correct when the control volume (burned
zone) changes its volume.

The only ‘tuning parameter” within the model is the local A and the
model provides best agreement with measured data when the local A is

70



4.6 Summary

within physically reasonable values (A is close to one). On the five data
points available an absolute average error of 20% was obtained. Even though
this number is not to be considered as a very good result compared to ex-
tensive multi-zone models it is, using the model, possible to get quantitative
information regarding the instantaneous NO content in the cylinder. Com-
paring with complex multi-zone models is unfair considering the computa-
tion times needed to complete the different models.

The most important part of the result was to show that it was possible
to develop an algorithm implementing the physical NO model on an em-
bedded system. A causal version of the heat release had to be developed.
In order to obtain high computation speeds the NO formation rate had to
be tabulated as a function of pressure ratio, current NO concentration and
current burned zone temperature. Two different versions of the algorithm
were developed, one version using floating-point numbers and one version
using fixed-point numbers. The resulting algorithms were tested on an em-
bedded processor and execution times were measured and evaluated. The
fixed-point algorithm proved to be able to compute in-cycle NO concentra-
tion ‘online” up to an engine speed of at least 3000 rpm and with a resolution
of 0.2 CAD. The floating-point version, being less than half as fast due to the
use of floating point arithmetics, could do the same up to engine speeds of
about 1000 rpm. Even though the model used fairly large tables it did not
consume a lot of memory. The present model implementation occupies a
total of 0.65 MB of memory.

A large part of the methodology used are applicable in other situations
where it is desirable to implement fast versions of physical models in em-
bedded environments. This work can be said to over bridge the traditional
gap between the detailed physical models and the less detailed, state based,
control oriented models.

71



Chapter 4. Development and Embedded Implementation of a Physical NOy Model

72



D

Concluding Remarks

Performance demands put on combustion engines are ever increasing, e.g.
demands on emissions and fuel consumption. The increased demands to-
gether with new combustion concepts increase the need for feedback en-
gine and combustion control. Mathematical models are considered impor-
tant in order to implement high performance feedback control, as well as to
perform diagnostic functions in vehicles. At the same time economical con-
siderations enforce the usage of low fidelity control hardware, limiting the
implementation possibilities due to lack of computational power.

This thesis combines the areas of automatic control, electronic hardware
design and development of embedded software, and applies it to combus-
tion engine control.

Various options which can be used to implement mathematical models
in vehicles are described; embedded processors, FPGAs and ASICs. Em-
bedded processors are processors embedded in products e.g. engine control
units. An FPGA is a large network of electronic components (an electronic
circuit) which is reconfigurable and ASICs are large electronic circuits which
are not reconfigurable. Which of these implementation platforms to choose
must be decided based on the intended application and current demands
on performance. An embedded processor is suitable in many applications;
it is flexible and easy to develop software for. The resulting implementa-
tion does however not have the performance of the corresponding FPGA or
ASIC implementation. In recent years FPGAs have developed, from being
a device mainly used to implement grids of ‘glue-logic’, to a very flexible
device which can be used to develop complex hardware systems residing
on one circuit. FPGAs are well suited for usage in cost and performance
sensitive applications. Embedded systems, ASICs and FPGAs have been
discussed based on literature found on the topic covering a wide span of
considerations.

Furthermore a number of considerations which are important when im-
plementing algorithms and logic in embedded processors and FPGAs were

73



Chapter 5. Concluding Remarks

described. Rewriting the algorithms while keeping the properties of the im-
plementation platform in mind is important in order to decrease the de-
mands on computational effort. Another very important issue when devel-
oping mathematical models intended for FPGAs and embedded systems is
to find a suitable internal number representation. Using fixed point digital
number representation gives more efficient results. Two different mathemat-
ical models were implemented as concept studies in order to illustrate the
methodologies described and to make use of the theory.

An FPGA implementation of a reformulated but completely equivalent
heat release calculation was shown. The implementation was capable of
computing a heat release sample within 120 ns which is to be considered as
immediate in a combustion engine context. Heat release analysis is within
the automotive community often considered too computationally demand-
ing to be implemented on board a vehicle. This proof of concept study indi-
cates the achievable performance of FPGAs.

A NOy model was developed implemented on an embedded processor.
The output from the model was intended for closed loop Diesel combustion
control. To be able to implement a fast NOx model several techniques were
used. Parts of the model were tabulated, difficult operators such as division
were avoided and the properties of fast C code was kept in mind. The perfor-
mance goal of the model was intra cycle performance, i.e. to compute NOy
formation during the same cycle it occurs with a high time resolution. The
goal was almost achieved by the fixed point version of the NOy algorithm
which was able to compute in-cycle NOy formation up to engine speeds of
about 3000 rpm. The floating point version of the algorithm was not able to
cope with engine speeds higher than about 1100 rpm, i.e. less than half as
fast as the fixed-point implementation. To further increase the computation
speed of the model several things could be attempted; Removing the Linux
OS present on the processor, slightly reducing the time resolution or to use
a slightly faster processor, it may even be a good option to implement the
model using an FPGA. Even so, the developed NOx model computes fast
on an embedded processor and on-board, intra-cycle implementation of the
NOy model was possible!

The work undertaken indicated the possibility to implement high speed
control oriented models in FPGAs and embedded processors. Methods have
been devised to develop physical models which have very low demands
on computational power. It is important to keep the limitations of the im-
plementation environment in mind during the entire development process.
This thesis aims to fill a gap between state space models, common in auto-
matic control, and high fidelity physical models, commonly used for simula-
tion, by providing a method to develop high fidelity control oriented models
which are low in computation demand and implementable in FPGAs and
embedded processors.

74



6

Bibliography

Andersson, M., J. B.,, H. A., and C. Nohre (2006): “A real-time NOx model
for conventional and partially premixed diesel combustion.” In SAE,
number 2006-01-0195. Detroit.

Andersson, O. (2008): Handbook of Combustion, vol. 3, chapter Diesel
Combustion. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bengtsson, J., R. Johansson, P. Strandh, P. Tunestal, and B. Johansson (2004):
“Closed-loop combustion control of homogeneous charge compression
ignition (hcci) engine dynamics.” International journal of adaptive con-
trol and signal processing, 18:2, pp. 167-179.

Bengtsson, ]., R. Johansson, P. Strandh, P. Tunestdl, and B. Johansson (2006):
“Hybrid control of homogeneous charge compression ignition (HCCI)
engine dynamics.” International journal of control, 79:5, pp. 422-448.

Bensson, R. S. and N. D. Whitehouse (1979): Internal Combustion Engines.
Pergamon Press, Oxford.

Cantin, M.-A., Y. Savaria, and P. Lavoie (2002): “A comparison of automatic
word length optimization procedures.” In IEEE International Sympo-
sium on Circuits and Systems (ISCAS 2002), vol. 2, pp. 612-615. IEEE,
New York.

Cantin, M.-A., Y. Savaria, D. Prodanos, and P. Lavoie (2006): “A metric
for automatic word-length determination of hardware datapaths.” In
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, number 10, pp. 2228-2231. IEEE, New York.

Compton, K. and S. Hauck (2002): “Reconfigurable computing: A survey
of systems and software.” In ACM Computing Surveys, number 2.
Danvers.

75



Chapter 6.  Bibliography

Damaj, I. W. (2006): “Parallel algorithms development for programmable
logic devices.” In Advances in Engineering Software, number 37,
pp- 561-582. Maryland Heights.

Dec, J. E. (1997): “A conceptual model of di diesel combustion based on
laser-sheet imaging.” In SAE, number 970873. Detroit.

Egnell, R. (1998): “Combustion diagnosis by means of multi-zone heat
release analysis and NO calculation.” In SAE, vol. 981424. Dearborn.

Ericsson, C. and B. Westerberg (2006): “Modelling diesel engine combustion
and NOy formation for model based control and simulation of engine
and exhaust aftertreatment systems.” In SAE, number 2006-01-0687.
Detroit.

Eriksson, L. (2004): “CHEPP - a chemical equilibrium program package for
matlab.” In SAE, number 2004-01-1460. Detroit.

Gatowski, J. A., E. N. Balles, K. M. Chun, E E. Nelson, J. A. Ekichian, and
H. J. B. (1984): “Heat release analysis of engine pressure data.” In SAE,
number 841359. Detroit.

Guzzella, L. and C. Onder (2004): Introduction to Modeling and Control of
Internal Combustion Engine Systems. Springer, Berlin, Heidelberg.

Hervé, N., D. Ménard, and O. Sentieys (2005): “Data wordlength optimiza-
tion for FPGA synthesis.” In Signal Processing Systems Design and Im-
plementation, pp. 623-628. IEEE, New York.

Heywood, J. B. (1988): Internal Combustion Engine Fundamentals.
McGraw-Hill, New York.

Horn, U, E. Rijk, R. Egnell, O. Andersson, and B. Johansson (2008): “Inves-
tigation on differences in engine efficiency with regard to fuel volatility
and engine load.” In SAE, number 2008-01-2385. Chicago.

IEEE, P1800, System Verilog Work Group (2001): 1364—2001 IEEE standard
Verilog hardware description language. IEEE, New York.

IEEE, VASG: VHDL Analysis and Standardization Group (2007): 1076C-2007
IEEE Standard VHDL Language Reference Manual. Number ISBN 0-
7381-5523-3.IEEE, New York.

Kiencke, U. and L. Nielsen (2000): Automotive Control Systems - For Engine,
Driveline and Vehicle. Springer, Berlin, Heidelberg.

Kuon, I. and J. Rose (2007): “Measuring the gap between FPGAs and ASICs.”
In IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, number 2. IEEE, New York.

76



Lewander, M., B. Johansson, P. Tunestal, N. Keeler, N. Milovanovic, and
P. Bergstrand (2008): “Closed loop control of a partially premixed com-
bustion engine using model predictive control strategies.” In 9th Interna-
tional Symposium on Advanced Vehicle Control, AVEC'08. Kobe, Japan.

Marwedel, P. (2003): Embedded System Design. Kluwer Academic Publish-
ers, Dordrecht.

Monmasson, E. and M. N. Cirstea (2007): “FPGA design methodology for
industrial control systems — a review.” In Transactions on Industrial
Electronics, number 4. IEEE, New York.

Nishida, K. (2006): “Combustion and emission formation processes in d.i.
diesel engine under various injection strategies.” In FISITA, number
F2006P278. Yokohama.

Olsson, J.-O., P. Tunestal, and B. Johansson (2001): “Closed-loop control of
an HCCI engine.” In SAE, number 2001-01-1031. Detroit.

Onishi, S., S. Jo, K. Shoda, P. D. Jo, and S. Kato (1979): “Active Thermo-
Atmosphere Combustion (ATAC)—a new combustion process for inter-
nal combustion engines.” In SAE, number 790501. Detroit.

Powell, J. D. (1993): “Engine control using cylinder pressure - past, present
and future.” Journal of Dynamic Systems Measurement and Control -
Transactions of the ASME, No 115, pp. 343-350.

Randolph, A. L. (1990): “Methods of processing cylinder-pressure trans-
ducer signals to maximize data accuracy.” In SAE, number 900170. De-
troit.

Shaver, G. M., ]J. C. Gerdes, and M. Roelle (2004): “Physics-based closed-
loop control of phasing, peak pressure and work output in hcci engines
utilizing variable valve actuation.” In Proceeding of the 2004 American
Control Conference, vol. 1, pp. 150-155. Boston.

Todman, T., G. Constantinides, S. Wilton, O. Mencer, W. Luk, and C. P.Y.K.
(2005): “Reconfigurable computing: Architectures and design methods.”
In IEE Proceedings - Computers and Digital Techniques, number 2,
pp- 193-207. IEEE, New York.

Tunestdl, P. (2000): Estimation of the In-Cylinder Air/Fuel Ratio of an
Internal Combustion Engine by the Use of Pressure Sensors. PhD thesis,
University of California, Berkeley.

Tunestal, P. (2007): “Self tuning cylinder pressure based heat release compu-
tation.” In Proceedings for the Fifth IFAC Symposium on Advances in
Automotive Control, number AACO07-30, pp. 183-189. IFAC, Aptos, CA.

77



Chapter 6.  Bibliography
Vahid, F. and T. Givargis (2002): Embedded Systems Design. John Wiley &
Sons, Hoboken.

Woschni, G. (1967): “A universally applicable equation for instantaneous
heat transfer coefficient in the internal combustion engine.” In SAE,
number 670931. Detroit.

78



A

Abbreviations

ADC
ALG
ASIC
CAD
CADP

COTS
CPLD
DAC
DC
DFG
DSP
EGR
FIR
FPGA
GoM
HC
HCCI
HR
I/0
IvC
JTAG
LSB
MB
Mb
MPC
PAL
PC
PM
rpm

Analog-to-Digital Converter

Algorithm

Application-Specific Integrated Circuit
Crank Angle Degree

Crank Angle Degree Pulse

(not necessarily with on-degree interval)
Commercial Off-The-Shelf

Complex Programmable Logic Device
Digital-to-Analog Converter

Direct Current

Data Flow Graph

Digital Signal Processor

Exhaust Gas Recirculation

Finite Impulse Response (filter)

Field Programmable Gate Array

Golden Model

Un specified hydrocarbon fuel
Homogeneous Charge Compression Ignition
Heat Release

Input/Output

Inlet Valve Close

Joint Test Action Group (standard test access port)
Least Significant Bit

Megabyte

Megabit

Model Predictive Control
Programmable Array Logic

Personal Computer

Particulate Matter

Revolutions Per Minute

79



Appendix A.  Abbreviations

RTL
SGDSP
TDCP
VHDL
VHSIC

80

Register Transfer Level

System Generator DSP

Top Dead Center Pulses

VHSIC hardware description language
Very-High-Speed Integrated Circuits



B

Symbols

w, 0
Xsafr
Y

A
/\Cﬂl

CcO
CO,
Hp
H,O
N, N,
NO
NOy
0, O,

ADC
axx
CAXX%
CNO

Cy

cXx
DAC
FPGA_
pr

M,

Engine crank position (crank angle degree)
Stoicometric air fuel ratio

Ratio of specific heats

Relative air-fuel ratio

Burned zone lambda, model calibration variable

Carbon monoxide

Carbon dioxide

Hydrogen

Hydrogen oxide (water)

Nitrogen

Nitrogen oxide

Nitric oxides, including both NO and NO,
Nitrogen

ADC clock frequency

Dimensionless equilibrium concentration of species XX
The time instance for XX% of total heat release
Concentration of NO

Molar specific heat at constant volume
Equilibrium concentration of species XX

DAC clock frequency

FPGA clock frequency

Equilibrium constants

Mole mass of air

Mole mass of fuel

Mass of air in the burned zone

Mass of fuel in the burned zone

Number of moles
Number of moles at a zero datum point

81



Appendix B.  Symbols

My Number of moles in the burned zone

nbz Number of moles of air in the burned zone
ni’f Number of moles of fuel in the burned zone
ng Global number of moles

1NO Number of moles of NO

Nyuz Number of moles in the the unburned zone
P Pressure ratio

Po Pressure at a zero datum point

Peyl, P Cylinder pressure

Pgo Global pressure at a zero datum point
Pisb Pressure resolution (value of LSB)

Pmax Maximum pressure

Q Released heat

Q?ffz Net heat released from combustion

Qino Lower heating value (of fuel)

R Molar gas constant (ideal gas constant)

T Temperature

Ty Temperature a zero datum point

Ty, Temperature of the burned zone

Tg Global temperature

Teo Global temperature at a zero datum point
Tuz Temperature of the unburned zone

t Time

texec Execution time

u Internal energy

1% Volume

W Volume at a zero datum point

Viz Volume of the burned zone

Ve Volume of the total combustion chamber
Viz Volume of the unburned zone

4% Mechanical work

XNO Fraction of NO (on mole base)

82



C

C Code Listing,
Floating-Point NOx Model

//++Inc

lusion++

#include <stdio.h>

//++Def

initions and globals++

//Computation "windows" (INTs)

#define
#define
#define
#define
#define
#define
#define
#define

//Const
#define
#define
#define
#define
#define
#define
#define
#define

//Const
static
static
static
static

minHRScope 1500//Min of cycle window

maxHRScope 2200//Max of cycle window

pegPMin 1492//Min point for HR peg point

endWind 2184//End window, used for max search

algoUpdaP 1//CAD point for cycle change (variable update)
nRLock 1152//Crank angle where to lock nR

cycleLen 3600//The length of an engine cycle (resolution)
isenPTLock 1732//CAD point for isentrpo lock

ants, float

qTrigLim 0.125//NO computation start Q threshold (12.5%)
oneDivGamGMinl 2.7778//Constant 1/(gam-1)

gToLambdaConst 1.3319e-05//Constant used to comp. nbz from Q
invR 0.1203//Constant 1/R

pO 1.0130e+05//Normal atmos. pres. (for computing pres. rat)
r 8.3144720//Universal gas constant R

isenTabAmpli 64.0//Amplification for index in isentrop
calcQOffs 16//0ffset on Q trace, 16J

ants memory maps, read from file

float V[3600];//Engine volume as function of CAD

float dV[3600];//Engine derivative volume as function of CAD
float isenTab[256];//Isentrop Y value (temperature)

float dNO[32] [64] [64];//NO formation rate

83



Appendix C.  C Code Listing, Floating-Point NO, Model

//In cycle variables

//State variables

static float nR = 0;//For global number of moles and temperature
static float ng = 0;//Global number of moles

static float genStartNOx = 0;//Point where to start comp. NO (CAD)
static float 0ldCNO = 0;//NO concentration in previous sample
static float oldVcz = 0;//Volume of combustion zone, previous samp.
//HR related

static float cumP = 0;//Cumulative pressure (Per HR)

static float pegP = 0;//HR P*V peg point (Per HR)

static float nextMaxP = 0;//Max HR point, used for normalization
static float nextMinP = 0;//Min HR point, used for normalization
static float gNormConst = 0;//Normalization constant, current cycle

//inter cycle variables

static float isenPLock = 0;//Isentrpoic lock pressure

static float isenTLock = 0;//Isentropic lock temperature

//HR related

static float maxPFilt[4];//Vector; HR norm. max point filter
static float filtMaxP = 0;//Current filtered max point

static float filtMinP 0;//Current, (not filtered), min point

//++Function declarations++

//Returns the current NO formation rate, a func. of conc.,

// burned zone temp. and current pressure ratio.

float lookupNO(float currCNO, float currTcz, float currRatP);

//Takes "one step" with the model, input is engine position (CAD),
//cylinder pressure, intake temperature, fuel amount belonging to
//current cycle and the time between CADS (engine speed).
float iterateModel(int CAD, float cylP, float inT,

float qf, float dt);

//Reads the maps needed (V, dV, isentrop, dNO) from .dec files.
//Returns success or failure, 1,0.
int installMaps(void);

//Main function performs the actual test run
int main(void);

//++The code++
float iterateModel(int CAD, float cylP, float inT,
float qf, float dt)
{
//Variable declarations and initiations
//HR related
float constCylPV, cylPV, dVP, realCurrQ, q;

84



realCurrQ = O;

cylPV = 0;
constCylPV = O;
q=0;

//Moles, temperatures and volume

float nb, nuz, tg, tuz, tbz, pVDivR, vcz, pczVcz;
nb = 0;

nuz = 0;

tg = 0;
tuz =
tbz =
vcz = 0;
pVDivR = O;

s

)

o O O~

//The isentrop

float isenPRat, interplsen, thelsentrop;
int isenTabPos;//Look up table position
isenPRat = O0;

isenTabPos = 0;

interpIsen = O;

thelsentrop = 0;

//NO related

float ratP, cNO, dNOdt, dNOdV, xNOtot;
genStartNOx = 0;

pczVcz = 0;

ratP = 0;

cNO = 0;

dNOdt = 0;

dNOdV = 0;

xNOtot = 0;

//New cycle clear the states and update inter-cycle states
if (CAD == algoUpdaP)
{
//Compute the filtered max point, HR

filtMaxP = (maxPFilt[0]*.125) + (maxPFilt[1]*.125) + ...

(maxPFilt[2]*.25) + (maxPFilt[3]*.5);
//Update filter state
maxPFilt[3] = maxPFilt[2];
maxPFilt[2] = maxPFilt[1];
maxPFilt[1] = maxPFilt[0];
maxPFilt [0] = nextMaxP;

//Compute min point, HR
filtMinP = nextMinP;



Appendix C.  C Code Listing, Floating-Point NO, Model

//Compute normalization constant
gNormConst = qf/(filtMaxP-filtMinP);

//Update state variables for new cycle

//HR

cumP = 0;

pegP = 0;

nextMaxP = -1000;

nextMinP = 1000;

//Moles, temperatures, volume and isentrop
nR = 0;

ng = 0;

isenPLock = 0;

isenTLock = 0;

//NO algorithm
genStartNOx = O;
01dCNO = 0;
oldVcz = 0;

//Compute the global number of moles
if (CAD == nRLock)
{
nR

ng

cylP*V[CAD]/inT;
nR*xinvR;

}

//These variables are used several times = precomputed
if (CAD > pegPMin && CAD <= maxHRScope)
{
cylPV = cylP*V[CAD];
constCylPV = cylPV*oneDivGamGMinl;
X

//Compute the HR datum point
if (CAD == minHRScope)
pegP = constCylPV;

//Compute HR, moles and global temp
if (CAD > minHRScope && CAD <= maxHRScope)
{
//Update cumulative sum, HR
dVP = cylP*dV[CAD];
cumP = cumP + dVP;
//Compute Q according to Per T method, HR
realCurrQ = constCylPV + cumP - pegP;

86



//Compute final Q, HR
q = (gNormConst*realCurrQ - filtMinP)+calcQOffs;

//Compute the moles
nb = g*qToLambdaConst;
nuz = ng-nb;

//Global temperature
tg = cylPV/nR;

//Compute current cycle HR max point, for normalization, HR
if (CAD == maxHRScope)
nextMaxP = realCurrQ;

//Find current cycle minimum HR point for Q "pegging", HR
if (CAD > minHRScope && CAD <= maxHRScope && realCurrQ < nextMinP)
nextMinP = realCurrQ;

//Determine NOx algorithm start point based on prev. Qmax
if (CAD > 1751 && genStartNOx == 0 && q > qTrigLim*filtMaxP)
genStartNOx = CAD;

//Lock for the isentropic relationship
if (CAD == isenPTLock)
{
isenPLock = cylP;
isenTLock = tg;
}

//Run the NO formation algorithm
if (genStartNOx != O && CAD >= genStartNOx && CAD <= maxHRScope)
{

//Isentr. pressure ratio
isenPRat = cylP/isenPLock;
//Compute position in isentropic table
isenTabPos = (int) (isenTabAmpli*isenPRat);
//Perform the isentropic look up
interpIsen = isenTab[isenTabPos];
//Compute the unburned zone temperature
tuz = (interpIsen*isenTLock) ;

//Compute burned zone temperature
pVDivR = ng*tg - nuz*tuz;
tbz = pVDivR/nb;

//Compute pressure ratio

87



Appendix C.  C Code Listing, Floating-Point NO, Model

ratP = cylP/p0;

//Perform NO look up!
dNOdt = lookupNO(0ldCNO, tbz, ratP);

//Compute volume of combustion zone
pczVcz = nbx*r;

pczVcz = pczVcz*tbz;

vcz = pczVcz/cylP;

//Compute cNO volume derivative
dNOdV = ((01dCNO/vcz)*(vcz-0ldVcz));

//Compute current burned zone NO concentration
cNO = o0ldCNO + dNOdt*dt - dNOdV;

//Compute overall NO concentration
xNOtot = (vcz*cNO)/ng;

//Update state, Store variables
oldVcz = vcz;
01dCNO = cNO;

//Return the computed fraction of NO
return xNOtot;

//NOTE this must be changed when the map is changed
float lookupNO(float currCNO, float currTcz, float currRatP)
{

int cNOPos, TczPos, ratPPos;

//Current cNO lookup position
cNOPos = 0;
if (currCNO < 2.83122062683105e-07)
cNOPos = (int) (currCNO*67108864) ;
else if (currCNO < 5.21540641784668e-07)
cNOPos = (int) (((currCN0O-3.12924385070801e-07)*33554432) + 20);
else
cNOPos = (int) (((currCNO-5.81145286560059e-07)*16777216) + 28);

//Combustion zone temperature look up position

TczPos = 0;
if (currTcz < 1920.00)

88



TczPos = (int) ((currTcz-1024.00)*0.0078) ;
else if(currTcz < 2432.00)

TczPos = (int) ((currTcz-1984.00)*0.0156) + 8;
else if (currTcz < 2688.00)

TczPos = (int) ((currTcz-2464.00)*0.0312) + 16;
else

TczPos = (int) ((currTcz-2704.00)*0.0625) + 24;

//Pressure ratio look up position
ratPPos = 0;
if (currRatP < 40.00)
ratPPos = (int) (currRatP-4.00)%*0.25;
else if(currRatP < 80.00)
ratPPos = (int) (((currRatP-42.00)*0.5) + 10);
else
ratPPos = (int) (currRatP-81.0)+30;

//Limit to avoid segmentation fault
if (cNOPos > 31)

cNOPos = 31;
else if (cNOPos < 0)
cNOPos = 31;

if (TczPos > 63)
TczPos = 63;
else if(TczPos < 0)

TczPos = 0;

if (ratPPos > 63)
ratPPos = 63;
else if(ratPPos < 0)
ratPPos = 0;
//Perform and return the actual look up!
return dNO[cNOPos] [TczPos] [ratPPos];
int main(void)

{

//Variable declarations
int CAD;

float cylP, xNO, inT, qf, dt;

//Intake temperature and energy flow point 3
inT = 3.828398478260870e+02;

89



Appendix C.  C Code Listing, Floating-Point NO, Model

90

qf = 8.128702457102349e+02;

//Engine speed dependent (time between two samples)
dt = 2.7760e-05;

//Install tables and check so that we were successfully
if (installMaps() == 0){

printf ("Error installing maps\n");

return O;

}

//0pen input and output file

FILE *fidIn;

FILE *fidOut;

fidIn = fopen("theData3.dec","r");
fidOut = fopen("outputData.dec","w");

//Check if files are open and we are ready to rock!
if (fidIn != NULL && fidOut != NULL)
{

//Loop until no more data points
while(!feof (fidIn))
{
//Read the values from the data file
fscanf (fidIn,"%i %E",&CAD,&cylP);

//Run the model
xNO = iterateModel(CAD, cylP, inT, qf, dt);

//Store output to file
fprintf (£id0Out, "%E\n",xN0) ;

}
else
{
printf ("Error reading input data\n");
return O;

}
//Close files
fclose(fidIn);
fclose(fidOut) ;

return 1;



