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The Impact of Estimation Error on Portfolio Selection

for Investors with Constant Relative Risk Aversion

Christoffer Bengtsson*
Department of Economics
Lund University

29th April 2004

Abstract

This paper examines the impact of estimation error in a simple single-period portfolio choice
problem when the investor has power utility and asset returns are jointly lognormally dis-
tributed. These assumptions imply that such an investor selects portfolios using a modified
mean-variance framework where the parameters that he has to estimate are the mean vector of
log returns and the covariance matrix of log returns. Following Chopra and Ziemba (1993),
I simulate estimation error in what are assumed to be the true mean vector and the true co-
variance matrix and the impact of estimation error is measured in terms of percentage cash
equivalence loss for the investor. To obtain estimation error sizes that are similar to the esti-
mation error sizes in actual estimates, I use a Bayesian approach and Markov Chain Monte
Carlo Methods. The empirical results differ significantly from Chopra and Ziemba (1993),
suggesting that the effect of estimation error may have been overestimated in the past. Fur-
thermore, the results tend to question the traditional viewpoint that estimating the covariance

matrix correctly is strictly less important than estimating the mean vector correctly.

Keywords: Portfolio selection; Estimation risk; Markov Chain Monte Carlo.
JEL dlassification: G11.

1 Introduction

The mean-variance (MV) theory for portfolio selection has been the subject of much debate since
it was proposed by Markowitz (1952), and in spite of its theoretical appeal, it has had some
trouble being fully accepted by practitioners (see e.g. Michaud, 1989, for a discussion). Much of
the controversy has arisen because MV optimization is thought to be sensitive to errors in the two
input parameters; the expected return vector and the covariance matrix for the returns. Chopra
and Ziemba (1993) examine the effect of estimation error on the investor’s utility in terms of cash
equivalence loss under the assumptions that the investor has preferences with constant absolute
risk aversion, simple returns are jointly normally distributed, and short selling is not allowed. In a
simulation study they find that the loss resulting from estimation error in the mean vector can be
substantial, whereas estimating variances and covariances correctly seems to be of less importance.

This paper examines the effect of estimation error in a slightly different setting. I assume
instead that gross returns are jointly lognormally distributed, implying that log returns are jointly
normally distributed, and that the investor has preferences with constant relative risk aversion.

*E-mail: christoffer.bengtsson@nek.lu.se, phone: +46 (0)46 - 222 79 11, postal address: PO. Box 7082, SE-220 07
Lund, Sweden. The discussions and comments provided by Bjorn Hansson are greatly appreciated.



The paper also examines what effect portfolio weight constraints have on the impact of estimation
error. To obtain estimation error sizes that are consistent with those of actual estimates, I use a
Bayesian approach and Markov Chain Monte Carlo methods.

Using the same simulation approach as Chopra and Ziemba (1993) combined with their values
for the estimation error size, I find that the effect of estimation error is smaller than expected,
much smaller than in Chopra and Ziemba (1993). The certainty equivalence loss resulting from
estimation error in the mean vector is for instance at most 0.1 percent when the investor is very
aggressive and no short selling is allowed, and it is even smaller for errors in the covariance matrix.
Using the estimation error sizes from the Bayesian approach provides a more plausible situation
and it increases the loss resulting from errors in means. When a limited amount of short selling
is permitted, errors in the covariance matrix become increasingly important compared to errors
in means. For the estimation error sizes of Chopra and Ziemba (1993), the cash equivalence loss
resulting from errors in the covariance matrix can for instance be up to 4.5 percent when errors
are large and the investor is very conservative, while errors in the mean vector never result in a cash
equivalence loss greater than 0.6 percent. Even for moderate levels of relative risk aversion and
for the estimation error sizes from the Bayesian approach, it appears that errors in the covariance
matrix are in some situations just as important as errors in the mean vector which goes against the
conventional wisdom that the effect of errors in means dominate over the effect of errors in the
covariance matrix in all situations.

The rest of the paper is organized as follows: The next section, Section 2, derives the portfolio
optimization problem, first in the setting when absolute risk aversion is constant and returns are
jointly normally distributed, and then in the setting when relative risk aversion is constant and
returns are jointly lognormal. Details on the latter derivation are found in Appendix A. Section
3 then describes the data and the methodology and Section 4 presents the empirical results and
the analysis. Section 5 concludes the paper. All tables and figures are contained in Appendix C,
Appendix B gives a short introduction to, and some details on, the Bayesian estimation method,
and Appendix D explains why the results in this paper differ to such a large extent from the results
in Chopra and Ziemba (1993).

2 Portfolio Optimization

This section begins by showing that the MV criterion is consistent with single-period utility
maximization when absolute risk aversion is constant and asset returns are jointly normally dis-
tributed!. This approach has, however, two major drawbacks: (1) Constant absolute risk aversion
implies that relative risk aversion is increasing in wealth, which is not consistent with observed
asset prices. (2) If returns on common stocks, e.g., were truly normally distributed, there would
exist a positive probability of infinitely negative return, whereas, in reality, stock returns can at
most be -100 percent. I therefore proceed with the more relevant case when relative risk aversion
is constant and gross returns are jointly lognormal, and I again arrive at an optimization problem
similar to the traditional MV optimization problem. The assumption of lognormality is appealing
since lognormal variables can never be negative. The downside is that the portfolio return will not
itself be strictly lognormal since the product, and not the sum, of lognormal variables is itself log-
normal. However, by considering returns in the limit of continuous time, the non-lognormality
disappears. So, inspired by Campbell and Viceira (2002), I make a discrete time approximation
of the log portfolio return in continuous time. The approximation is exact in continuous time
and it is accurate over sufficiently short time intervals.

IStrictly speaking, the MV criterion is consistent with utility maximization for any concave utility function when
returns are normally distributed, but constant absolute risk aversion utility provides particularly simple calculations.



2.1 The Case of Constant Absolute Risk Aversion

Assume first that the investor derives utility from his wealth at the end of the period and that he,
as in Chopra and Ziemba (1993), has negative exponential utility

u(x) = —e ¥, 1)

where 2 > 0 is the coefficient of constant absolute risk aversion. The reciprocal of 4 is referred to
as the coefficient of constant absolute risk tolerance. Assume also that returns are jointly normally
distributed.

The investor’s wealth at the end of the period is determined by his wealth today, W;, and by
the portfolio of IV risky assets that the wealth is invested in. The portfolio is described by a vector
of weights, w, = [w1,, wy, ..., wn:] T, where w;, is the fraction of total wealth at time # that is
placed in asset 7. For now the portfolio weights are allowed to be both positive and negative, just
as long as they sum up to one. In practice, however, negative portfolio weights come at a high
cost. Partly because there is a price tag on short selling?, and partly because short selling permits
the possibility of negative wealth at time # + 1. Short selling is therefore generally only permitted
for investors with a good credit rating. In the empirical part of the paper I will restrict attention to
two levels of short selling by adding the additional constraint w, > ¢;1, where i = 1,2, ¢; = 0,
fy = —0.10, and 1 is a V X 1 vector of ones.

Let R,4+1 bea NV x 1 random vector where element 7, R; ,11, is the (net) simple return of asset
i over one period. The portfolio return is then R, , | = w, R, |, and since the sum of normally
distributed variables is also normally distributed, R, , , ; will be normally distributed.

The utility maximization problem of the investor is

max {Et [u(VVH_l)] subject to W1 = (1+ prt_._l)VVt} ,
which in this case becomes
max {E, [—e_”W’“] subjectto W,y = (1 + RP,,H)VK} . 2)

The notation E,[] is short for E[- | F;], where F, is the information set or filtration available
at time ¢. The same notation is used on variances. The assumption of normality allows the

expectation in equation (2) to be rewritten as

aW,
— &Xp {_ﬂVVt <1 + Et[Rp,H»l] - 2V3~rt[Rp,t+l]> } . 3)

Since maximizing a function is equivalent to minimizing the negative of the function and since
maximizing the log of a function is equivalent to maximizing the function itself, the optimization
problem boils down to

W,
max {WtT'q, — dz ‘wlQ,w, subjectto w1 = 1} , 4)

t

where 7, is the vector of conditional expected returns, €2, is the conditional covariance matrix
of the returns, and 1 is a IV x 1 vector of ones. Equation (4) is exactly equal to the traditional
MYV optimization problem; the investor makes a linear trade-off between the expected portfolio
return and the portfolio variance. The degree to which the investor is willing to trade off mean
for variance is determined by the constant @W,, which is the relative risk aversion at time # of an
investor with constant absolute risk aversion. The wealthier the investor is, the more emphasis

is put on minimizing the variance of the portfolio. This is because the same relative change in

2Usually something like 1 or 2 percent per year of the stock’s market value.



wealth is larger in absolute terms for a wealthy investor than it is for a poor investor, and it is
aversion against changes in absolute terms that is central for an investor with constant absolute
risk aversion.

Often, equation (4) is given in terms of risk tolerance. Normalizing today’s wealth to 1 gives
the expression

w,

1
max{lth'qt - Ewlrﬂtwt subject to w1 = 1} ,

where T = 1/a. Chopra and Ziemba (1993) claim that most institutional investors have risk
tolerance in the range 0.2-0.3, implying that relative risk aversion is approximately in the range
3-5. This is well inside the range of what is commonly thought of as plausible (see e.g. Mehra and
Prescott, 1985; Rietz, 1988).

2.2 The Case of Constant Relative Risk Aversion

Assume now that gross returns are instead jointly lognormal and that the investor has power utility

I—r

; ®)

u(x)zl_Y

3

where y > 0 is the coefficient of constant relative risk aversion’. The utility maximization

problem of the investor in this case becomes

I—y

g, | Yot bj W,y = Ryii) W, 6
max < E, ?Y subjectto W1 = (1 + Ry, )W, 5. 6)

In Appendix A, I derive an expression of the portfolio dynamics in continuous time which is then
discretized in order to obtain a loglinear approximation of the log portfolio return in discrete
time. The approximation is accurate over sufficiently small time intervals and the portfolio return
is therefore treated as a lognormal variable.

Let 7,41 denote the log of the gross simple return (1 + R, ,41). By normality of 7, 1, the
expectation in equation (6) can be rewritten as

tl_Y (1 — Y)z
-7 exp 4 (1 — Y)Et[rp,thl] + Tvart[rp,z+l] ) @)
and thus, maximizing expected utility is equivalent to
-y
max Ez["p,t+l] + Tvart[rp,t—i-l] . (8)

The approximations in Appendix A of the expected log portfolio return and the variance of the
log portfolio return are

T T2 T
Et[rp,t+l] = W, + W, 0, — W, Etwﬁ (9)
T
Var[r, 1] = w,X,w, (10)
where W, is a NV X 1 vector of conditional expected log returns, 3, is the conditional covariance

matrix of the log returns, and 7 is a vector consisting of the diagonal elements of X,. Inserting
equations (9) and (10) into equation (8) yields

1
max {th (p.t + 263) — g 'S, w, subjectto w1 = 1} , (11)

3In the limit as y — 1, the utility function becomes #(x) = log(x).



which is a maximization problem similar to the usual MV optimization problem. The difference
1
2
vector and the covariance matrix of the simple returns are replaced by the return vector and the

between equation (11) and equation (4) is the corrective term 367 and that the expected return
covariance matrix of the log returns. However, as in equation (4), it is still relative risk aversion
that is the factor in front of the quadratic (variance) term. In this case, however, relative risk

aversion, and thereby also the optimal portfolio composition, does not depend on the investor’s

level of wealth.

3 Data and Methodology

The data set consists of monthly returns during the ten year period between January 1986 and
December 1995 for the 30 companies that belonged to the DJIA at the end of 1995. This is three
times the number of stocks considered by Chopra and Ziemba (1993)4. The data is extracted
from the CRSP data base. For these stocks I estimate the sample mean vector and the sample
covariance matrix of the log returns and these estimates are assumed to be the true, and to the
investor unknown, parameters @, and X,.

The main objective of this paper is to examine what effect estimation error in %, and 3, has
on optimal portfolio choice. Since the investor does not know the true input parameters, he
will base the portfolio optimization problem of equation (11) on input parameters that he has
estimated in some way, i.e., he will replace w, and 3, with some (i, and 33, where (., # W, and
2: # 3,. So consequently, although the portfolio that he chooses is optimal for the estimated
input parameters, it is suboptimal for the true input parameters, and hence, it does not truly
maximize expected utility.

Denote by w) the portfolio that is the true optimal portfolio and by w, the suboptimal portfo-
lio based on the estimated input parameters. As a measure of how suboptimal W, is compared to
w/, I follow Chopra and Ziemba (1993) and compare the cash equivalent (CE) values of the two
portfolios. The CE of a portfolio is defined as the risk free amount of cash that gives the same
(expected) utility as the risky portfolio, i.e.

CE(w,) = u~'UW,),

where U(w,) is the expected utility of some portfolio w,. Since w} provides the maximum ex-
pected utility for the investor, it will correspond to the maximum CE. The CE is, as opposed
to units of utility, independent of an affine transformation of the utility function and is instead
measured in dollars, the same unit as consumption is measured in. It is straightforward to show,
using equations (7), (9), and (10), that the CE implied by a lognormal portfolio return and power
utility is given by

1
CE(w,) = W, exp {w,T (p.t + ch) — %/W;thwt} .
The percentage cash equivalent loss (CEL) suffered by an investor that holds a portfolio other
than w} is then simply

CE(w}) — CE(w,)
CEGw?)

In order to examine which type of error that has most impact, I will distinguish between errors

CEL =100 -

in the mean vector, the covariance matrix, variances alone, and covariances alone. Chopra and
Ziemba (1993) only consider errors in the mean vector, variances alone, and covariances alone.

Not errors in the entire covariance matrix.

4Chopra and Ziemba (1993) consider N = 10 randomly selected stocks, also from the DJIA.



I begin by calculating w; given &, and X,. The impact of errors in means is estimated by first
replacing y;, with
iy = (A + ke, i=1,2,...,N,

where ¢, is a standard normal random number and #; is the size of the estimation error of y;. 3,
is left unchanged. Given {i,, X,, and the restrictions on the portfolio weights, I can then calculate
the (sub-) optimal portfolio W, and the resulting CEL. This procedure is repeated 10,000 times
and the impact of errors in means is taken as the average CEL over all these 10,000 iterations.
Chopra and Ziemba (1993) perform 100 iterations.

The same procedure is then used to examine the effect of errors in the covariance matrix. To

examine the impact of errors in the entire covariance matrix, I replace e with

by = (1 + Kje,)oy,, ij=1,2,....N,

where, again, gjisa standard normal random number?, K is the estimation error size of Tjje» and,
of course, x;; = xj;. W, is left unchanged. To examine the effect of errors in variances alone, I put
x; = 0 when 7 # j, and to examine the effect of errors in covariances alone, I put x; = 0 when
i=j.

The entire exercise is repeated for different values of the relative risk aversion, for different
values of the error sizes, and for different portfolio weight restrictions. The constant relative risk
aversion, v, takes on the values 1, 3,5, 10, and 25. y = 3, 5, 10 represents investors with relative
risk aversion consistent with what is commonly considered plausible, whereas y = 1 represents a
very aggressive investor and y = 25 represents a very conservative investor.

In Chopra and Ziemba (1993), the estimation error sizes take on the values 4; = Kj; = k =
0.05,0.10,0.15,0.20, i,; = 1,2, ..., N. However, nothing is said about whether these values are
reasonable or not. In order to say what is most damaging, estimation error in the mean vector
or in the covariance matrix, it is important to know how large the estimation error is in actual
estimates. For instance, the mean vector is known to be notoriously hard to estimate, especially
from past returns alone, and hence, the size of the estimation error in the mean vector may be
expected to be larger than the size of the estimation error in the covariance matrix. Consequently,
it can be misguiding to compare the CELs resulting from estimation error in the two parameters
when the sizes of their estimation errors are the same, i.e. when k; = Kj;,7,j =1,2,...,N.

To obtain values for the estimation error sizes that are consistent with the estimation error
sizes in actual estimates, I estimate the mean vector and the covariance matrix with the Markov
Chain Monte Carlo method (MCMC), which is a Bayesian estimation method. As opposed to
traditional methods of estimation, the MCMC estimate is not a point estimate, but rather a sam-
ple from the joint distribution of the parameters conditional on the data. This joint conditional
distribution is referred to as the posterior distribution and by using the sample from it is straight-
forward to calculate the standard deviations of the individual elements of the estimated mean
vector end the estimated covariance matrix.

Therefore, in addition to the values for the size of the estimation error used by Chopra and
Ziemba (1993), I also perform the above simulation study when the estimation error size for an
element (in either the mean vector or the covariance matrix) is taken as (1) its posterior standard

deviation divided by the absolute value of its assumed true value, or (2) half its posterior standard

5That the &;s and &;;s are mean zero random numbers imply that the estimates are assumed not to have any systematic
biases. In reality, however, many estimators contain some amount of specification error.



deviation divided by the absolute value of its assumed true value®. That is,

or

where s; is the posterior standard deviation of element 7 of the mean vector and Sj; is the posterior
standard deviation of element 7 of the covariance matrix. Case (1), referred to as large errors, is
meant to represent the situation when the input parameters are poorly estimated and case (2),
referred to as small errors, is meant to represent the situation when the input parameters are better
estimated. Details on how the MCMC estimates are obtained can be found in Appendix B.
Finally, Chopra and Ziemba (1993) only examine the case when portfolio weights are restricted
to be non-negative. This is a valid restriction for most individuals, but not for large institutional
investors with a good credit rating. I therefore also examine the case when portfolio weights are

restricted not to fall below -10 percent’.

4 Empirical Results

The (assumed true) means, standard deviations, and correlations for the 30 DJIA stocks are found
in Tables 1 and 2, and Tables 3 and 4 summarizes the optimal portfolio weights in w for the
different combinations of relative risk aversion and portfolio weight restrictions. The empirical
results from the simulation study described in the previous section are found in Tables 5-8. Ta-
bles 5 and 6 represent the cases when the estimation error sizes are the same as in Chopra and
Ziemba (1993) and Tables 7 and 8 represents the cases when the estimation sizes are obtained
from the MCMC estimation. All tables and figures are found in Appendix C.

4.1 Estimation Error Sizes the Same as in Chopra and Ziemba (1993)

Consider first the cases when the CELs are calculated using the same estimation error sizes as in
Chopra and Ziemba (1993). An initial and important observation is that the CELs are generally
very low compared to those in Chopra and Ziemba (1993) (see Table 5). The effect of errors
in means when short selling is not allowed is at most 0.1469 percent, not several percent as in
Chopra and Ziemba (1993), and errors in the covariance matrix have even smaller effects. In
Appendix D, I discuss the cause of this difference, seemingly the result of an error in Chopra and
Ziemba (1993).

Table 5 reveals that when portfolio weight are restricted to be non-negative, errors in means
generally result in CELs much larger than the CELs resulting from errors the covariance matrix.
For example, when y = 5 and # = 0.10, errors in means are about 7.6 times more important than
errors in the entire covariance matrix. It is only when the investor is very risk averse that estimation
error in the covariance matrix is more important than estimation error in the mean vector. Intu-
itively, this result can be understood by the following reasoning: Since negative portfolio weights
are not allowed and since stock returns generally are positively correlated, the optimal portfolio

Four elements of the mean vector are quite small in absolute terms and the corresponding estimation error sizes of
these elements become much larger than the estimation error sizes of the remaining elements. I therefore impose that
ki =1 for these elements, which is about the same magnitude as the fifth largest estimation error size of an element in the
mean vector.

7The case when portfolio weights are restricted not to fall below -5 percent has been omitted to save space. The results
fall exactly in between the remaining two cases and they are available upon request.



will consist only of stocks that have high expected returns, low standard deviations, and low corre-
lations with other stocks. That is, stocks that are represented by large elements in the mean vector
and small elements in the covariance matrix. Consequently, because of the multiplicative nature
of the errors, the absolute size of the errors in the relevant parts of the mean vector will be much
larger than the absolute size of the errors in the relevant parts of the covariance matrix, and hence,
errors in means will have a much larger effect on the objective function for a given w.

When the investor is permitted to sell stocks short, the CEL increases (see Table 6). For y = 5,
and # = 0.10, the CEL ratio between errors in means and errors in the covariance matrix is
now only 1.3. Even for a relatively aggressive investor with y = 3 are errors in means now, on
average, only twice as important as errors in the covariance matrix, compared to about 15 times
more important in Table 5. When y = 5, errors in the covariance matrix are, on average, more
important than errors in means, and when y = 25 and # = 0.20, the CEL is now as large
as 4.5 percent for errors in the covariance matrix. Also, when short selling is allowed, errors in
covariances alone are often of an equal or greater importance than errors in variances alone. This
may add validity to covariance matrix estimation techniques such as the one proposed by Ledoit
and Wolf (2003) that essentially only improves the estimation of the off-diagonal elements of the

covariance matrix.

4.2 Estimation Error Sizes Estimated with the MCMC Method

Consider now the cases when the estimation error sizes are obtained from the MCMC estimation
in order for them to resemble the sizes of the estimation error in actual estimates. Figures 1, 2,
and 3 show the histograms of the estimation error sizes for the means, the variances, and the
covariances, respectively®. The average estimation error size for means is 0.6110%, the average
estimation error size for variances is 0.0663, and the average estimation error size for covariances
is 0.1361. This implies that, for instance, # = 0.20 above represents (relative sample estimates)
good estimates of the means, while it represents very poor estimates of the variances and the
covariances.

Table 7 shows that when short selling is not allowed, then the CELs are all quite small for
both the large and the small errors. No CEL is ever greater than 1 percent and errors in means
are always more important than errors in the covariance matrix, even for a very conservative
investor. In Table 8 when the investor is permitted to short sell 10 percent of each stock, however,
errors in means are no longer always more important than errors in the covariance matrix. When
y = 10 and errors are small, the CEL for the covariance matrix and CEL for the mean vector
are approximately equal, and for y = 25, errors in the covariance matrix are most important.
The CEL for the covariance matrix is in the latter case approximately five times the CEL of the
mean vector, both when errors are small and when they are large. So, again, when short selling is
allowed it is not the case that errors in the mean vector are always most important.

Summing up the conclusions from Tables 5-8, if the investor cannot short sell, then estimation
error has very little effect. Only when the investor is allowed to short sell can estimation error
have substantial effects; either if the size of the estimation error is relatively large and/or if the
investor is very conservative, and the more short selling is allowed, the more important are errors
in the covariance matrix. For instance, although not reported, when 50% short selling per stock
is allowed, then errors in the covariance matrix are more important than errors in means even for
a quite aggressive investor with y = 3. Jagannathan and Ma (2003) analytically show how non-
negativity constraints can help control for estimation error in (especially) the covariance matrix.
This paper points at a similar conclusion: When non-negativity constraints are in place, the
sensitivity of the portfolio weights to changes in both input parameters is reduced. Of course,

8For the error sizes of the means, the four values of #; that are restricted to be equal to 1 are omitted.
9The average estimation error size of means is 0.5511 if the values that are restricted to equal 1 are omitted.



since monthly data is used, I have implicitly assumed an investment horizon of a month. If the
input parameters were estimated on a yearly basis, e.g., then the elements in both @, and 3,
would grow by roughly a factor 12. Consequently, the impact of estimation error will grow also

with the investment horizon.

4.3 Further Empirical Results

It might be interesting to examine how large the CEL is for an investor with power utility facing
lognormal stock returns that knows his relative risk aversion, but who still uses the traditional MV
optimization problem when choosing his portfolio. Suppose that such an investor, as is implied by
equation (4), uses his relative risk aversion to determine the trade-off between mean and variance.
This means that the investor solves

max {WtT'qt — ngTQtWt subject to thl =1,w, > El} , (12)

w,

where £ is the lower bound for the portfolio weights, instead of his correct optimization problem
defined by equation (11) with the additional constraint that w, > ¢1. The result, presented in
Table 9, shows that the differences between the optimal portfolios are quite small for all combina-
tions of y and £. So, although the investor uses the wrong optimization problem, he still obtains
a portfolio that is very close to the one that truly maximizes his expected utility. As a comparison,
in Table 10 I present the CEL when the investor does not optimize his portfolio at all, but simply
invests an equal amount in each stock.

Finally, the modified MV optimization problem of equation (11) relies on an approximation of
the log portfolio return which is claimed to be accurate over sufficiently small time intervals. But is
amonth a sufficiently time small interval? In order to examine how accurate the approximation is,
I use the following procedure: Denote by Y the K x N matrix containing the data set described
in Section 3 where element k7 of Y is return observation number £ of stock number 7. 1 then
calculate the historical mean and standard deviation of the log return of some portfolio w, using
the formulas

K
Z 1 + kat) ,

K
K 2
s = 1Zlog1+ka)—m),

=1

where Yy is row number £ of Y. I then compare these values with what I obtain using equations (9)
and (10). Just to take two examples, an equally weighted portfolio yields 7 = 3.32%, s = 6.27%,
E,[7):41] = 3.32%, and Std, [, ;1] = 6.25%, and a portfolio with y = 5 and a lower bound of
¢ = —10% yields m = 1.30%, s = 4.85%, E,[r, ,4+1] = 1.30%, and Std,[7, ;1] = 4.88%. The

approximations are in other words quite accurate.

5 Conclusions

In this paper I have examined the effect of estimation error on optimal portfolio choice when asset
returns are jointly lognormally distributed and the investor has power utility. Such an investor
faces a modified MV optimization problem and the parameters that he has to estimate are the
vector of expected log returns and the covariance matrix of the log returns. As a measure of loss, I
use the percentage reduction in cash equivalence that the investor experiences since his portfolio
is based on estimated input parameters containing estimation error, rather than the true input

parameters.



By simulating estimation error in what are assumed to be the true input parameters, I found
that when the estimation error sizes of Chopra and Ziemba (1993) are used, the loss is generally
very small (especially when short selling is not allowed). Much smaller than in Chopra and Ziemba
(1993). I provide an explanation to this difference and I show that the results are not due to the
use of another utility function together with different distributional assumptions, but rather the
result of an error in Chopra and Ziemba (1993). I have also performed the simulation study when
the estimation error sizes are estimated using a Bayesian approach in order to get values that are
more in tune with the estimation error sizes in actual estimates. This exercise shows that the size
of the estimation error in the mean vector is larger than the size of the estimation error of the
covariance matrix.

When short selling is not allowed, I find, in line with Chopra and Ziemba (1993), that errors
in means result in the largest loss, especially for the estimation error sizes obtained by the Bayesian
approach. The loss is, however, as mentioned above generally quite small. When the investor is
allowed a limited amount of short selling (10 percent of each stock), the effect of estimation error
increases. In particular, the loss due to estimation error in the covariance matrix increases to the
extent that it is no longer the case that errors in means always result in the largest loss. In fact,
with the estimation error sizes of Chopra and Ziemba (1993), the only investor that is significantly
affected by estimation error, or estimation risk, is an investor that is already very averse towards
risk in the traditional sense of a high relative risk aversion coefficient. With the estimation error
sizes obtained from the Bayesian approach, an investor that is conservative, but not extremely
so, experiences approximately the same loss from estimation error in the mean vector as from
estimation error in the covariance matrix. This result to some extent goes against the received
wisdom that estimating the mean vector correctly is strictly more important than estimating the
covariance matrix correctly.

What this paper shows is primarily that the situation may not be as simple as implied by Chopra
and Ziemba (1993) and that portfolio weight constraints have significant effects on the impact
of estimation error. Estimating the expected returns may be a more difficult task than estimating
the covariance matrix, and indeed, when short selling is not allowed (the reality faced by most
investors), then the loss from errors in means is larger than the loss from errors in the covariance
matrix. At the same time, however, the loss resulting from estimation error in means may be
limited. Sharing similarities with the conclusion of Jagannathan and Ma (2003), the empirical
results of this paper show that short selling constraints reduce the effect of errors in both the mean
vector and the covariance matrix. When the level of short selling in increased, then the loss from
errors in the covariance matrix can become larger than the loss from errors in means even for
relatively aggressive investors. Consequently, an investor that is permitted short selling and that
believes that estimating the covariance matrix correctly is unimportant, runs the risk of seriously

reducing the quality of his portfolio.
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A Approximation of the Log Portfolio Return

Following the methodology of Campbell and Viceira (2002), I assume that the continuous time
price process for the NV risky assets, in this paper common stocks, is

ds
== — a,dt + 6,dZ,,
S,

where o, is a N X 1 vector, 6, is a N X M matrix, and Z, is a M X 1 vector of uncorrelated
standard Wiener processes. 4S,/S, is just bad notation for [4S1,/S1,, dS2,/Sasy -, dSni/Sni] T
For an individual asset the dynamics are

dSit
Si

= oudt + 6,dZ,,

where a;, and o, are the 7th rows of a, and o, respectively.

The main objective is a description of the log price change of the portfolio (i.e. the log return)
as a function of the log price changes of the individual assets. Denote by V; the value of the
portfolio at time z. The dynamics of the log price change of the portfolio and the log price change
of asset 7 follows from It6’s Lemma as

av, 1 (dv,\?

and s
1 L1
dlogS; = (oq, — EG”GZ> dt +o,dZL, = 5 L zoitcgdt.

it

The first term in equation (13) is

4V, ds 1
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where [O'Z-tGZ] denotes an IV x 1 vector with element 7 equal to cl-tc}-;. Because (d#)> = 0 and

dr-dZ;, =0, j=1,...,M, the second term of equation (13) is

ﬂth ? T T
7; =w, (n’logst) (dlogst) w,. (14)
Since dZy, - dZy, = 0,k # £, k,f = 1,...M, and (det)2 = dt,j = 1,..., M, the following

expression holds
(dlog$,) (d10gS,)" = o, (dZ,) (dZ)" o = o0 d,

and the portfolio dynamics are thus
T 1 T lr_ 1
dlogV, =w, | dlogS, + 5 [c,0,ldt | — N w,dt. (15)

Finally, an Euler approximation of equation (15), where d# is replaced with some small but not
infinitesimal time interval Az, yields the approximate log portfolio return as
2

1 1
T T T
bl = W, Ty + WO~ oW, Xw,,

where 7,41 = AlogV,y1 = logV,y1 — logV,, 1,1 = AlogS,y1, At = 1, o0l =
Var,[r,11] = X, and [0,0}] = [Var,[r ,41], ...,Vart[rN7t+1]]T = o2, The expected log
portfolio return and the variance of the log portfolio return can then be written as
T 1 T 2 1 T
Ef[r]ht-‘rl] =W, W + Ewt S, — sz Erwtv

T
Var [, 11] = w, X,w,,

where W, = E,[r,41].

B Markov Chain Monte Carlo Estimation

The MCMC method for inference and parameter estimation is a Bayesian and simulation based
estimation method. Traditional methods such as maximum likelihood (ML) treats the parame-
ters of the model at hand as unknown constants, whereas the Bayesian approach is to treat the
parameter vector @ as an outcome of the random variable ®. So, while other methods produce
a point estimate, the Bayesian estimate is the joint distribution of the parameters conditional on
the data'®. This joint conditional distribution, referred to as the posterior distribution, can be

derived via Bayes” formula as

P@Y) o< p(Y[9)p(d),
where Y is a matrix of observations, p(Y|9) is the likelihood of the data, and p(9) is the so called

prior distribution. Knowledge about the normalizing constant is generally not required. The prior
distribution has to be specified unconditional of the data by the researcher, and it can be thought
of as a natural way to impose non-sample information, if there is any, and to impose stationarity
and non-negativity where it is needed. If there is no non-sample information to be imposed, the
prior is usually chosen so that it is as uninformative as possible, typically with a very large variance
over the relevant parameter space, or it is chosen to be diffuse which means that it is completely
uninformative. Diffuse priors, however, do not integrate to unity and they are therefore not well
suited for all situations.

19The Bayesian point estimate is typically taken as the posterior mean.
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The posterior distribution is often very complex and non-standard, and to explore it, the
MCMC method can be used. The MCMC method samples from the posterior distribution by
generating a Markov Chain {99 }y over O such that its equilibrium distribution is p(8Y). The
MCMC method is based on the Clifford-Hammersley theorem (Hammersley and Clifford, 1970)
which states that a joint distribution p(a, 6|c) is completely characterized by the two conditional
marginal distributions p(a|#, ¢) and p(b|a, c). In this section, 2 = @, 6 = X, and ¢ = Y. When
the two conditional marginal distributions are standard distributions that can be easily sampled
from, the simplest MCMC algorithm, the Gibbs sampler, can be used. The Gibbs sampler itera-
tively first updates the first parameter by drawing from its marginal posterior, keeping all the other
parameters constant, then updates the second parameter by drawing from its marginal posterior,
keeping all the other parameters constant and using the updated value of the first parameter, and
so on. When all p parameters have been updated, the process starts over again and it does so
until each parameter has been updated 7 times, thereby obtaining the sequence {99 }e 1, where
9 = (91,9,,...,9,).

To obtain the Bayesian estimates of the mean vector of the log returns and the covariance matrix
of the log returns, assume as in the paper that the log returns are jointly normally distributed with

mean vector W and covariance matrix . This corresponds to assuming the linear regression model
Y=1u' +¢

for the returns where where element 47 of Y is return observation 4 of stock 7, i = 1,2, ..., N,
k=1,..,K,and € is a K x N matrix of error terms whose rows are independently normally
distributed with a mean vector equal to an N x 1 vector of zeros and positive definite covariance
matrix X. With these specifications, the likelihood of the data can be written as

Y|, B) o |2|K/2exp{;(yluT)TEI(YI(.LT)} (16)

252 axp {_%tr (v = 1) (v~ 107) 2—1)} .

By noting that
T - N
(Y =) (r—1") = K5+ K (p-g) (w-@)
where
o (Ll.,)
S S S A
o= K(Y lp‘) (Y 1 )?

equation (16) can be simplified into
1 - 1
VWD) x  |B K exp {_Etr ([(22_1) -5 (I( (b—0) (w— p.)T 2_1> } .
[ assume standard conjugate priors according to

w € N4,
X € IW(,O),

where N denotes the multivariate normal distribution and ZW denotes the inverted Wishart
distribution. A conjugate prior is a distribution under which the prior and posterior of a parameter
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is the same type of distribution, but with different hyperparameters. These assumption imply that
the posterior of W is

WY, E) oo p(Yw, Z)pw)
x exp {; (b—a) A (u— 4)}
1 AT 1 N
X exp{—2 (b—@) (£=7) (u—u)}
x exp {_% (T (K A ) — 20" (K5 a+A—1a))} ,
which implies that the posterior of @ is N (a*, 4*), where

& = A (K0 +A47"a),
A = (k' 4ahh

The posterior of X is derived as
PEY W o p(Yw, E)p(E)
- 1 Sy — 1 . AT e
x |X K/zexp{—ztr<[(22 1)—Etr(]((p—p) (p—p.) > 1)}
|2|7(C+N+2)/2 exp {;tr (Czl)}

= B TCTEANAD/2 oy {_%tr ((C+Kﬁ] K (—@) (- Q)T) 2_1>} ’

X

implying that the posterior of 3 is ZW(c*, C*), where

& = ¢+K,
* - A T
C" = CHEX+K(w—4)(—0) -
When I estimate this model I use the following hyperparameters in the prior distributions: 2, =
0,4; = 0.25 when i = jand A; = Owheni # j,¢; = N +2 =32,and C; = 0.2 when i = j
and Cjj = 0 when 7 # 7, i,j = 1,2,...,N. I run the Gibbs sampler 1100 times, discarding the

first 100 iteration as burn in. The standard deviations of the elements of the Bayesian estimates
of w and X are then simply the standard deviations of the elements in the resulting sequence

{0, 20},
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C Tables and Figures

Mean Standard

deviation
Allied Signal Inc. 0.99 6.63
Aluminum Co. of America  1.08 7.94
American Express Co. 0.73 8.55
AT&T Corp. 1.08 6.28
Bethlehem Steel -0.04 14.32
Boeing Co. 1.21 7.41
Caterpillar Inc. 0.98 8.89
Chevron 1.23 6.06
Coca Cola Co. 2.15 5.67
Du Pont 1.25 6.78
Eastman Kodak 1.09 6.67
Exxon Corp. 1.30 4.38
General Electric Co. 1.39 6.14
General Motors Corp. 0.73 8.17
Goodyear 1.13 9.77
Int. Business Machines -0.15 7.38
Int. Paper Company 1.14 7.42
J.P Morgan & Co. 1.09 7.22
McDonald s Corp. 1.43 6.24
Merck & Company, Inc. 1.99 6.42
Minnesota Mining & Mfg.  1.18 5.60
Philip Morris Co.’s Inc. 2.07 7.50
Procter & Gamble Co. 1.52 6.06
Sears Roebuck & Co. 1.16 7.90
Texaco Inc. 1.36 5.48
Union Carbide 1.86 8.81
United Technologies Corp.  0.92 7.81
Walt Disney Co. 1.82 8.12
Westinghouse Electric 0.02 8.69
Woolworth Corp. 0.15 9.72

Table 1: Means and standard deviations in percents per month for the 30 companies that
belonged to the DJIA at the end of 1995 calculated from the monthly returns between
January 1986 and December 1995.
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1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

1. Allied Signal Inc. 1
2. Aluminum Co. of America 0.44 1
3. American Express Co. 0.39 0.43 1
4. AT&T Corp. 038 030 033 1
5. Bethlchem Steel 031 055 030 020 1
6. Boeing Co. 0.49 0.30 0.46 0.37 0.27 1
7. Caterpillar Inc. 039 065 029 027 055 036 1
8. Chevron 0.39 0.27 0.38 0.38 0.21 0.29 0.24 1
9. Coca Cola Co. 043 024 044 039 019 053 025 025 1

0. Du Pont 052 060 044 046 043 045 052 053 038 1
11. Eastman Kodak 0.36 0.31 0.28 0.31 0.19 0.23 0.26 0.22 0.40 0.43 1

2. Exxon Corp. 042 026 042 038 021 031 022 073 039 056 033 1
13. Electric Co. 0.58 0.54 0.59 0.52 0.47 0.57 0.49 0.43 0.56 0.63 0.41 0.53 1
14. General Motors Corp. 041 052 041 028 052 038 050 030 023 055 031 031 054 1
15. Goodyear 045 046 041 021 046 028 047 022 031 045 024 028 047 043 1
16. Int. Business Machines 0.28 0.39 0.21 0.10 0.33 0.21 0.39 0.19 0.15 0.42 0.37 0.27 0.32 0.47 0.15 1

7. Int. Paper Company 048 062 041 034 040 042 049 027 037 074 037 042 064 056 045 037 1
18. J.P Morgan & Co. 0.39 0.29 0.44 0.45 0.22 0.45 0.26 0.43 0.49 0.54 0.36 0.56 0.56 0.20 0.33 0.13 0.49 1
19. McDonald s Corp. 049 031 049 036 034 047 037 030 052 052 046 047 061 041 048 034 038 048 1
20. Merck & Company, Inc. 031 033 043 026 027 041 027 017 057 050 037 040 052 024 033 030 046 043 048 1
21. Minnesota Mining & Mfg. 0.45 0.51 0.46 0.34 0.37 0.51 0.51 0.34 0.51 0.66 0.48 0.47 0.71 0.47 0.45 0.38 0.69 0.56 0.53 0.52 1
22. Philip Morris Co.s Inc. 030 030 042 032 026 031 023 029 060 039 040 043 048 028 024 024 040 038 050 057 049 1
23. Procter & Gamble Co. 0.37 0.24 0.44 0.36 0.21 0.39 0.33 0.30 0.59 0.49 0.36 0.44 0.50 0.28 0.26 0.24 0.45 0.48 0.63 0.55 0.53 0.57 1
24. Sears Rocbuck & Co. 053 045 062 037 037 048 043 037 044 059 051 036 061 056 045 030 051 043 059 038 052 047 038 1
25. Texaco Inc. 031 036 024 027 030 029 042 063 029 051 025 057 036 023 030 018 035 030 027 022 040 030 029 031 1
26. Union Carbide 0.41 0.45 0.38 0.25 0.35 0.28 0.47 0.16 0.27 0.54 0.28 0.17 0.37 0.48 0.30 0.32 0.55 0.28 0.25 0.28 0.43 0.29 0.36 0.49 0.16 1
27. United Technologies Corp. 050 0.54  0.55 045 046  0.64 054 042 056  0.62 043 044 068 051 047 033 055 049 050 051 063 050 046 058 045 045 1
28. Walt Disney Co. 0.56 0.44 0.44 0.34 0.43 0.44 0.47 0.33 0.58 0.52 0.39 0.36 0.59 0.48 0.47 0.33 0.51 0.42 0.66 0.47 0.55 0.54 0.56 0.52 0.28 0.42 0.53 1
29. Westinghouse Electric 038 047 058 030 032 042 040 033 039 048 039 043 066 049 042 030 050 038 053 039 063 045 044 057 037 034 058 048 1
30. Woolworth Corp. 038 035 048 031 036 048 030 025 042 048 026 031 047 043 040 028 052 036 047 041 052 045 043 054 026 047 053 052 042 1

Table 2: Correlations for the 30 companies that belonged to the DJIA at the end of 1995 calculated from the monthly returns between January 1986 and December

1995.



Optimal Portfolio Weight
Relative Risk Aversion

y=1 y=3 y=5 y=10 y=25
Allied Signal Inc. 0 0 0 0 0
Aluminum Co. of America 0 0 0 0 0
American Express Co. 0 0 0 0 0
AT&T Corp. 0 0 0 0 0.0464
Bethlehem Steel 0 0 0 0 0
Boeing Co. 0 0 0 0 0
Caterpillar Inc. 0 0 0 0 0
Chevron 0 0 0 0 0
Coca Cola Co. 0.6199 0.5902 0.5439 0.3977 0.2502
Du Pont 0 0 0 0 0
Eastman Kodak 0 0 0 0 0.0204
Exxon Corp. 0 0 0 0.1543  0.3248
General Electric Co. 0 0 0 0 0
General Motors Corp. 0 0 0 0 0
Goodyear 0 0 0 0 0
Int. Business Machines 0 0 0 0 0
Int. Paper Co. 0 0 0 0 0
J.P. Morgan & Co. 0 0 0 0 0
McDonald’s Corp. 0 0 0 0 0
Merck & Co., Inc. 0 0.1260 0.1758 0.1512 0.0993
Minnesota Mining & Mfg. 0 0 0 0 0
Philip Morris Co.’s Inc. 0.2709 0.1236  0.0775 0.0070 0
Procter & Gamble Co. 0 0 0 0 0
Sears Roebuck & Co. 0 0 0 0 0
Texaco Inc. 0 0 0.0433 0.1622 0.1646
Union Carbide 0.1092 0.1602 0.1596 0.1276  0.0943
United Technologies Corp. 0 0 0 0 0
Walt Disney Co. 0 0 0 0 0
Westinghouse Electric 0 0 0 0 0
Woolworth Corp. 0 0 0 0 0

Table 3: Optimal portfolio weights when the portfolio weights are restricted to be non-

negative.
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Optimal Portfolio Weight

Relative Risk Aversion

r=1 y=3 y=5 vy=10 y=25
Allied Signal Inc. -0.1 -0.1 -0.1 -0.1 -0.0911
Aluminum Co. of America -0.1 0.0110 0.1169 0.1548 0.1538
American Express Co. -0.1 -0.1 -0.1 -0.1 -0.1
AT&T Corp. -0.1 -0.1 -0.1 -0.0231  0.0695
Bethlehem Steel -0.1 -0.1 -0.1 -0.0827 -0.0482
Boeing Co. -0.1 -0.1 -0.0771  0.0332  0.0835
Caterpillar Inc. -0.1 -0.1 -0.0831 -0.0489 -0.0513
Chevron -0.1 0.1228 0.2102 0.1126 0.0510
Coca Cola Co. 1.5597 0.9799 0.7223 0.4564  0.2791
Du Pont -0.1 -0.1 -0.1 -0.1 -0.1
Eastman Kodak -0.1 -0.1 -0.1 -0.0219  0.0282
Exxon Corp. -0.1 -0.1 -0.0956 0.2185 0.3702
General Electric Co. -0.1 -0.0141  0.1470 0.1216  0.0286
General Motors Corp. -0.1 -0.1 -0.0711  0.0295  0.0592
Goodyear -0.1 0.0764  0.0606  0.0491  0.0445
Int. Business Machines -0.1 -0.1 -0.1 -0.1 -0.0596
Int. Paper Co. -0.1 -0.1 -0.1 -0.1 -0.0835
J.P. Morgan & Co. -0.1 -0.1 -0.1 -0.1 -0.1
McDonald’s Corp. -0.1 -0.0306  0.1885  0.2209  0.1695
Merck & Co., Inc. 0.4540 0.5027 0.4015 0.2773 0.1720
Minnesota Mining & Mfg. -0.1 -0.1 -0.1 -0.0736  0.0861
Philip Morris Co.’s Inc. 0.6131 0.2796 0.1719  0.0917 0.0144
Procter & Gamble Co. -0.1 -0.1 -0.1 -0.1 -0.0183
Sears Roebuck & Co. -0.1 -0.1 -0.1 -0.0893  -0.0226
Texaco Inc. -0.1 0.2138 0.2752 0.2337  0.1832
Union Carbide 0.7726  0.5869  0.4816  0.3492  0.2287
United Technologies Corp. -0.1 -0.1 -0.1 -0.1 -0.1
Walt Disney Co. 0.1006 0.1717 0.0513 -0.0091 -0.0471
Westinghouse Electric -0.1 -0.1 -0.1 -0.1 -0.1
Woolworth Corp. -0.1 -0.1 -0.1 -0.1 -0.1

Table 4: Optimal portfolio weights when the portfolio weights are restricted to be greater
than or equal to -10 percent.
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Relative Risk  Errors in Mean CEL
Aversion Size of Errors
=005 £=0.10 £=0.15 £=0.20

y=1
Means 0.0303 0.0618 0.0860 0.1095
Covariance Matrix ~ 0.0003 0.0014 0.0034 0.0055
Variances 0.0002 0.0010 0.0024 0.0041
Covariances 0.0001 0.0002 0.0007 0.0015
y=3
Means 0.0177 0.0573 0.1026 0.1459
Covariance Matrix ~ 0.0009 0.0037 0.0075 0.0119
Variances 0.0003 0.0016 0.0040 0.0068
Covariances 0.0005 0.0021 0.0041 0.0064
y=>5
Means 0.0145 0.0502 0.0984 0.1462
Covariance Matrix  0.0016 0.0066 0.0139 0.0246
Variances 0.0008 0.0035 0.0081 0.0159
Covariances 0.0008 0.0032 0.0068 0.0114
y =10
Means 0.0103 0.0382 0.0777 0.1231
Covariance Matrix ~ 0.0022 0.0102 0.0263 0.0537
Variances 0.0011 0.0051 0.0142 0.0334
Covariances 0.0011 0.0047 0.0116 0.0221
y=25
Means 0.0040 0.0180 0.0431 0.0752
Covariance Matrix ~ 0.0048 0.0239 0.0643 0.1393
Variances 0.0025 0.0119 0.0341 0.0804
Covariances 0.0021 0.0108 0.0277 0.0534

Table 5: Average percentage cash equivalent loss when the portfolio weights are restricted to

be non-negative.
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Relative Risk  Errors in Mean CEL
Aversion Size of Errors
=005 £=0.10 £=0.15 £=0.20

y=1
Means 0.0714 0.2158 0.3947 0.5732
Covariance Matrix ~ 0.0039 0.0163 0.0400 0.0757
Variances 0.0011 0.0053 0.0154 0.0362
Covariances 0.0027 0.0108 0.0238 0.0409
y=3
Means 0.0496 0.1770 0.3271 0.4871
Covariance Matrix  0.0136 0.0673 0.1859 0.3878
Variances 0.0034 0.0176 0.0617 0.1782
Covariances 0.0099 0.0434 0.1062 0.1990
y=>5
Means 0.0394 0.1479 0.2859 0.4224
Covariance Matrix  0.0226 0.1172 0.3395 0.7291
Variances 0.0045 0.0223 0.0954 0.3345
Covariances 0.0172 0.0805 0.2027 0.3730
y =10
Means 0.0275 0.1009 0.2050 0.3201
Covariance Matrix ~ 0.0442 0.2582 0.7869 1.6942
Variances 0.0071 0.0419 0.2279 0.7957
Covariances 0.0347 0.1724 0.4442 0.8134
y=25
Means 0.0130 0.0507 0.1082 0.1832
Covariance Matrix ~ 0.0987 0.6864 2.1625 4.5316
Variances 0.0138 0.0976 0.5646 2.1785
Covariances 0.0780 0.4373 1.2083 2.1831

Table 6: Average percentage cash equivalent loss when the portfolio weights are restricted to
be greater than or equal to -10 percent.

20



Relative Risk  Errors in Mean CEL
Large Errors ~ Small Errors

y=1
Means 0.3582 0.1281
Covariance Matrix 0.0039 0.0008
Variances 0.0019 0.0004
Covariances 0.0019 0.0004
y=3
Means 0.4034 0.1476
Covariance Matrix 0.0105 0.0031
Variances 0.0033 0.0007
Covariances 0.0078 0.0023
Yy=>5
Means 0.3831 0.1397
Covariance Matrix 0.0216 0.0058
Variances 0.0069 0.0015
Covariances 0.0156 0.0043
y=10
Means 0.3321 0.1116
Covariance Matrix 0.0521 0.0115
Variances 0.0110 0.0021
Covariances 0.0391 0.0089
y=25
Means 0.2416 0.0658
Covariance Matrix 0.1513 0.0279
Variances 0.0267 0.0049
Covariances 0.1130 0.0217

Table 7: Average percentage cash equivalent loss when the portfolio weights are restricted
to be non-negative. Large Errors means that the size of the simulated estimation error for a
specific element (an element in the mean vector or in the covariance matrix) is the posterior
standard deviation of that parameter when estimated with the MCMC method divided by
its assumed true value which is the ordinary sample estimate. Smal/ Errors means that the
corresponding large error has simply been cut in half.
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Relative Risk  Errors in Mean CEL
Large Errors ~ Small Errors

y=1
Means 1.5405 0.6191
Covariance Matrix 0.0689 0.0162
Variances 0.0115 0.0022
Covariances 0.0551 0.0137
y=3
Means 1.2758 0.5139
Covariance Matrix 0.3803 0.0839
Variances 0.0437 0.0068
Covariances 0.3069 0.0731
y=>5
Means 1.1176 0.4473
Covariance Matrix 0.7093 0.1596
Variances 0.0631 0.0085
Covariances 0.5711 0.1413
y =10
Means 0.9374 0.3534
Covariance Matrix 1.5261 0.3443
Variances 0.1473 0.0138
Covariances 1.2023 0.3016
y=25
Means 0.6720 0.2089
Covariance Matrix 3.9741 0.9295
Variances 0.3356 0.0291
Covariances 3.1518 0.8093

Table 8: Average percentage cash equivalent loss when the portfolio weights are restricted
to be greater than or equal to -10 percent. Large Errors means that the size of the simulated
estimation error for a specific element (an element in the mean vector or in the covari-
ance matrix) is the posterior standard deviation of that parameter when estimated with the
MCMC method divided by its assumed true value which is the ordinary sample estimate.
Small Errors means that the corresponding large error has simply been cut in half.
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Relative Risk

CEL

Aversion Lower Bound

{=0 ¥¢=-0.05 {¢=-0.1
y=1 0.0002 0.0006 0.0012
y=3 0.0014 0.0013 0.0012
y=>5 0.0019 0.0012 0.0009
y =10 0.0012 0.0015 0.0037
Yy =25 0.0030 0.0039 0.0075

Table 9: The percentage cash equivalent loss for the investor when he solves the traditional

MYV optimization problem of equation (12) instead of equation (11) with the additional

constraint that w, > (1.

Relative Risk CEL
Aversion Lower Bound
/=0 {=-0.05 {¢{=-0.1

y=1 0.6842 1.5115 2.1673
y=3 0.5779 1.1361 1.5096
Yy=>5 0.5819 1.0578 1.3640
y=10 0.7608 1.1801 1.3880
y =25 1.4838 2.0122 2.1468

Table 10: The percentage cash equivalent loss for the investor when he simply invests an

equal amount in each stock instead of solving equation (11) with the additional constraint

thatw, > /(1.
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Figure 1: Histogram of the estimation error sizes ky,,i = 1,2, ..., N, for the elements of
the mean vector, obtained using the MCMC estimation. (The four values of £, that are

restricted to be equal to 1 are omitted.)
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Figure 2: Histogram of the estimation error sizes 45,,i = 1,2,...,N, for the diagonal
elements of the covariance matrix, obtained using the MCMC estimation.
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Figure 3: Histogram of the estimation error sizes ko, 7 = 1,2,..., N — 1,j = i+ 1,i +
2,..., N, for the off-diagonal elements of the covariance matrix, obtained using the MCMC
estimation.
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D Discussion on the Results in Chopra and Ziemba (1993)

What is the cause of the large difference between the results in this paper and in Chopra and
Ziemba (1993)? To find an explanation I begin by deriving the CE under the assumptions of
Chopra and Ziemba (1993). Using equation (3) and W, = 1, I get

a
CE(Wt) =1+ W;rnz - 5 ;rﬂtwt' (17)

This definition of the CE is then plugged into the simulation exercise described in the Section 3,
together with non-negativity constraints on the portfolio weights and their estimation error sizes.
The data set is also changed to exactly match theirs. The result is presented in Table 11. This ex-
ercise shows that the CEL values are still of the same magnitude as in Table 5. Only if the 1-term
in equation (17) is omitted do I get the same results as Chopra and Ziemba (1993) (see Table 12).
When Chopra and Ziemba (1993) calculate the CE, they refer to a paper by Freund (1956), in
which utility is defined over net returns, not next-period wealth. In that case the 1-term would
disappear from equation (17). However, since next-period wealth is the gross return of the port-
folio if W; = 1, the 1-term should not be left out from the expression for the CE. Consequently,
with the CE defined as the solution to #(CE) = U(w,) and since w!Tm, — (2/2)w:TQ,w’ is in
the order of a few percents, it seems that the numbers in Exhibit 3 of Chopra and Ziemba (1993)
may be almost 100 times too large. Alternatively, if the measure was cash equivalence return,
ie, u(W,(1 + rcg)) = U(w,), the 1-term would disappear. In any case, it is not the use of the
power utility function together with lognormality that cause the difference. When the sensitiv-
ity measure is the CEL, the effect of estimation error is the more or less the same, irrespective
of if we assume negative exponential utility together with jointly normally distributed returns or
power utility together with jointly lognormal returns, and the result that errors in the covariance
matrix are more important when short selling is allowed is still valid. However, the loss under the
certainty equivalence return measure would for even quite small amounts of short selling be very

very large.
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Absolute Risk  Errors in Mean CEL
Aversion Size of Errors
£E=005 £=010 £=0.15 £=0.20

a = 2.6667
Means 0.0089 0.0428 0.0960 0.1507
Covariance Matrix 0.0007 0.0028 0.0062 0.0110
Variances 0.0005 0.0020 0.0044 0.0075
Covariances 0.0002 0.0007 0.0016 0.0030
a=4
Means 0.0089 0.0391 0.0856 0.1321
Covariance Matrix ~ 0.0012 0.0052 0.0114 0.0198
Variances 0.0009 0.0034 0.0076 0.0135
Covariances 0.0003 0.0016 0.0040 0.0070
a=28
Means 0.0081 0.0278 0.0581 0.0945
Covariance Matrix ~ 0.0037 0.0124 0.0252 0.0447
Variances 0.0023 0.0088 0.0186 0.0345
Covariances 0.0016 0.0053 0.0101 0.0159

Table 11: Average percentage cash equivalent loss when the data set is the same as in Chopra
and Ziemba (1993), utility is negative exponential, returns are jointly normally distributed,
and the portfolio weights are restricted to be non-negative. The values for the parameter 2
are the same as in Chopra and Ziemba (1993).

Absolute Risk  Errors in Mean CEL
Aversion Size of Errors
£F=005 £=0.10 £=0.15 £,£=0.20

a = 2.6667
Means 0.5355 2.5638 5.6733 9.1277
Covariance Matrix ~ 0.0399 0.1615 0.3723 0.6787
Variances 0.0308 0.1182 0.2607 0.4680
Covariances 0.0090 0.0409 0.1000 0.1860
a=4
Means 0.5872 2.6385 5.6308 8.9548
Covariance Matrix ~ 0.0804 0.3457 0.7716 1.3014
Variances 0.0585 0.2267 0.5176 0.9030
Covariances 0.0207 0.1100 0.2638 0.4598
a=38
Means 0.7843 2.6372 5.5470 9.1764
Covariance Matrix ~ 0.3626 1.2111 2.5020 4.4827
Variances 0.2243 0.8563 1.8427 3.4361
Covariances 0.1553 0.5242 0.9961 1.5948

Table 12: Average percentage “cash equivalent” loss when the data set is the same as in
Chopra and Ziemba (1993), utility is negative exponential, returns are jointly normally dis-
tributed, the 1-term is omitted from equation (17), and the portfolio weights are restricted
to be non-negative. The values for the parameter # are the same as in Chopra and Ziemba

(1993).
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