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The Impact of Estimation Error on Portfolio Selection

for Investors with Constant Relative Risk Aversion

Christoffer Bengtsson∗

Department of Economics

Lund University

29th April 2004

Abstract

This paper examines the impact of estimation error in a simple single-period portfolio choice

problem when the investor has power utility and asset returns are jointly lognormally dis-

tributed. These assumptions imply that such an investor selects portfolios using a modified

mean-variance framework where the parameters that he has to estimate are the mean vector of

log returns and the covariance matrix of log returns. Following Chopra and Ziemba (1993),

I simulate estimation error in what are assumed to be the true mean vector and the true co-

variance matrix and the impact of estimation error is measured in terms of percentage cash

equivalence loss for the investor. To obtain estimation error sizes that are similar to the esti-

mation error sizes in actual estimates, I use a Bayesian approach and Markov Chain Monte

Carlo Methods. The empirical results differ significantly from Chopra and Ziemba (1993),

suggesting that the effect of estimation error may have been overestimated in the past. Fur-

thermore, the results tend to question the traditional viewpoint that estimating the covariance

matrix correctly is strictly less important than estimating the mean vector correctly.

Keywords: Portfolio selection; Estimation risk; Markov Chain Monte Carlo.

JEL classification: G11.

1 Introduction

The mean-variance (MV) theory for portfolio selection has been the subject of much debate since

it was proposed by Markowitz (1952), and in spite of its theoretical appeal, it has had some

trouble being fully accepted by practitioners (see e.g. Michaud, 1989, for a discussion). Much of

the controversy has arisen because MV optimization is thought to be sensitive to errors in the two

input parameters; the expected return vector and the covariance matrix for the returns. Chopra

and Ziemba (1993) examine the effect of estimation error on the investor’s utility in terms of cash

equivalence loss under the assumptions that the investor has preferences with constant absolute

risk aversion, simple returns are jointly normally distributed, and short selling is not allowed. In a

simulation study they find that the loss resulting from estimation error in the mean vector can be

substantial, whereas estimating variances and covariances correctly seems to be of less importance.

This paper examines the effect of estimation error in a slightly different setting. I assume

instead that gross returns are jointly lognormally distributed, implying that log returns are jointly

normally distributed, and that the investor has preferences with constant relative risk aversion.

∗E-mail: christoffer.bengtsson@nek.lu.se, phone: +46 (0)46 - 222 79 11, postal address: P.O. Box 7082, SE-220 07

Lund, Sweden. The discussions and comments provided by Björn Hansson are greatly appreciated.
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The paper also examines what effect portfolio weight constraints have on the impact of estimation

error. To obtain estimation error sizes that are consistent with those of actual estimates, I use a

Bayesian approach and Markov Chain Monte Carlo methods.

Using the same simulation approach as Chopra and Ziemba (1993) combined with their values

for the estimation error size, I find that the effect of estimation error is smaller than expected,

much smaller than in Chopra and Ziemba (1993). The certainty equivalence loss resulting from

estimation error in the mean vector is for instance at most 0.1 percent when the investor is very

aggressive and no short selling is allowed, and it is even smaller for errors in the covariance matrix.

Using the estimation error sizes from the Bayesian approach provides a more plausible situation

and it increases the loss resulting from errors in means. When a limited amount of short selling

is permitted, errors in the covariance matrix become increasingly important compared to errors

in means. For the estimation error sizes of Chopra and Ziemba (1993), the cash equivalence loss

resulting from errors in the covariance matrix can for instance be up to 4.5 percent when errors

are large and the investor is very conservative, while errors in the mean vector never result in a cash

equivalence loss greater than 0.6 percent. Even for moderate levels of relative risk aversion and

for the estimation error sizes from the Bayesian approach, it appears that errors in the covariance

matrix are in some situations just as important as errors in the mean vector which goes against the

conventional wisdom that the effect of errors in means dominate over the effect of errors in the

covariance matrix in all situations.

The rest of the paper is organized as follows: The next section, Section 2, derives the portfolio

optimization problem, first in the setting when absolute risk aversion is constant and returns are

jointly normally distributed, and then in the setting when relative risk aversion is constant and

returns are jointly lognormal. Details on the latter derivation are found in Appendix A. Section

3 then describes the data and the methodology and Section 4 presents the empirical results and

the analysis. Section 5 concludes the paper. All tables and figures are contained in Appendix C,

Appendix B gives a short introduction to, and some details on, the Bayesian estimation method,

and Appendix D explains why the results in this paper differ to such a large extent from the results

in Chopra and Ziemba (1993).

2 Portfolio Optimization

This section begins by showing that the MV criterion is consistent with single-period utility

maximization when absolute risk aversion is constant and asset returns are jointly normally dis-

tributed1. This approach has, however, two major drawbacks: (1) Constant absolute risk aversion

implies that relative risk aversion is increasing in wealth, which is not consistent with observed

asset prices. (2) If returns on common stocks, e.g., were truly normally distributed, there would

exist a positive probability of infinitely negative return, whereas, in reality, stock returns can at

most be -100 percent. I therefore proceed with the more relevant case when relative risk aversion

is constant and gross returns are jointly lognormal, and I again arrive at an optimization problem

similar to the traditional MV optimization problem. The assumption of lognormality is appealing

since lognormal variables can never be negative. The downside is that the portfolio return will not

itself be strictly lognormal since the product, and not the sum, of lognormal variables is itself log-

normal. However, by considering returns in the limit of continuous time, the non-lognormality

disappears. So, inspired by Campbell and Viceira (2002), I make a discrete time approximation

of the log portfolio return in continuous time. The approximation is exact in continuous time

and it is accurate over sufficiently short time intervals.

1Strictly speaking, the MV criterion is consistent with utility maximization for any concave utility function when

returns are normally distributed, but constant absolute risk aversion utility provides particularly simple calculations.
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2.1 The Case of Constant Absolute Risk Aversion

Assume first that the investor derives utility from his wealth at the end of the period and that he,

as in Chopra and Ziemba (1993), has negative exponential utility

u(x) = −e−ax, (1)

where a > 0 is the coefficient of constant absolute risk aversion. The reciprocal of a is referred to

as the coefficient of constant absolute risk tolerance. Assume also that returns are jointly normally

distributed.

The investor’s wealth at the end of the period is determined by his wealth today, Wt , and by

the portfolio of N risky assets that the wealth is invested in. The portfolio is described by a vector

of weights, wt = [w1t , w2t , ..., wNt ]
T, where wit is the fraction of total wealth at time t that is

placed in asset i. For now the portfolio weights are allowed to be both positive and negative, just

as long as they sum up to one. In practice, however, negative portfolio weights come at a high

cost. Partly because there is a price tag on short selling2, and partly because short selling permits

the possibility of negative wealth at time t + 1. Short selling is therefore generally only permitted

for investors with a good credit rating. In the empirical part of the paper I will restrict attention to

two levels of short selling by adding the additional constraint wt ≥ `i1, where i = 1, 2, `1 = 0,

`2 = −0.10, and 1 is a N × 1 vector of ones.

Let Rt+1 be a N × 1 random vector where element i, Ri,t+1, is the (net) simple return of asset

i over one period. The portfolio return is then Rp,t+1 = wT
t Rt+1, and since the sum of normally

distributed variables is also normally distributed, Rp,t+1 will be normally distributed.

The utility maximization problem of the investor is

max
{

Et

[

u(Wt+1)
]

subject to Wt+1 = (1 + Rp,t+1)Wt

}

,

which in this case becomes

max
{

Et

[

−e−aWt+1
]

subject to Wt+1 = (1 + Rp,t+1)Wt

}

. (2)

The notation Et [·] is short for E[· | Ft ], where Ft is the information set or filtration available

at time t. The same notation is used on variances. The assumption of normality allows the

expectation in equation (2) to be rewritten as

− exp

{

−aWt

(

1 + Et [Rp,t+1] −
aWt

2
Vart [Rp,t+1]

)}

. (3)

Since maximizing a function is equivalent to minimizing the negative of the function and since

maximizing the log of a function is equivalent to maximizing the function itself, the optimization

problem boils down to

max
wt

{

wT
t
�

t −
aWt

2
wT

t

�
twt subject to wT

t 1 = 1

}

, (4)

where �t is the vector of conditional expected returns,
�

t is the conditional covariance matrix

of the returns, and 1 is a N × 1 vector of ones. Equation (4) is exactly equal to the traditional

MV optimization problem; the investor makes a linear trade-off between the expected portfolio

return and the portfolio variance. The degree to which the investor is willing to trade off mean

for variance is determined by the constant aWt , which is the relative risk aversion at time t of an

investor with constant absolute risk aversion. The wealthier the investor is, the more emphasis

is put on minimizing the variance of the portfolio. This is because the same relative change in

2Usually something like 1 or 2 percent per year of the stock’s market value.
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wealth is larger in absolute terms for a wealthy investor than it is for a poor investor, and it is

aversion against changes in absolute terms that is central for an investor with constant absolute

risk aversion.

Often, equation (4) is given in terms of risk tolerance. Normalizing today’s wealth to 1 gives

the expression

max
wt

{

�wT
t
�

t −
1

2
wT

t

�
twt subject to wT

t 1 = 1

}

,

where �
= 1/a. Chopra and Ziemba (1993) claim that most institutional investors have risk

tolerance in the range 0.2-0.3, implying that relative risk aversion is approximately in the range

3-5. This is well inside the range of what is commonly thought of as plausible (see e.g. Mehra and

Prescott, 1985; Rietz, 1988).

2.2 The Case of Constant Relative Risk Aversion

Assume now that gross returns are instead jointly lognormal and that the investor has power utility

u(x) =
x1−�
1 − �, (5)

where � > 0 is the coefficient of constant relative risk aversion3. The utility maximization

problem of the investor in this case becomes

max

{

Et

[

W 1−�
t+1

1 − �

]

subject to Wt+1 = (1 + Rp,t+1)Wt

}

. (6)

In Appendix A, I derive an expression of the portfolio dynamics in continuous time which is then

discretized in order to obtain a loglinear approximation of the log portfolio return in discrete

time. The approximation is accurate over sufficiently small time intervals and the portfolio return

is therefore treated as a lognormal variable.

Let rp,t+1 denote the log of the gross simple return (1 + Rp,t+1). By normality of rp,t+1, the

expectation in equation (6) can be rewritten as

W 1−�
t

1 − � exp

{

(1 − �)Et [rp,t+1] +
(1 − �)2

2
Vart [rp,t+1]

}

, (7)

and thus, maximizing expected utility is equivalent to

max

{

Et [rp,t+1] +
1 − �

2
Vart [rp,t+1]

}

. (8)

The approximations in Appendix A of the expected log portfolio return and the variance of the

log portfolio return are

Et [rp,t+1] = wT
t �t +

1

2
wT

t �2
t −

1

2
wT

t

�
twt , (9)

Vart [rp,t+1] = wT
t

�
twt , (10)

where �t is a N × 1 vector of conditional expected log returns,
�

t is the conditional covariance

matrix of the log returns, and �2
t is a vector consisting of the diagonal elements of

�
t . Inserting

equations (9) and (10) into equation (8) yields

max
wt

{

wT
t

(

�t +
1

2�
2
t

)

−
�
2

wT
t

�
twt subject to wT

t 1 = 1

}

, (11)

3In the limit as �→ 1, the utility function becomes u(x) = log(x).
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which is a maximization problem similar to the usual MV optimization problem. The difference

between equation (11) and equation (4) is the corrective term 1
2�2

t and that the expected return

vector and the covariance matrix of the simple returns are replaced by the return vector and the

covariance matrix of the log returns. However, as in equation (4), it is still relative risk aversion

that is the factor in front of the quadratic (variance) term. In this case, however, relative risk

aversion, and thereby also the optimal portfolio composition, does not depend on the investor’s

level of wealth.

3 Data and Methodology

The data set consists of monthly returns during the ten year period between January 1986 and

December 1995 for the 30 companies that belonged to the DJIA at the end of 1995. This is three

times the number of stocks considered by Chopra and Ziemba (1993)4. The data is extracted

from the CRSP data base. For these stocks I estimate the sample mean vector and the sample

covariance matrix of the log returns and these estimates are assumed to be the true, and to the

investor unknown, parameters �t and
�

t .

The main objective of this paper is to examine what effect estimation error in �t and
�

t has

on optimal portfolio choice. Since the investor does not know the true input parameters, he

will base the portfolio optimization problem of equation (11) on input parameters that he has

estimated in some way, i.e., he will replace �t and
�

t with some �̂t and
�̂

t , where �̂t 6= �t and�̂
t 6=

�
t . So consequently, although the portfolio that he chooses is optimal for the estimated

input parameters, it is suboptimal for the true input parameters, and hence, it does not truly

maximize expected utility.

Denote by w∗

t the portfolio that is the true optimal portfolio and by ŵt the suboptimal portfo-

lio based on the estimated input parameters. As a measure of how suboptimal ŵt is compared to

w∗

t , I follow Chopra and Ziemba (1993) and compare the cash equivalent (CE) values of the two

portfolios. The CE of a portfolio is defined as the risk free amount of cash that gives the same

(expected) utility as the risky portfolio, i.e.

CE(wt ) = u−1(U (wt )),

where U (wt ) is the expected utility of some portfolio wt . Since w∗

t provides the maximum ex-

pected utility for the investor, it will correspond to the maximum CE. The CE is, as opposed

to units of utility, independent of an affine transformation of the utility function and is instead

measured in dollars, the same unit as consumption is measured in. It is straightforward to show,

using equations (7), (9), and (10), that the CE implied by a lognormal portfolio return and power

utility is given by

CE(wt ) = Wt exp

{

wT
t

(

�t +
1

2�
2
t

)

−
�
2

wT
t

�
twt

}

.

The percentage cash equivalent loss (CEL) suffered by an investor that holds a portfolio other

than w∗

t is then simply

CEL = 100 ·
CE(w∗

t ) − CE(wt )

CE(w∗

t )
.

In order to examine which type of error that has most impact, I will distinguish between errors

in the mean vector, the covariance matrix, variances alone, and covariances alone. Chopra and

Ziemba (1993) only consider errors in the mean vector, variances alone, and covariances alone.

Not errors in the entire covariance matrix.

4Chopra and Ziemba (1993) consider N = 10 randomly selected stocks, also from the DJIA.
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I begin by calculating w∗

t given �t and
�

t . The impact of errors in means is estimated by first

replacing 	it with

	̂it = (1 + ki
i)	it , i = 1, 2, ..., N ,

where 
i is a standard normal random number and ki is the size of the estimation error of 	it .
�

t

is left unchanged. Given �̂t ,
�

t , and the restrictions on the portfolio weights, I can then calculate

the (sub-) optimal portfolio ŵt and the resulting CEL. This procedure is repeated 10,000 times

and the impact of errors in means is taken as the average CEL over all these 10,000 iterations.

Chopra and Ziemba (1993) perform 100 iterations.

The same procedure is then used to examine the effect of errors in the covariance matrix. To

examine the impact of errors in the entire covariance matrix, I replace �ijt with

�̂ijt = (1 + Kij
ij)�ijt , i, j = 1, 2, ..., N ,

where, again, 
ij is a standard normal random number5, Kij is the estimation error size of �ijt , and,

of course, xij = xji. �t is left unchanged. To examine the effect of errors in variances alone, I put

xij = 0 when i 6= j, and to examine the effect of errors in covariances alone, I put xij = 0 when

i = j.

The entire exercise is repeated for different values of the relative risk aversion, for different

values of the error sizes, and for different portfolio weight restrictions. The constant relative risk

aversion, �, takes on the values 1, 3, 5, 10, and 25. �= 3, 5, 10 represents investors with relative

risk aversion consistent with what is commonly considered plausible, whereas � = 1 represents a

very aggressive investor and � = 25 represents a very conservative investor.

In Chopra and Ziemba (1993), the estimation error sizes take on the values ki = Kij = k =

0.05, 0.10, 0.15, 0.20, i, j = 1, 2, ..., N . However, nothing is said about whether these values are

reasonable or not. In order to say what is most damaging, estimation error in the mean vector

or in the covariance matrix, it is important to know how large the estimation error is in actual

estimates. For instance, the mean vector is known to be notoriously hard to estimate, especially

from past returns alone, and hence, the size of the estimation error in the mean vector may be

expected to be larger than the size of the estimation error in the covariance matrix. Consequently,

it can be misguiding to compare the CELs resulting from estimation error in the two parameters

when the sizes of their estimation errors are the same, i.e. when ki = Kij, i, j = 1, 2, ..., N .

To obtain values for the estimation error sizes that are consistent with the estimation error

sizes in actual estimates, I estimate the mean vector and the covariance matrix with the Markov

Chain Monte Carlo method (MCMC), which is a Bayesian estimation method. As opposed to

traditional methods of estimation, the MCMC estimate is not a point estimate, but rather a sam-

ple from the joint distribution of the parameters conditional on the data. This joint conditional

distribution is referred to as the posterior distribution and by using the sample from it is straight-

forward to calculate the standard deviations of the individual elements of the estimated mean

vector end the estimated covariance matrix.

Therefore, in addition to the values for the size of the estimation error used by Chopra and

Ziemba (1993), I also perform the above simulation study when the estimation error size for an

element (in either the mean vector or the covariance matrix) is taken as (1) its posterior standard

deviation divided by the absolute value of its assumed true value, or (2) half its posterior standard

5That the �is and �ij s are mean zero random numbers imply that the estimates are assumed not to have any systematic

biases. In reality, however, many estimators contain some amount of specification error.
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deviation divided by the absolute value of its assumed true value6. That is,

ki =

√

s2
i

	2
it

, Kij =

√

S2
ij

�2
ijt

, i, j = 1, 2, ..., N ,

or

ki = 0.5

√

s2
i

	2
it

, Kij = 0.5

√

S2
ij

�2
ijt

, i, j = 1, 2, ..., N ,

where si is the posterior standard deviation of element i of the mean vector and Sij is the posterior

standard deviation of element ij of the covariance matrix. Case (1), referred to as large errors, is

meant to represent the situation when the input parameters are poorly estimated and case (2),

referred to as small errors, is meant to represent the situation when the input parameters are better

estimated. Details on how the MCMC estimates are obtained can be found in Appendix B.

Finally, Chopra and Ziemba (1993) only examine the case when portfolio weights are restricted

to be non-negative. This is a valid restriction for most individuals, but not for large institutional

investors with a good credit rating. I therefore also examine the case when portfolio weights are

restricted not to fall below -10 percent7.

4 Empirical Results

The (assumed true) means, standard deviations, and correlations for the 30 DJIA stocks are found

in Tables 1 and 2, and Tables 3 and 4 summarizes the optimal portfolio weights in w∗

t for the

different combinations of relative risk aversion and portfolio weight restrictions. The empirical

results from the simulation study described in the previous section are found in Tables 5-8. Ta-

bles 5 and 6 represent the cases when the estimation error sizes are the same as in Chopra and

Ziemba (1993) and Tables 7 and 8 represents the cases when the estimation sizes are obtained

from the MCMC estimation. All tables and figures are found in Appendix C.

4.1 Estimation Error Sizes the Same as in Chopra and Ziemba (1993)

Consider first the cases when the CELs are calculated using the same estimation error sizes as in

Chopra and Ziemba (1993). An initial and important observation is that the CELs are generally

very low compared to those in Chopra and Ziemba (1993) (see Table 5). The effect of errors

in means when short selling is not allowed is at most 0.1469 percent, not several percent as in

Chopra and Ziemba (1993), and errors in the covariance matrix have even smaller effects. In

Appendix D, I discuss the cause of this difference, seemingly the result of an error in Chopra and

Ziemba (1993).

Table 5 reveals that when portfolio weight are restricted to be non-negative, errors in means

generally result in CELs much larger than the CELs resulting from errors the covariance matrix.

For example, when �= 5 and k = 0.10, errors in means are about 7.6 times more important than

errors in the entire covariance matrix. It is only when the investor is very risk averse that estimation

error in the covariance matrix is more important than estimation error in the mean vector. Intu-

itively, this result can be understood by the following reasoning: Since negative portfolio weights

are not allowed and since stock returns generally are positively correlated, the optimal portfolio

6Four elements of the mean vector are quite small in absolute terms and the corresponding estimation error sizes of

these elements become much larger than the estimation error sizes of the remaining elements. I therefore impose that

ki = 1 for these elements, which is about the same magnitude as the fifth largest estimation error size of an element in the

mean vector.
7The case when portfolio weights are restricted not to fall below -5 percent has been omitted to save space. The results

fall exactly in between the remaining two cases and they are available upon request.
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will consist only of stocks that have high expected returns, low standard deviations, and low corre-

lations with other stocks. That is, stocks that are represented by large elements in the mean vector

and small elements in the covariance matrix. Consequently, because of the multiplicative nature

of the errors, the absolute size of the errors in the relevant parts of the mean vector will be much

larger than the absolute size of the errors in the relevant parts of the covariance matrix, and hence,

errors in means will have a much larger effect on the objective function for a given w∗

t .

When the investor is permitted to sell stocks short, the CEL increases (see Table 6). For �= 5,

and k = 0.10, the CEL ratio between errors in means and errors in the covariance matrix is

now only 1.3. Even for a relatively aggressive investor with � = 3 are errors in means now, on

average, only twice as important as errors in the covariance matrix, compared to about 15 times

more important in Table 5. When � = 5, errors in the covariance matrix are, on average, more

important than errors in means, and when � = 25 and k = 0.20, the CEL is now as large

as 4.5 percent for errors in the covariance matrix. Also, when short selling is allowed, errors in

covariances alone are often of an equal or greater importance than errors in variances alone. This

may add validity to covariance matrix estimation techniques such as the one proposed by Ledoit

and Wolf (2003) that essentially only improves the estimation of the off-diagonal elements of the

covariance matrix.

4.2 Estimation Error Sizes Estimated with the MCMC Method

Consider now the cases when the estimation error sizes are obtained from the MCMC estimation

in order for them to resemble the sizes of the estimation error in actual estimates. Figures 1, 2,

and 3 show the histograms of the estimation error sizes for the means, the variances, and the

covariances, respectively8. The average estimation error size for means is 0.61109, the average

estimation error size for variances is 0.0663, and the average estimation error size for covariances

is 0.1361. This implies that, for instance, k = 0.20 above represents (relative sample estimates)

good estimates of the means, while it represents very poor estimates of the variances and the

covariances.

Table 7 shows that when short selling is not allowed, then the CELs are all quite small for

both the large and the small errors. No CEL is ever greater than 1 percent and errors in means

are always more important than errors in the covariance matrix, even for a very conservative

investor. In Table 8 when the investor is permitted to short sell 10 percent of each stock, however,

errors in means are no longer always more important than errors in the covariance matrix. When

� = 10 and errors are small, the CEL for the covariance matrix and CEL for the mean vector

are approximately equal, and for � = 25, errors in the covariance matrix are most important.

The CEL for the covariance matrix is in the latter case approximately five times the CEL of the

mean vector, both when errors are small and when they are large. So, again, when short selling is

allowed it is not the case that errors in the mean vector are always most important.

Summing up the conclusions from Tables 5-8, if the investor cannot short sell, then estimation

error has very little effect. Only when the investor is allowed to short sell can estimation error

have substantial effects; either if the size of the estimation error is relatively large and/or if the

investor is very conservative, and the more short selling is allowed, the more important are errors

in the covariance matrix. For instance, although not reported, when 50% short selling per stock

is allowed, then errors in the covariance matrix are more important than errors in means even for

a quite aggressive investor with � = 3. Jagannathan and Ma (2003) analytically show how non-

negativity constraints can help control for estimation error in (especially) the covariance matrix.

This paper points at a similar conclusion: When non-negativity constraints are in place, the

sensitivity of the portfolio weights to changes in both input parameters is reduced. Of course,

8For the error sizes of the means, the four values of ki that are restricted to be equal to 1 are omitted.
9The average estimation error size of means is 0.5511 if the values that are restricted to equal 1 are omitted.
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since monthly data is used, I have implicitly assumed an investment horizon of a month. If the

input parameters were estimated on a yearly basis, e.g., then the elements in both �t and
�

t

would grow by roughly a factor 12. Consequently, the impact of estimation error will grow also

with the investment horizon.

4.3 Further Empirical Results

It might be interesting to examine how large the CEL is for an investor with power utility facing

lognormal stock returns that knows his relative risk aversion, but who still uses the traditional MV

optimization problem when choosing his portfolio. Suppose that such an investor, as is implied by

equation (4), uses his relative risk aversion to determine the trade-off between mean and variance.

This means that the investor solves

max
wt

{

wT
t
�

t −
�
2

wT
t

�
twt subject to wT

t 1 = 1, wt ≥ `1
}

, (12)

where ` is the lower bound for the portfolio weights, instead of his correct optimization problem

defined by equation (11) with the additional constraint that wt ≥ `1. The result, presented in

Table 9, shows that the differences between the optimal portfolios are quite small for all combina-

tions of � and `. So, although the investor uses the wrong optimization problem, he still obtains

a portfolio that is very close to the one that truly maximizes his expected utility. As a comparison,

in Table 10 I present the CEL when the investor does not optimize his portfolio at all, but simply

invests an equal amount in each stock.

Finally, the modified MV optimization problem of equation (11) relies on an approximation of

the log portfolio return which is claimed to be accurate over sufficiently small time intervals. But is

a month a sufficiently time small interval? In order to examine how accurate the approximation is,

I use the following procedure: Denote by Y the K × N matrix containing the data set described

in Section 3 where element ki of Y is return observation number k of stock number i. I then

calculate the historical mean and standard deviation of the log return of some portfolio wt using

the formulas

m =
1

K

K
∑

k=1

log
(

1 + Ykwt

)

,

s =

√

√

√

√

1

K − 1

K
∑

k=1

(

log
(

1 + Ykwt

)

− m
)2

,

where Yk is row number k of Y. I then compare these values with what I obtain using equations (9)

and (10). Just to take two examples, an equally weighted portfolio yields m = 3.32%, s = 6.27%,

Et [rp,t+1] = 3.32%, and Stdt [rp,t+1] = 6.25%, and a portfolio with �= 5 and a lower bound of

` = −10% yields m = 1.30%, s = 4.85%, Et [rp,t+1] = 1.30%, and Stdt [rp,t+1] = 4.88%. The

approximations are in other words quite accurate.

5 Conclusions

In this paper I have examined the effect of estimation error on optimal portfolio choice when asset

returns are jointly lognormally distributed and the investor has power utility. Such an investor

faces a modified MV optimization problem and the parameters that he has to estimate are the

vector of expected log returns and the covariance matrix of the log returns. As a measure of loss, I

use the percentage reduction in cash equivalence that the investor experiences since his portfolio

is based on estimated input parameters containing estimation error, rather than the true input

parameters.
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By simulating estimation error in what are assumed to be the true input parameters, I found

that when the estimation error sizes of Chopra and Ziemba (1993) are used, the loss is generally

very small (especially when short selling is not allowed). Much smaller than in Chopra and Ziemba

(1993). I provide an explanation to this difference and I show that the results are not due to the

use of another utility function together with different distributional assumptions, but rather the

result of an error in Chopra and Ziemba (1993). I have also performed the simulation study when

the estimation error sizes are estimated using a Bayesian approach in order to get values that are

more in tune with the estimation error sizes in actual estimates. This exercise shows that the size

of the estimation error in the mean vector is larger than the size of the estimation error of the

covariance matrix.

When short selling is not allowed, I find, in line with Chopra and Ziemba (1993), that errors

in means result in the largest loss, especially for the estimation error sizes obtained by the Bayesian

approach. The loss is, however, as mentioned above generally quite small. When the investor is

allowed a limited amount of short selling (10 percent of each stock), the effect of estimation error

increases. In particular, the loss due to estimation error in the covariance matrix increases to the

extent that it is no longer the case that errors in means always result in the largest loss. In fact,

with the estimation error sizes of Chopra and Ziemba (1993), the only investor that is significantly

affected by estimation error, or estimation risk, is an investor that is already very averse towards

risk in the traditional sense of a high relative risk aversion coefficient. With the estimation error

sizes obtained from the Bayesian approach, an investor that is conservative, but not extremely

so, experiences approximately the same loss from estimation error in the mean vector as from

estimation error in the covariance matrix. This result to some extent goes against the received

wisdom that estimating the mean vector correctly is strictly more important than estimating the

covariance matrix correctly.

What this paper shows is primarily that the situation may not be as simple as implied by Chopra

and Ziemba (1993) and that portfolio weight constraints have significant effects on the impact

of estimation error. Estimating the expected returns may be a more difficult task than estimating

the covariance matrix, and indeed, when short selling is not allowed (the reality faced by most

investors), then the loss from errors in means is larger than the loss from errors in the covariance

matrix. At the same time, however, the loss resulting from estimation error in means may be

limited. Sharing similarities with the conclusion of Jagannathan and Ma (2003), the empirical

results of this paper show that short selling constraints reduce the effect of errors in both the mean

vector and the covariance matrix. When the level of short selling in increased, then the loss from

errors in the covariance matrix can become larger than the loss from errors in means even for

relatively aggressive investors. Consequently, an investor that is permitted short selling and that

believes that estimating the covariance matrix correctly is unimportant, runs the risk of seriously

reducing the quality of his portfolio.
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A Approximation of the Log Portfolio Return

Following the methodology of Campbell and Viceira (2002), I assume that the continuous time

price process for the N risky assets, in this paper common stocks, is

dSt

St
= 
tdt + �tdZt ,

where 
t is a N × 1 vector, �t is a N × M matrix, and Zt is a M × 1 vector of uncorrelated

standard Wiener processes. dSt/St is just bad notation for [dS1t/S1t , dS2t/S2t , ..., dSNt/SNt ]
T.

For an individual asset the dynamics are

dSit

Sit
= �itdt + �itdZt ,

where �it and �it are the ith rows of 
t and �t , respectively.

The main objective is a description of the log price change of the portfolio (i.e. the log return)

as a function of the log price changes of the individual assets. Denote by Vt the value of the

portfolio at time t. The dynamics of the log price change of the portfolio and the log price change

of asset i follows from Itô’s Lemma as

d log Vt =
dVt

Vt
−

1

2

(

dVt

Vt

)2

, (13)

and

d log Sit =

(

�it −
1

2�it�T
it

)

dt + �itdZt =
dSit

Sit
−

1

2�it�T
it dt.

The first term in equation (13) is

dVt

Vt
= wT

t

(

dSt

St

)

= wT
t

(

d log St +
1

2
[�it�T

it ]dt

)

,

11



where [�it�T
it ] denotes an N × 1 vector with element i equal to �it�T

it . Because (dt)2
= 0 and

dt · dZjt = 0, j = 1, ..., M , the second term of equation (13) is

(

dVt

Vt

)2

= wT
t

(

d log St

) (

d log St

)T
wt . (14)

Since dZkt · dZ`t = 0, k 6= `, k, ` = 1, ...M , and (dZjt )
2

= dt, j = 1, ..., M , the following

expression holds

(

d log St

) (

d log St

)T
= �t (dZt ) (dZt )

T �T
t = �t�T

t dt,

and the portfolio dynamics are thus

d log Vt = wT
t

(

d log St +
1

2
[�it�T

it ]dt

)

−
1

2
wT

t �t�T
t wtdt. (15)

Finally, an Euler approximation of equation (15), where dt is replaced with some small but not

infinitesimal time interval �t, yields the approximate log portfolio return as

rp,t+1 = wT
t rt+1 +

1

2
wT

t �2
t −

1

2
wT

t

�
twt ,

where rp,t+1 = � log Vt+1 = log Vt+1 − log Vt , rt+1 = � log St+1, �t = 1, �t�T
t =

Vart [rt+1] =
�

t , and [�it�T
it ] = [Vart [r1,t+1], ..., Vart [rN ,t+1]]T

= �2
t . The expected log

portfolio return and the variance of the log portfolio return can then be written as

Et [rp,t+1] = wT
t �t +

1

2
wT

t �2
t −

1

2
wT

t

�
twt ,

Vart [rp,t+1] = wT
t

�
twt ,

where �t = Et [rt+1].

B Markov Chain Monte Carlo Estimation

The MCMC method for inference and parameter estimation is a Bayesian and simulation based

estimation method. Traditional methods such as maximum likelihood (ML) treats the parame-

ters of the model at hand as unknown constants, whereas the Bayesian approach is to treat the

parameter vector � as an outcome of the random variable �. So, while other methods produce

a point estimate, the Bayesian estimate is the joint distribution of the parameters conditional on

the data10. This joint conditional distribution, referred to as the posterior distribution, can be

derived via Bayes’ formula as

p(�|Y) ∝ p(Y|�)p(�),

where Y is a matrix of observations, p(Y|�) is the likelihood of the data, and p(�) is the so called

prior distribution. Knowledge about the normalizing constant is generally not required. The prior

distribution has to be specified unconditional of the data by the researcher, and it can be thought

of as a natural way to impose non-sample information, if there is any, and to impose stationarity

and non-negativity where it is needed. If there is no non-sample information to be imposed, the

prior is usually chosen so that it is as uninformative as possible, typically with a very large variance

over the relevant parameter space, or it is chosen to be diffuse which means that it is completely

uninformative. Diffuse priors, however, do not integrate to unity and they are therefore not well

suited for all situations.

10The Bayesian point estimate is typically taken as the posterior mean.
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The posterior distribution is often very complex and non-standard, and to explore it, the

MCMC method can be used. The MCMC method samples from the posterior distribution by

generating a Markov Chain {�(j)}n
j=1 over � such that its equilibrium distribution is p(�|Y). The

MCMC method is based on the Clifford-Hammersley theorem (Hammersley and Clifford, 1970)

which states that a joint distribution p(a, b|c) is completely characterized by the two conditional

marginal distributions p(a|b, c) and p(b|a, c). In this section, a = �, b =
�

, and c = Y. When

the two conditional marginal distributions are standard distributions that can be easily sampled

from, the simplest MCMC algorithm, the Gibbs sampler, can be used. The Gibbs sampler itera-

tively first updates the first parameter by drawing from its marginal posterior, keeping all the other

parameters constant, then updates the second parameter by drawing from its marginal posterior,

keeping all the other parameters constant and using the updated value of the first parameter, and

so on. When all p parameters have been updated, the process starts over again and it does so

until each parameter has been updated n times, thereby obtaining the sequence {�(j)}n
j=1, where

� = (�1,�2, ...,�p).

To obtain the Bayesian estimates of the mean vector of the log returns and the covariance matrix

of the log returns, assume as in the paper that the log returns are jointly normally distributed with

mean vector � and covariance matrix
�

. This corresponds to assuming the linear regression model

Y = 1�T
+ �

for the returns where where element ki of Y is return observation k of stock i, i = 1, 2, ..., N ,

k = 1, ..., K , and � is a K × N matrix of error terms whose rows are independently normally

distributed with a mean vector equal to an N × 1 vector of zeros and positive definite covariance

matrix
�

. With these specifications, the likelihood of the data can be written as

p(Y |�,
�

) ∝ |
�
|−K /2 exp

{

−
1

2

(

Y − 1�T
)T �

−1
(

Y − 1�T
)

}

(16)

= |
�
|−K /2 exp

{

−
1

2
tr

(

(

Y − 1�T
)T (

Y − 1�T
)�

−1
)

}

.

By noting that

(

Y − 1�T
)T (

Y − 1�T
)

= K
�̂

+ K
(

�− �̂
) (

�− �̂
)T

,

where

�̂ =

(

1

K
1TY

)T

,

�̂
=

1

K

(

Y − 1�̂T
)T (

Y − 1�̂T
)

,

equation (16) can be simplified into

p(Y |�,
�

) ∝ |
�
|−K /2 exp

{

−
1

2
tr

(

K
�̂�

−1
)

−
1

2
tr

(

K
(

�− �̂
) (

�− �̂
)T �

−1
)

}

.

I assume standard conjugate priors according to

� ∈ N (a, A),
�

∈ IW(c, C ),

where N denotes the multivariate normal distribution and IW denotes the inverted Wishart

distribution. A conjugate prior is a distribution under which the prior and posterior of a parameter
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is the same type of distribution, but with different hyperparameters. These assumption imply that

the posterior of � is

p(�|Y ,
�

) ∝ p(Y |�,
�

)p(�)

∝ exp

{

−
1

2

(

�− a
)T

A−1
(

�− a
)

}

× exp

{

−
1

2

(

�− �̂
)T (

K
�

−1
) (

�− �̂
)

}

∝ exp

{

−
1

2

(

�T
(

K
�

−1
+ A−1

)

�− 2�T
((

K
�

−1
)

�̂+ A−1a
))

}

,

which implies that the posterior of � is N (a∗, A∗), where

a∗ = A∗
(

K
�

−1�̂+ A−1a
)

,

A∗

=
(

K
�

−1
+ A−1

)

−1
.

The posterior of
�

is derived as

p(
�
|Y , �) ∝ p(Y |�,

�
)p(
�

)

∝ |
�
|−K /2 exp

{

−
1

2
tr

(

K
�̂�

−1
)

−
1

2
tr

(

K
(

�− �̂
) (

�− �̂
)T �

−1
)

}

× |
�
|−(c+N+2)/2 exp

{

−
1

2
tr

(

C
�

−1
)

}

= |
�
|−(c+K +N+2)/2 exp

{

−
1

2
tr

((

C + K
�̂

+ K
(

�− �̂
) (

�− �̂
)T

)�
−1

)

}

,

implying that the posterior of
�

is IW(c∗, C∗), where

c∗ = c + K ,

C∗

= C + K
�̂

+ K
(

�− �̂
) (

�− �̂
)T

.

When I estimate this model I use the following hyperparameters in the prior distributions: ai =

0, Aij = 0.25 when i = j and Aij = 0 when i 6= j, ci = N + 2 = 32, and Cij = 0.2 when i = j

and Cij = 0 when i 6= j, i, j = 1, 2, ..., N . I run the Gibbs sampler 1100 times, discarding the

first 100 iteration as burn in. The standard deviations of the elements of the Bayesian estimates

of � and
�

are then simply the standard deviations of the elements in the resulting sequence

{�(j),
�(j)}n

j=1.
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C Tables and Figures

Mean Standard

deviation

Allied Signal Inc. 0.99 6.63

Aluminum Co. of America 1.08 7.94

American Express Co. 0.73 8.55

AT&T Corp. 1.08 6.28

Bethlehem Steel -0.04 14.32

Boeing Co. 1.21 7.41

Caterpillar Inc. 0.98 8.89

Chevron 1.23 6.06

Coca Cola Co. 2.15 5.67

Du Pont 1.25 6.78

Eastman Kodak 1.09 6.67

Exxon Corp. 1.30 4.38

General Electric Co. 1.39 6.14

General Motors Corp. 0.73 8.17

Goodyear 1.13 9.77

Int. Business Machines -0.15 7.38

Int. Paper Company 1.14 7.42

J.P Morgan & Co. 1.09 7.22

McDonald s Corp. 1.43 6.24

Merck & Company, Inc. 1.99 6.42

Minnesota Mining & Mfg. 1.18 5.60

Philip Morris Co.’s Inc. 2.07 7.50

Procter & Gamble Co. 1.52 6.06

Sears Roebuck & Co. 1.16 7.90

Texaco Inc. 1.36 5.48

Union Carbide 1.86 8.81

United Technologies Corp. 0.92 7.81

Walt Disney Co. 1.82 8.12

Westinghouse Electric 0.02 8.69

Woolworth Corp. 0.15 9.72

Table 1: Means and standard deviations in percents per month for the 30 companies that

belonged to the DJIA at the end of 1995 calculated from the monthly returns between

January 1986 and December 1995.

15



1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

1. Allied Signal Inc. 1

2. Aluminum Co. of America 0.44 1

3. American Express Co. 0.39 0.43 1

4. AT&T Corp. 0.38 0.30 0.33 1

5. Bethlehem Steel 0.31 0.55 0.30 0.20 1

6. Boeing Co. 0.49 0.30 0.46 0.37 0.27 1

7. Caterpillar Inc. 0.39 0.65 0.29 0.27 0.55 0.36 1

8. Chevron 0.39 0.27 0.38 0.38 0.21 0.29 0.24 1

9. Coca Cola Co. 0.43 0.24 0.44 0.39 0.19 0.53 0.25 0.25 1

10. Du Pont 0.52 0.60 0.44 0.46 0.43 0.45 0.52 0.53 0.38 1

11. Eastman Kodak 0.36 0.31 0.28 0.31 0.19 0.23 0.26 0.22 0.40 0.43 1

12. Exxon Corp. 0.42 0.26 0.42 0.38 0.21 0.31 0.22 0.73 0.39 0.56 0.33 1

13. Electric Co. 0.58 0.54 0.59 0.52 0.47 0.57 0.49 0.43 0.56 0.63 0.41 0.53 1

14. General Motors Corp. 0.41 0.52 0.41 0.28 0.52 0.38 0.50 0.30 0.23 0.55 0.31 0.31 0.54 1

15. Goodyear 0.45 0.46 0.41 0.21 0.46 0.28 0.47 0.22 0.31 0.45 0.24 0.28 0.47 0.43 1

16. Int. Business Machines 0.28 0.39 0.21 0.10 0.33 0.21 0.39 0.19 0.15 0.42 0.37 0.27 0.32 0.47 0.15 1

17. Int. Paper Company 0.48 0.62 0.41 0.34 0.40 0.42 0.49 0.27 0.37 0.74 0.37 0.42 0.64 0.56 0.45 0.37 1

18. J.P Morgan & Co. 0.39 0.29 0.44 0.45 0.22 0.45 0.26 0.43 0.49 0.54 0.36 0.56 0.56 0.20 0.33 0.13 0.49 1

19. McDonald s Corp. 0.49 0.31 0.49 0.36 0.34 0.47 0.37 0.30 0.52 0.52 0.46 0.47 0.61 0.41 0.48 0.34 0.38 0.48 1

20. Merck & Company, Inc. 0.31 0.33 0.43 0.26 0.27 0.41 0.27 0.17 0.57 0.50 0.37 0.40 0.52 0.24 0.33 0.30 0.46 0.43 0.48 1

21. Minnesota Mining & Mfg. 0.45 0.51 0.46 0.34 0.37 0.51 0.51 0.34 0.51 0.66 0.48 0.47 0.71 0.47 0.45 0.38 0.69 0.56 0.53 0.52 1

22. Philip Morris Co.’s Inc. 0.30 0.30 0.42 0.32 0.26 0.31 0.23 0.29 0.60 0.39 0.40 0.43 0.48 0.28 0.24 0.24 0.40 0.38 0.50 0.57 0.49 1

23. Procter & Gamble Co. 0.37 0.24 0.44 0.36 0.21 0.39 0.33 0.30 0.59 0.49 0.36 0.44 0.50 0.28 0.26 0.24 0.45 0.48 0.63 0.55 0.53 0.57 1

24. Sears Roebuck & Co. 0.53 0.45 0.62 0.37 0.37 0.48 0.43 0.37 0.44 0.59 0.51 0.36 0.61 0.56 0.45 0.30 0.51 0.43 0.59 0.38 0.52 0.47 0.38 1

25. Texaco Inc. 0.31 0.36 0.24 0.27 0.30 0.29 0.42 0.63 0.29 0.51 0.25 0.57 0.36 0.23 0.30 0.18 0.35 0.30 0.27 0.22 0.40 0.30 0.29 0.31 1

26. Union Carbide 0.41 0.45 0.38 0.25 0.35 0.28 0.47 0.16 0.27 0.54 0.28 0.17 0.37 0.48 0.30 0.32 0.55 0.28 0.25 0.28 0.43 0.29 0.36 0.49 0.16 1

27. United Technologies Corp. 0.50 0.54 0.55 0.45 0.46 0.64 0.54 0.42 0.56 0.62 0.43 0.44 0.68 0.51 0.47 0.33 0.55 0.49 0.50 0.51 0.63 0.50 0.46 0.58 0.45 0.45 1

28. Walt Disney Co. 0.56 0.44 0.44 0.34 0.43 0.44 0.47 0.33 0.58 0.52 0.39 0.36 0.59 0.48 0.47 0.33 0.51 0.42 0.66 0.47 0.55 0.54 0.56 0.52 0.28 0.42 0.53 1

29. Westinghouse Electric 0.38 0.47 0.58 0.30 0.32 0.42 0.40 0.33 0.39 0.48 0.39 0.43 0.66 0.49 0.42 0.30 0.50 0.38 0.53 0.39 0.63 0.45 0.44 0.57 0.37 0.34 0.58 0.48 1

30. Woolworth Corp. 0.38 0.35 0.48 0.31 0.36 0.48 0.30 0.25 0.42 0.48 0.26 0.31 0.47 0.43 0.40 0.28 0.52 0.36 0.47 0.41 0.52 0.45 0.43 0.54 0.26 0.47 0.53 0.52 0.42 1

Table 2: Correlations for the 30 companies that belonged to the DJIA at the end of 1995 calculated from the monthly returns between January 1986 and December

1995.
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Optimal Portfolio Weight

Relative Risk Aversion

�= 1 �= 3 �= 5 �= 10 �= 25

Allied Signal Inc. 0 0 0 0 0

Aluminum Co. of America 0 0 0 0 0

American Express Co. 0 0 0 0 0

AT&T Corp. 0 0 0 0 0.0464

Bethlehem Steel 0 0 0 0 0

Boeing Co. 0 0 0 0 0

Caterpillar Inc. 0 0 0 0 0

Chevron 0 0 0 0 0

Coca Cola Co. 0.6199 0.5902 0.5439 0.3977 0.2502

Du Pont 0 0 0 0 0

Eastman Kodak 0 0 0 0 0.0204

Exxon Corp. 0 0 0 0.1543 0.3248

General Electric Co. 0 0 0 0 0

General Motors Corp. 0 0 0 0 0

Goodyear 0 0 0 0 0

Int. Business Machines 0 0 0 0 0

Int. Paper Co. 0 0 0 0 0

J.P. Morgan & Co. 0 0 0 0 0

McDonald’s Corp. 0 0 0 0 0

Merck & Co., Inc. 0 0.1260 0.1758 0.1512 0.0993

Minnesota Mining & Mfg. 0 0 0 0 0

Philip Morris Co.’s Inc. 0.2709 0.1236 0.0775 0.0070 0

Procter & Gamble Co. 0 0 0 0 0

Sears Roebuck & Co. 0 0 0 0 0

Texaco Inc. 0 0 0.0433 0.1622 0.1646

Union Carbide 0.1092 0.1602 0.1596 0.1276 0.0943

United Technologies Corp. 0 0 0 0 0

Walt Disney Co. 0 0 0 0 0

Westinghouse Electric 0 0 0 0 0

Woolworth Corp. 0 0 0 0 0

Table 3: Optimal portfolio weights when the portfolio weights are restricted to be non-

negative.
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Optimal Portfolio Weight

Relative Risk Aversion

�= 1 �= 3 �= 5 �= 10 �= 25

Allied Signal Inc. -0.1 -0.1 -0.1 -0.1 -0.0911

Aluminum Co. of America -0.1 0.0110 0.1169 0.1548 0.1538

American Express Co. -0.1 -0.1 -0.1 -0.1 -0.1

AT&T Corp. -0.1 -0.1 -0.1 -0.0231 0.0695

Bethlehem Steel -0.1 -0.1 -0.1 -0.0827 -0.0482

Boeing Co. -0.1 -0.1 -0.0771 0.0332 0.0835

Caterpillar Inc. -0.1 -0.1 -0.0831 -0.0489 -0.0513

Chevron -0.1 0.1228 0.2102 0.1126 0.0510

Coca Cola Co. 1.5597 0.9799 0.7223 0.4564 0.2791

Du Pont -0.1 -0.1 -0.1 -0.1 -0.1

Eastman Kodak -0.1 -0.1 -0.1 -0.0219 0.0282

Exxon Corp. -0.1 -0.1 -0.0956 0.2185 0.3702

General Electric Co. -0.1 -0.0141 0.1470 0.1216 0.0286

General Motors Corp. -0.1 -0.1 -0.0711 0.0295 0.0592

Goodyear -0.1 0.0764 0.0606 0.0491 0.0445

Int. Business Machines -0.1 -0.1 -0.1 -0.1 -0.0596

Int. Paper Co. -0.1 -0.1 -0.1 -0.1 -0.0835

J.P. Morgan & Co. -0.1 -0.1 -0.1 -0.1 -0.1

McDonald’s Corp. -0.1 -0.0306 0.1885 0.2209 0.1695

Merck & Co., Inc. 0.4540 0.5027 0.4015 0.2773 0.1720

Minnesota Mining & Mfg. -0.1 -0.1 -0.1 -0.0736 0.0861

Philip Morris Co.’s Inc. 0.6131 0.2796 0.1719 0.0917 0.0144

Procter & Gamble Co. -0.1 -0.1 -0.1 -0.1 -0.0183

Sears Roebuck & Co. -0.1 -0.1 -0.1 -0.0893 -0.0226

Texaco Inc. -0.1 0.2138 0.2752 0.2337 0.1832

Union Carbide 0.7726 0.5869 0.4816 0.3492 0.2287

United Technologies Corp. -0.1 -0.1 -0.1 -0.1 -0.1

Walt Disney Co. 0.1006 0.1717 0.0513 -0.0091 -0.0471

Westinghouse Electric -0.1 -0.1 -0.1 -0.1 -0.1

Woolworth Corp. -0.1 -0.1 -0.1 -0.1 -0.1

Table 4: Optimal portfolio weights when the portfolio weights are restricted to be greater

than or equal to -10 percent.
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Relative Risk Errors in Mean CEL

Aversion Size of Errors

k = 0.05 k = 0.10 k = 0.15 k = 0.20

�= 1

Means 0.0303 0.0618 0.0860 0.1095

Covariance Matrix 0.0003 0.0014 0.0034 0.0055

Variances 0.0002 0.0010 0.0024 0.0041

Covariances 0.0001 0.0002 0.0007 0.0015

�= 3

Means 0.0177 0.0573 0.1026 0.1459

Covariance Matrix 0.0009 0.0037 0.0075 0.0119

Variances 0.0003 0.0016 0.0040 0.0068

Covariances 0.0005 0.0021 0.0041 0.0064

�= 5

Means 0.0145 0.0502 0.0984 0.1462

Covariance Matrix 0.0016 0.0066 0.0139 0.0246

Variances 0.0008 0.0035 0.0081 0.0159

Covariances 0.0008 0.0032 0.0068 0.0114

�= 10

Means 0.0103 0.0382 0.0777 0.1231

Covariance Matrix 0.0022 0.0102 0.0263 0.0537

Variances 0.0011 0.0051 0.0142 0.0334

Covariances 0.0011 0.0047 0.0116 0.0221

�= 25

Means 0.0040 0.0180 0.0431 0.0752

Covariance Matrix 0.0048 0.0239 0.0643 0.1393

Variances 0.0025 0.0119 0.0341 0.0804

Covariances 0.0021 0.0108 0.0277 0.0534

Table 5: Average percentage cash equivalent loss when the portfolio weights are restricted to

be non-negative.

19



Relative Risk Errors in Mean CEL

Aversion Size of Errors

k = 0.05 k = 0.10 k = 0.15 k = 0.20

�= 1

Means 0.0714 0.2158 0.3947 0.5732

Covariance Matrix 0.0039 0.0163 0.0400 0.0757

Variances 0.0011 0.0053 0.0154 0.0362

Covariances 0.0027 0.0108 0.0238 0.0409

�= 3

Means 0.0496 0.1770 0.3271 0.4871

Covariance Matrix 0.0136 0.0673 0.1859 0.3878

Variances 0.0034 0.0176 0.0617 0.1782

Covariances 0.0099 0.0434 0.1062 0.1990

�= 5

Means 0.0394 0.1479 0.2859 0.4224

Covariance Matrix 0.0226 0.1172 0.3395 0.7291

Variances 0.0045 0.0223 0.0954 0.3345

Covariances 0.0172 0.0805 0.2027 0.3730

�= 10

Means 0.0275 0.1009 0.2050 0.3201

Covariance Matrix 0.0442 0.2582 0.7869 1.6942

Variances 0.0071 0.0419 0.2279 0.7957

Covariances 0.0347 0.1724 0.4442 0.8134

�= 25

Means 0.0130 0.0507 0.1082 0.1832

Covariance Matrix 0.0987 0.6864 2.1625 4.5316

Variances 0.0138 0.0976 0.5646 2.1785

Covariances 0.0780 0.4373 1.2083 2.1831

Table 6: Average percentage cash equivalent loss when the portfolio weights are restricted to

be greater than or equal to -10 percent.
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Relative Risk Errors in Mean CEL

Large Errors Small Errors

�= 1

Means 0.3582 0.1281

Covariance Matrix 0.0039 0.0008

Variances 0.0019 0.0004

Covariances 0.0019 0.0004

�= 3

Means 0.4034 0.1476

Covariance Matrix 0.0105 0.0031

Variances 0.0033 0.0007

Covariances 0.0078 0.0023

�= 5

Means 0.3831 0.1397

Covariance Matrix 0.0216 0.0058

Variances 0.0069 0.0015

Covariances 0.0156 0.0043

�= 10

Means 0.3321 0.1116

Covariance Matrix 0.0521 0.0115

Variances 0.0110 0.0021

Covariances 0.0391 0.0089

�= 25

Means 0.2416 0.0658

Covariance Matrix 0.1513 0.0279

Variances 0.0267 0.0049

Covariances 0.1130 0.0217

Table 7: Average percentage cash equivalent loss when the portfolio weights are restricted

to be non-negative. Large Errors means that the size of the simulated estimation error for a

specific element (an element in the mean vector or in the covariance matrix) is the posterior

standard deviation of that parameter when estimated with the MCMC method divided by

its assumed true value which is the ordinary sample estimate. Small Errors means that the

corresponding large error has simply been cut in half.
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Relative Risk Errors in Mean CEL

Large Errors Small Errors

�= 1

Means 1.5405 0.6191

Covariance Matrix 0.0689 0.0162

Variances 0.0115 0.0022

Covariances 0.0551 0.0137

�= 3

Means 1.2758 0.5139

Covariance Matrix 0.3803 0.0839

Variances 0.0437 0.0068

Covariances 0.3069 0.0731

�= 5

Means 1.1176 0.4473

Covariance Matrix 0.7093 0.1596

Variances 0.0631 0.0085

Covariances 0.5711 0.1413

�= 10

Means 0.9374 0.3534

Covariance Matrix 1.5261 0.3443

Variances 0.1473 0.0138

Covariances 1.2023 0.3016

�= 25

Means 0.6720 0.2089

Covariance Matrix 3.9741 0.9295

Variances 0.3356 0.0291

Covariances 3.1518 0.8093

Table 8: Average percentage cash equivalent loss when the portfolio weights are restricted

to be greater than or equal to -10 percent. Large Errors means that the size of the simulated

estimation error for a specific element (an element in the mean vector or in the covari-

ance matrix) is the posterior standard deviation of that parameter when estimated with the

MCMC method divided by its assumed true value which is the ordinary sample estimate.

Small Errors means that the corresponding large error has simply been cut in half.
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Relative Risk CEL

Aversion Lower Bound

` = 0 ` = −0.05 ` = −0.1

�= 1 0.0002 0.0006 0.0012

�= 3 0.0014 0.0013 0.0012

�= 5 0.0019 0.0012 0.0009

�= 10 0.0012 0.0015 0.0037

�= 25 0.0030 0.0039 0.0075

Table 9: The percentage cash equivalent loss for the investor when he solves the traditional

MV optimization problem of equation (12) instead of equation (11) with the additional

constraint that wt ≥ `1.

Relative Risk CEL

Aversion Lower Bound

` = 0 ` = −0.05 ` = −0.1

�= 1 0.6842 1.5115 2.1673

�= 3 0.5779 1.1361 1.5096

�= 5 0.5819 1.0578 1.3640

�= 10 0.7608 1.1801 1.3880

�= 25 1.4838 2.0122 2.1468

Table 10: The percentage cash equivalent loss for the investor when he simply invests an

equal amount in each stock instead of solving equation (11) with the additional constraint

that wt ≥ `1.
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Figure 1: Histogram of the estimation error sizes k�it
, i = 1, 2, ..., N , for the elements of

the mean vector, obtained using the MCMC estimation. (The four values of k�it
that are

restricted to be equal to 1 are omitted.)
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Figure 2: Histogram of the estimation error sizes k�iit
, i = 1, 2, ..., N , for the diagonal

elements of the covariance matrix, obtained using the MCMC estimation.
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Figure 3: Histogram of the estimation error sizes k�ijt
, i = 1, 2, ..., N − 1, j = i + 1, i +

2, ..., N , for the off-diagonal elements of the covariance matrix, obtained using the MCMC

estimation.
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D Discussion on the Results in Chopra and Ziemba (1993)

What is the cause of the large difference between the results in this paper and in Chopra and

Ziemba (1993)? To find an explanation I begin by deriving the CE under the assumptions of

Chopra and Ziemba (1993). Using equation (3) and Wt = 1, I get

CE(wt ) = 1 + wT
t
�

t −
a

2
wT

t

�
twt . (17)

This definition of the CE is then plugged into the simulation exercise described in the Section 3,

together with non-negativity constraints on the portfolio weights and their estimation error sizes.

The data set is also changed to exactly match theirs. The result is presented in Table 11. This ex-

ercise shows that the CEL values are still of the same magnitude as in Table 5. Only if the 1-term

in equation (17) is omitted do I get the same results as Chopra and Ziemba (1993) (see Table 12).

When Chopra and Ziemba (1993) calculate the CE, they refer to a paper by Freund (1956), in

which utility is defined over net returns, not next-period wealth. In that case the 1-term would

disappear from equation (17). However, since next-period wealth is the gross return of the port-

folio if Wt = 1, the 1-term should not be left out from the expression for the CE. Consequently,

with the CE defined as the solution to u(CE) = U (wt ) and since w∗T
t
�

t − (a/2)w∗T
t

�
tw

∗

t is in

the order of a few percents, it seems that the numbers in Exhibit 3 of Chopra and Ziemba (1993)

may be almost 100 times too large. Alternatively, if the measure was cash equivalence return,

i.e., u(Wt (1 + rCE )) = U (wt ), the 1-term would disappear. In any case, it is not the use of the

power utility function together with lognormality that cause the difference. When the sensitiv-

ity measure is the CEL, the effect of estimation error is the more or less the same, irrespective

of if we assume negative exponential utility together with jointly normally distributed returns or

power utility together with jointly lognormal returns, and the result that errors in the covariance

matrix are more important when short selling is allowed is still valid. However, the loss under the

certainty equivalence return measure would for even quite small amounts of short selling be very

very large.
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Absolute Risk Errors in Mean CEL

Aversion Size of Errors

k = 0.05 k = 0.10 k = 0.15 k = 0.20

a = 2.6667

Means 0.0089 0.0428 0.0960 0.1507

Covariance Matrix 0.0007 0.0028 0.0062 0.0110

Variances 0.0005 0.0020 0.0044 0.0075

Covariances 0.0002 0.0007 0.0016 0.0030

a = 4

Means 0.0089 0.0391 0.0856 0.1321

Covariance Matrix 0.0012 0.0052 0.0114 0.0198

Variances 0.0009 0.0034 0.0076 0.0135

Covariances 0.0003 0.0016 0.0040 0.0070

a = 8

Means 0.0081 0.0278 0.0581 0.0945

Covariance Matrix 0.0037 0.0124 0.0252 0.0447

Variances 0.0023 0.0088 0.0186 0.0345

Covariances 0.0016 0.0053 0.0101 0.0159

Table 11: Average percentage cash equivalent loss when the data set is the same as in Chopra

and Ziemba (1993), utility is negative exponential, returns are jointly normally distributed,

and the portfolio weights are restricted to be non-negative. The values for the parameter a

are the same as in Chopra and Ziemba (1993).

Absolute Risk Errors in Mean CEL

Aversion Size of Errors

k = 0.05 k = 0.10 k = 0.15 k = 0.20

a = 2.6667

Means 0.5355 2.5638 5.6733 9.1277

Covariance Matrix 0.0399 0.1615 0.3723 0.6787

Variances 0.0308 0.1182 0.2607 0.4680

Covariances 0.0090 0.0409 0.1000 0.1860

a = 4

Means 0.5872 2.6385 5.6308 8.9548

Covariance Matrix 0.0804 0.3457 0.7716 1.3014

Variances 0.0585 0.2267 0.5176 0.9030

Covariances 0.0207 0.1100 0.2638 0.4598

a = 8

Means 0.7843 2.6372 5.5470 9.1764

Covariance Matrix 0.3626 1.2111 2.5020 4.4827

Variances 0.2243 0.8563 1.8427 3.4361

Covariances 0.1553 0.5242 0.9961 1.5948

Table 12: Average percentage ”cash equivalent” loss when the data set is the same as in

Chopra and Ziemba (1993), utility is negative exponential, returns are jointly normally dis-

tributed, the 1-term is omitted from equation (17), and the portfolio weights are restricted

to be non-negative. The values for the parameter a are the same as in Chopra and Ziemba

(1993).
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