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Abstract— A flexible method for six-degree-of-freedom
combined visionfforce control for interaction with a stiff
uncalibrated environment is presented. An edge-based rigid-
body tracker is used in an observer-based controller, and
combined with a six-degree-of-freedom force- or impedance
controller. The effect of error sources such as image space
measurement noise and calibration errors arce considercd.
Finally, the method is validated in simulations and a surface
following experiment using an industrial robot.

I. INTRODUCTION

Even in modern robot control systems, there are difficul-
ties instructing robots how to deal with variations in their
environment. In order to handle large deviations from the
nominal sctup, external scnsing capabilities are crucial. In
particular, force sensing capabilities can be useful when
robots are required to interact with their environment.
There has also been a growing interest in vision based
control, since a lot of information can be obtained from
visual data. With the increasing computational power avail-
able today, there is a potential for robust visuval servoing
systems that operate at camera frame rate. However, the
nature and limited accuracy of vision based control makes
it less suitable for controlling the interaction between a
robot and a potentially stiff environment. Therefore, an
interesting approach is to combine force control and visual
servoing in a multi-sensor control system.

A. Visual control

Position-based visual servoing techniques require some
type of pose estimation, since the feedback law is defined in
the workspace, rather than directly in the image. Accurate
and robust tracking and estimation of the position of rigid
objects using measurements from one or several cameras
has been an active research topic for many years. Many
methods for rigid body tracking work by minimizing some
measure of the image space error as a function of the
unknown position and orientation parameters, using stan-
dard non-linear optimization methods, or Kalman filtering
techniques [1], [2]. In [3] it was suggested that the output
from the pose estimation should be used as input for the
Kalman filter, in order to avoid the high computational
complexity required when the output is a high-dimensional
imagé-space vector. The position and orientation can be
parameterized in different ways, such as roll-pitch-yaw
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angles [1], quaternions or dual quaternions [2]. There are
also various ways to measure the image space error, the
most common measurements are the positions of point
features [1], lines, or point-to-contour errors [4], [5]. The
point-to-contour method has a major advantage in that it
does not require the exact matching of features, only the
error in the normal direction at a number of points on a
contour. This only requires a one-dimensional search for
features {edges).

B. Force and impedance control

Impedance control aims to achieve & certain dynamical
behavior of the end-effector position and orientation in
response to external forces [6]. Using an inner motion
control structure, the motion controller is made to track
the pose of the so called compliant frame, denoted by L.
The impedance relation is a relation on the form
d’x dx
2 g (1)
where x is the relative position of the compliant frame with
respecl to the reference frame I, f is the external force,
and M, D, and K, are positive definite matrices which can
be interpreted as the effective mass, damping and stiffness,
respectively.

M; +D,—+Kx=Ff

C. Previous work

Over the last decade, some work on vision/force control
has been presented. In [7] three different strategies are pre-
sented, traded control, hybrid control, and shared control.
In [8] the use of vision/impedance control is proposed, and
demonstrated in a peg-in-hole inserticn experiment. The
method presented in [9] uses Mason’s task frame and a high
level task description to determine how to use each sensor.
An application of position-based forcefvision control in
flexible assembly is presented in [10], with a demonstration
of the use of a single eye-in-hand camera for mating of
moving parts. Other hybrid and adaptive techniques have
been presented, for instance in {11], [12], [13].

Problem formulation

In this paper we demonstrate how to achieve high
performance six-degree-of-freedom combined vision/force
control for interaction with a stiff uncalibrated environ-
ment. It is shown how a process with linear dynamics in
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task space, together with a standard formulation for an
edge-based rigid body tracker, can be used to design an
observer with lincar error dynamics. The effect of error
sources such as image noise and geometrical calibration
errors are considered and analyzed. Finally, experiments
and simulations are wsed te validate the approach.

II. CONTROLLER FOR FORCE/VISION CONTROL
A. Modeling

We assume that we have M cameras placed in fixed
locations, viewing a target object whose position and
oricntation with respect to some fixed (world) coordinate
system should be estimated. The position and orientation
is parameterized as X, € R" where typically n = 6. The
image data is compressed into a vector ¥ € RY, vsually
the image space coordinates of comers, edges and other
features. If the geometry of the target is known, x, and y
are related by the projection equations of the cameras

y=h(x,) ‘ @)

which is usually a very complex non-linear function. The
most commonly used camera model is the homogeneous
form pinhole camera projection equation, which in our case
becomes

1
y,— = h,‘ (xp} = ZK(.‘TL‘H‘T n‘a(xp)xi (3)
i

where K, is a matrix of intrinsic camera parameters, X; is
the coordinates of the point in an object-centered coordi-
nate system, Z; is the depth of the point in the camera,
and Ty, and T,,(xp) are the homogeneous coordinate
transformation matrices between the target object and the
world coordinate system, and between the world coordinate
system and the camera, respectively. The parameteriza-
tion x, of T,, is the unknown position/orientation to be
estimated. In the following, the camera position T, is
assumed to be known. This is not a restriction in sitvations
where only the relative pose of two tracked objects is to
be controlled, since the position of the world coordinate
systemn is arbitrary. Only the relative positions of the
cameras need to be accurately calibrated, in order to be
able to relate measurements from different cameras,

We assume that the task space dynamics of the motion
controlled manipulator can be modeled as a linear system,
which together with the nonlinear measurement equation
give the Wiener-type model

{ x=Fx1+Gn
y=h{x,)

where u is the input, and x is the state vector typically
consisting of the position x, and velocity of the end-
effector in the task space, and possibly other states de-
pending on the model of the dynamics. For relatively low
bandwidth systems, such as vision based controllers, the
approximation of the complex closed loop robot dynamics
with a linear system of relatively low order is reasonable.
The oulput ¥ in Eq. {4) is the vector of image features

@

obtained from the images, and h is given by Eq. (3), for
cach point.

For the pinhole camera, the task space position x, could
in general be obtained from a pose estimation as

x, =h!{y) (3)

and used in a feedback control law in order to control
the task space position [3]. The pose estimation is typi-
cally performed using some type of iterative least-squares
optimization algorithrn, using the previous position as a
starting point for the iteration. However, near singular
configurations, where the Jacobian of h loses rank, the
pose estimation becomes very inaccurate [5]. An example
of such a situation is when the relative depth of the object
points is small, for instance when viewing a small object
at a long distance from the camera. In such cases, a very
accurate estimation of the depth Z; of each point may be
required in order to maintain stability [14].

B. Vision based observer

By exploiting the dynamic model in Eq. (4), we could
obtain extra robustness and noise suppression. Since almost
all real-time pose estimation algotithms work by updating
an inilial guess or prediction of the state, we use a stale
observer on the form

‘;—’: =Fx+Gu+KJ' (y—h(R)) ©
where J' is the pseudo inverse of the Jacobian J = dh/dx
from the linearization of the measurement equation. '

Eg. (3) can be differentiated with respect to x and
linearized around &, and the equations for multiple feature
peints can be stacked to give the linearized equation

Ay =y —h(®) = J(®){x - &) N

where J is the Jacobian of the projection equation, which
can now be used directly in Eq. (6).

In the case of edge measurements, only the distance be-
tween the predicted and real edges in the normal direction
of the contour is measurable. The corresponding equations
are obtained by projecting the image space errors onto the
normal as in [4], [5], giving us the alternative equations

Ay, = N7 (y— (%) = N"J(®)(x— ) = J (R (x— 1)
(8)
where N is a block diagonal # x »n matrix, where the -
blocks are the edge normal directions at the » different
measurement points along the contour (Fig. 1).

It is clear that in general the accuracy of the estimation
will improve with the number of image measurements N.
If we assume that the errors in the image measurements €,
can be modeled as Gaussian, spatially uncorrelated white
noise with variance o7, a useful approximation of the
effective measurement error covariance & = J'&, can be
obtained as

M
Ele.e]]| = Bl ,(37e,) 1 = 70 To? = (L3713 'o?
=1
)
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Fig. 1. Edge detection in the normal direction of the predicted edges.

where the Jacobian has been partitioned into the individual
Jacobians for M camerasas J' = (37,35 ,--- JL)7. K a large
nomber of edge search points are distributed evenly along
the visible edges of the object, we can approximate Eq. (9)

with
T 2 f & -
Elee] ~ 07 | Y N(®)
i=1

where @®; is a positive semidefinite n x n matrix inde-
pendent of N, which shows that the covariance of the
measurernent error is a direct function of the number, A,
of edge detection points placed in each camera, giving
the number of edge searches required to achieve a given
measurement accuracy [15]. In addition, Eqgs. (9) or (10)
could be used as approximate covariance matrices in a
(time-varying) Kalman filter. By performing the estimation
update in this way, the tracking algorithm can be distributed
over several processors, each responsible for the image
processing and Jacobian creation and inversion for one
camera. The measurements J!.?Ayi are combined in the
central Kalman filter, using the covariance estimates for
each camera.

The dependence of the covariance matrices on the Ja-
cobian, caleulated at %, is clear from Eq. (9). In general,
the right singular vectors V of J= USV7 will indicate
the degrees of freedom with the largest error sensitivity.
At distances significantly larger than the dimension of
the object, this is usvally translation in the Z-direction of
the camcra. By placing multiple camcras at differcnt ori-
entations, considerable improvements in the measurement
covariance can be obtained. This advantage of a multi-
camera setup is illustrated in Fig. 2, where the trace of the
resulting covariance matrix is plotted as a function of the
angle ¢ between the z-axes of three simulated cameras.
The three cameras were placed at a distance 5L from
the object, of dimensiens 0.5L x (.5L x 0.5L, with 200
measured edge locations in each camera. In order to obtain
the same measurement accuracy with a single camera, it
would be necessary to either decrease ¢ by increasing the
image quality and/or resolution, or to use cameras with
longer focal length, thereby reducing the field of view.

(10)

i L
]ioo 1220 140 160 180

“op

Fig. 2. The square root of the trace of Ejg,e]] for three cameras with
normglized intrinsic parameters, placed ar an angle of ¢,

C. Force and impedance control

The force controller implemented is a general impedance
controller with inner motion control [6]). In the con-
troller, the impedance equation is divided into translational
impedance and rotational impedance as

it dt, .
Mr.:TgE +Dy, _dfi +K;,t,, -1 (1
d¢ d¢
M, D AR g, = T (9)(1-5)

a2

where f and 7 is the force and torque exerted by the
environment on the end-effector, £, and <, is an optional
reference forceftorque pair, t, = t; —t, is the relative
translation between the reference frame and the compliant
frame, and ¢, is the Buler XYZ angles extracted from the
rotation matrix R, = RTR,, and T is a Jacobian matrix
relating the angular velocity to the time derivative of ¢,

D. Combined vision/force coniroller

The block diagram for the system under vision/force
control is shown in Fig. 3. The desired trajectory of the
tocl is defined relative to the target object, whose position
is estimated from the image data. The visual feedback con-
troller generates a reference position and velecities in order
to follow the desired trajectory, based on the estimated
relative position of the end-effector and the target. The
force controller updates the position and velocity according
to Eqgs. {(11) and (12), and the new references are sent (o
the built-in robot motion control.

We assume a decoupled dynamic model of a velocity
controlled manipulator

{ x=Fx+Gv,

Ay =h(Cx,C8) ~ J(CR)(Cx—cx) )

where x = [x;",' x};] T is the state vector, v, the commanded
velocity, Ay is the normal distances between the search
points and the image edges, X is the estimated state. and
the system matrices are given by
F_ [0 1 ] ,
0 —-wl

0
G=[wl}, c={ 0. (4
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Fig. 3. Block diagram showing the structure of the combined force/vision
contrel system. Inputs are the reference signals Ax, and [, and the output
disturbances & and g;.

By assumption & = x — X is small, and the approximation
in Eq. (13) holds locally. A state observer on the form of
Eq. (6) is given by

d%

— =F+Gv +KJ Ay =F&+Gv.+KC(x - %)

dr (3)

where the estimation J is assumed to be equal to the
truc image Jacobian J, and the difference AG = G- G
maodels the calibration errors in the geometric mode! of the
manipulator object frame. Using a force controller given by

dx, [0 1 0
S0 i Jss

4
=Fx;+G/S,(f-1) (16)
together with the hybrid viston/force controller
vg=S.>L(x,,—f()+SJr [0 Ix, an

where 8, and S, are the hybrid selecrion marrices, and a
contact model

f=—kCx, (18)

we can write down the equations for the closed loop system
as
X

d|* _ X,
71 =F |%]| +G, [fr] (19
Xy Xs
with
F-GS,L GS, L G0 Sf
F.=] -AGS, L F-KC+AGS, L. AG [0 Sf]
—G,.kaeC 0 F,
(20
and
GS.L 0
G.= |AGSL 0 @n
0 —G,Sf

E. Stabiliry

When AG =0 and J = J, for small % the observer error
is locally described by the stable system % = (F— KC)%. In
the force controlled directions, a stable and well-damped
response in the measured contact force is obtained by
proper tuning of M, and D;. In practice, the possible
choices of M; and I}, are also limited by sensor noise,
unmodeled dynamics, and resonances in the tool and
workpiece.

In the case where the estimation of the Jacobian in
Eq. (15) is not exact, the state observer (15) and the
resulting closed loop system may become unstable. For a
purely kinematic robot model %, = v, with x=x,, F=0
and G =1, local stability of the observer with K=1 is
guaranteed as long as the matrix J¥J(%) is positive definite.
Near singularities, this is satisfied only if a very accurate
estimation J is available, and small errors in the intrinsic
camera parameters or point depth distribution can cause
the system to become unstable [14]. However, an observer
for the dynamical system in Eq. (13) will need additional
constraints on J and J for stability, as stability can nol be
guaranteed even if J7J{%) is positive definite.

F. Implementation

The vision controller and observer are designed as a
stationary Linear Quadratic controller with Kalman filter,
based on discretized version of the dynamic model in
Eq. (13) sampled at 33 ms. The force controller in Eg. {16}
is discretized at a sampling period of 4 ms. The force
controller runs on a Power-PC G4 processor, connected
to the mternal robot motion controller over the PCI bus
[16]. The image processing, and calculation and inversion
of the image Jacobian runs on a separate 2 GHz Pentivm 4,
which communicates with the controller on the Power-PC
using Ethernet,

The tracking algorithm running on the PC is summarized
in Fig. 4. Two objects are tracked, the stationary target
and the manipulator object, assumed to be rigidly attached
to the robot hand. The tracker states are initialized by
manually indicating features and using an approximate
pose estimation algorithm. At each sample time all images
are read from the cameras, the pre-calculated control signal
is sent to the main controller using Ethernet, and measure-
ment vectors and Jacobians are calculated. The total hybrid
control signal is then read back from the Power-PC, and is
used to calculate the state estimate and vision-based part
of the control signal. A fast hidden-line removal technique
based on BSP tree representations of the objects is used to
predict locations of visible edges in the next set of images.

II1. RESULTS
A. Visionfforce controlled surface following

By combining force control with visual feedback as de-
scribed in Section I1-D, we could achieve surface following
that is independent on the workpiece calibration accuracy.
Experiments with this scenaric have been performed using
an ABB Irb2400 industrial robot equipped with a rolling



1) Initialize state and data structures

2) Send pre-computed visual command velocity u, to
the main controller on the Power-PC

Capture images from each camera and perform
image pre-processing

Search for image edges around the predicted edges
of the manipulator and target, and build measure-
ment vectors Ay and Ay,

For each edge measurement, build one row of the
corresponding Jacobian J or J,

Read effective control signal from Power-PC, given
by v, =80, +8; 0 1)x,

Update the state estimate for the manipulator using
the model & := Fd)? 4 dec + K.}TAy

Update estimated target position using one Gauss-
Newton iteration %, := & + J7 Ay,

Predict visible edges during the next sample, by per-
forming hidden line removal based on the predicted
positions X and %;

Calculate x, = &, + Ax,, and pre-calculate the vision
based part of the control signal u, ;= L{x,— &)

11} Wait for next sample time and repeat from Step 2)

3)

4)

5)
6)
7
8)

9N

10)

Fig. 4. Algorithm for tracking and centrol of relative position.

Fig. 6. Measured contact foree during vision guided force control,

grinding tool, in contact with a metal box with dimensions
40 x 40 % 10 cm. Experiments were first performed using
two Sony digital cameras, and later repeated with an extra
camera, using the resource allocation algorithm presented
in [15], see Fig. 5.

The robot makes stable contact with the workpiece
under vision guided impedance control, and when con-
tact has been established the control switches to parallel
vision/force control as described in Section TI-D, while
the tool moves across the surface at around 10 mm/s.
The resvlting force can be seen in Fig. 6. At time r =3
s the force reference was changed from 15 N to 25 N
in the x-direction of the tool. At time f = 17 s the tool
reaches a corner, and the force reference changes to 15
N in the negative y-direction. The combined stiffness of
the robot and surface was approximately 10 kN/m, and the
translational controller parameters were chosen as M =90.1,
D=15and K=0,

position/m

1 i . i i i i i i

0 5 10 15 2 25 30 35 40 45 50
/s
Fig. 7. Estimated tool transfation (solid) and reference (dashed) during

vision guided force control.

0015

0.0

0.005

v/(m/s)

-0.005

0.0t -

-0.01%
0

Fig. 8. Estimated tool veloctty during vision guided force control.

Fig. 7 shows the estimated position of the tool with
respect to the target frame during the same experiment.
Fig. 8 shows the corresponding estimated velocities. A
small control error in the force controlled directions is
caused by the force control action, which makes the
position deviate from the nominal trajectory.

Effect of calibration errors: In the presence of calibra-
tion errors AG in Egs. (19)—(21), the system properties will
change. We assume that the error can be modeled as

AG=G-G=G(1- [RA(S‘S) R,;z 6)] » (22

where the rotation matrix R, {§) corresponds to an orien-
tation error & between the tracked frame and the actuated
frame. In practice, the stability of the systemn is preserved
for all reasonably small &, but the servo properties of
the system may degrade considerably. Particularly, in the
common situation when the position trajectory is a ramp
along the surface, large force errors may occur in the force
controlled directions, due to the high surface stiffness.
We have simulated this effect in a typical scenario,
where a hybrid controller with bandwidth 5 rad/s in the
vision controlled direction has been used, together with
an observer bandwidih of 10 rad/s. The force controller
bandwidth was 15 rad/s, and the surface stiffness was 10
N/mm. Force control is applied in the x-direction, while the
remaining degrees of freedom are vision controlled. The

802



Fig. 5.

calibration error R,(8) is given by a rotation of § = 1°
around the z-axis. X, was given by a constant velocity of
v, = 10 mmy/s in the y-direction. The resulting stationary
force error was 0.18 N, an error that scales approximately
linearly with & and v,.

IV. DISCUSSION

The combination of force- and visual feedback is ideal
for handling environments with geometric uncertainties on
different scales, where the force controller is responsible
for accurate control of the contact force, while the vi-
sual control handles of the overall guidance of the tool.
Experiments show that the systern is able to follow low
specd trajectories with an accuracy of around 1 mm,
while accurately controlling the contact force. The force
control achieves tracking with rise times of under 0.2 s
in stiff environments, so that the force control can quickly
compensate for deviations from the nominal geometry, At
higher speeds along the surface, calibration errors may
cause large errors in the contact force, and the effects of
geometrical deviations in the workpicee will increase.

By tracking multiple objects and controlling the relative
position, we can theoretically achieve surface following
with an accuracy that is independent of the calibration
accuracy of the work cell. The price we pay is the use
of external sensors such as cameras for position control,
The robustness of camera sensing is still problematic,
since phenomena such as occlusions, reflections, poor
lighting or limited fields of view could cause signal loss,
or degradation of measurement accuracy. Robustness in-
creases considerably with the number of cameras [5], and
using multiple low-cost cameras could be a cost effective
solution for tasks in uncalibrated environments.

V. CONCLUSIONS

In this paper we have demonstrated how to achieve high
performance six degree-of-freedom combined vision/force
control for interaction with a stiff uncalibrated environ-
ment. A process with linear dynamics in task space,
is used together with a standard edge-based rigid body
tracker, which gives a locally stable observer with linear
error dynamics. The effect of error sources such as image
measurement noise and geometrical calibration errors are
considered. Finally, experiments and simulations are used
to validate the approach.
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Simultaneous tracking of ool and workpiece, using two Sony DFW-V300 and one Basler A6021c digital cameras.
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