LUND UNIVERSITY

An efficient state recovery attack on X-FCSR-256

Stankovski, Paul; Hell, Martin; Johansson, Thomas

Published in:
Fast Software Encryption/Lecture Notes in Computer Science

DOI:
10.1007/978-3-642-03317-9_2

2009

Link to publication

Citation for published version (APA):

Stankovski, P., Hell, M., & Johansson, T. (2009). An efficient state recovery attack on X-FCSR-256. In O.
Dunkelman (Ed.), Fast Software Encryption/Lecture Notes in Computer Science (Vol. 5665, pp. 23-37).
Springer. https://doi.org/10.1007/978-3-642-03317-9_2

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1007/978-3-642-03317-9_2
https://portal.research.lu.se/en/publications/81bf46fe-2fdd-49c4-a7fc-a55f809b46fa
https://doi.org/10.1007/978-3-642-03317-9_2

An Efficient State Recovery Attack on
X-FCSR-256

Paul Stankovski, Martin Hell, Thomas Johansson

Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

Abstract. We describe a state recovery attack on the X-FCSR-256
stream cipher of total complexity at most 2°7%. This complexity is achiev-
able by requiring 2%%-3 output blocks with an amortized calculation effort
of at most 253 table lookups per output block using no more than 233
table entries of precomputational storage.

Keywords: stream cipher, FCSR, X-FCSR, cryptanalysis, state recov-
ery

1 Introduction

A common building block in stream ciphers is the Linear Feedback Shift
Register (LFSR). The bit sequence produced by an LFSR has several
cryptographically interesting properties, such as long period, low auto-
correlation and balancedness. LFSRs are inherently linear, so additional
building blocks are needed in order to introduce nonlinearity. A Feedback
with Carry Shift Register (FCSR) is an alternative construction, similar
to an LFSR, but with a distinguishing feature, namely that the update of
the register is in itself nonlinear. The idea of using FCSRs to generate se-
quences for cryptographic applications was initially proposed by Klapper
and Goresky in [8].

Recently, we have seen several new constructions based on the con-
cept of FCSRs. The class of F-FCSRs, Filtered FCSRs, was proposed by
Arnault and Berger in [1]. These constructions were cryptanalyzed in [7],
using a weakness in the initialization function. Also a time/memory trade-
off attack was demonstrated in the same paper.

Another similar construction targeting hardware environments is F-
FCSR-H, which was submitted to the eSTREAM project [4]. F-FCSR-H
was later updated to F-FCSR-H v2 because of a weakness demonstrated
in [6]. F-FCSR-H v2 was one of the four ciphers targeting hardware that
were selected for the final portfolio at the end of the eSTREAM project.
Inspired by the success, Arnault, Berger, Lauradoux and Minier presented

a new construction at Indocrypt 2007, now targeting software implemen-
tations. It is named X-FCSR [3|. The main idea was to use two FCSRs
instead of one, and to also include an additional nonlinear extraction
function inspired by the Rijndael round function. Adding this would al-
low more output bits per register update and thus increase throughput
significantly. Two versions, X-FCSR-256 and X-FCSR-128, were defined
producing 256 and 128 bits per register update, respectively. According
to the specification X-FCSR-256 runs at 6.5 cycles/byte and X-FCSR-128
runs at 8.2 cycles/byte. As this is comparable to the fastest known stream
ciphers, it makes them very interesting in software environments. For the
security of X-FCSR-256 and X-FCSR-128 we note that there have been
no published attacks faster than exhaustive key search.

In [5] a new property inside the FCSR was discovered, namely that
the update was sometimes temporarily linear for a number of clocks. This
resulted in a very efficient attack on F-FCSR-H v2 and led to its removal
from the eSTREAM portfolio.

In this paper we present a state recovery attack on X-FCSR-256. We
use the observation in [5]. The fact that two registers are used, together
with the extraction function, makes it impossible to immediately use this
observation to break the cipher. However, several additional non-trivial
observations will allow a successful cryptanalysis. The keystream is pro-
duced using state variables 16 time instances apart. By considering con-
secutive output blocks, and assuming that the update is linear, we are
able to partly remove the dependency of several state variables. A careful
analysis of the extraction function then allows us to treat parts of the
state independently and brute force these parts separately, leading to an
efficient state recovery attack. It is shown that the state can be recovered
using 2493 keystream output blocks and a computational complexity of
283 table lookups per output block. Note that table lookup operations are
much cheaper than testing a single key.

The paper is organized as follows. In Section 2 we give an overview of
the FCSR construction in general and the X-FCSR-256 stream cipher in
particular. In Section 3 we describe the different parts of the attack. Each
part of the attack is described in a separate subsection and in order to sim-
plify the description we will deliberately base the attack on assumptions
and methods that are not optimal for the cryptanalyst. Then, additional
observations and more efficient algorithms are discussed in Section 4, lead-
ing to a more efficient attack. Finally, some concluding remarks are given
in Section 5.

2 Background

This section will review the necessary prerequisites for understanding the
details of the attack. FCSRs are presented separately as they are used
as core components of the X-FCSR-256 stream cipher. The X-FCSR-256
stream cipher itself is outlined in sufficient detail for understanding the
presented attack. For remaining details, the reader is referred to the spec-
ification [3].

2.1 Recalling the FCSR Automaton

An FCSR is a device that computes the binary expansion of a 2-adic
number p/q, where p and ¢ are some integers, with ¢ odd. For simplicity
one may assume that ¢ < 0 < p < |q|. Following the notation from [2],
the size n of the FCSR is the bitlength of |g| less one. In stream ciphers, p
usually depends on the secret key and the IV, and ¢ is a public parameter.
The choice of ¢ induces a number of FCSR properties, the most important
one being that it completely determines the length of the period T of the
keystream.

The FCSR automaton as described in [2] efficiently implements gen-
eration of a 2-adic expansion sequence. It contains two registers, a main
register M and a carries register C'. The main register M contains n
cells. Let M = (mp—1,mp—2,...,m1,mg) and associate M to the integer
M= m -2

Let the binary representation of the positive integer d = (1 + |q|)/2
be given by d = Z?:_ol d; - 2. The carries register contains [active cells,
[+ 1 being the number of nonzero binary digits d; in d. The active carry
cells are the ones in the interval 0 < i < n — 2 for which d; = 1, and d,,_1
must always be set.

Write the carries register as C' = (¢p—2,Cn—3, ..., C1, o) and associate
it to the integer C = Z?:_Og c; - 2°. Note that [of the bits in C are active
and the remaining ones are set to zero.

Representing the integer p as Z;-Zol p; - 2t where p; € {0,1}, the 2-
adic expansion of the number p/q is computed by the automaton given in
Figure 1.

The automaton is referred to as the Galois representation and it is very
similar to the Galois representation of an LFSR. For all defined variables
we also introduce a time index t, letting M (t) and C(t) denote the content
of M and C at time ¢, respectively.

The addition with carry operation, denoted H in Figure 1, has a one
bit memory, the carry. It operates on three inputs in total, two external

i
3
|
—
|
[mE]
¥
bS]
3
|
[V)
11
g
\

,,,,,,, D1 [T 5 Po
dn—l dn—2 dn—3 dl d() I

Fig. 1. Automaton computing the 2-adic expansion of p/q.

inputs and the carry bit. [t outputs the XOR of the external inputs and
sets the new carry value to one if and only if the integer sum of all three
inputs is two or three.

In Figure 2 we specifically illustrate (following [2]) the case ¢ = —347,
which gives us d = 174 = (10101110)pipqary- The X-FCSR family of stream

ci) o 0 cs 0 cs Ca e 0
M(t) Trm me Q ms ma Q ms Q ma Q mi mo -
d 1 0 1 0 1 1 1 0

Fig. 2. Example of an FCSR.

ciphers uses two FCSR automatons at the core of their construction. For
the purposes of this paper it is sufficient to recall the FCSR automaton
as implemented in Figure 1 and Figure 2.

The FCSR automaton has n bits of memory in the main register and
[bits in the carries register for a total of n+1{ bits. If (M, C) is our state,
then many states are equivalent in the sense that starting in equivalent
states will produce the same output. As the period is |q| — 1 ~ 2", the
number of states equivalent to a given state is in the order of 2!,

2.2 Brief Summary of X-FCSR-256 Prerequisites

X-FCSR-256 admits a secret key of 128-bit length and a public initializa-
tion vector (IV) of bitlength ranging from 64 to 128 as input. The core

of the X-FCSR stream cipher consists of two 256-bit FCSRs with main
registers Y and Z which are clocked in opposite directions.

Y (t) = (Ye4255: - - - Yt+2, Yer1,Ye), clocked —
Z(t) = (24—255, - - - » 2t—2, Zt—1, 2t), clocked «—

X-FCSR combines Y and Z to form a 256-bit block X (¢) at each discrete
time instance t according to

X(t)=Y({t)o 2(),
where @ denotes bitwise XOR, so that

X(0) = (y255 © 2255, - - -, Y2 D 2-2,y1 © 2-1, Y0 D 20)
X(1) = (y256 © 2—254, - - -, Y3 D 21, Y2 D 20, Y1 D 21)
X(2) = (y257 © 2-253, - - -, Y4 D 20, Y3 D 21, Y2 © 22)

Further define
W (t) = roundass(X (t)) = mix(sr(sl(X(t))), (1)

where sl, sr and miz mimic the general structure of the AES round func-
tion;

sl is an s-box function applied at byte level,
sr is a row-shifting function operating on bytes,

mix is a column mixing function operating on bytes.

The round functions operate on a 256-bit input, as defined in (1). The
general idea behind the round function operations becomes apparent if
one congiders how the functions operate on the 256-bit input when it is
viewed as a 4 x 8 matrix A at byte level. Let the byte entries of A be
denoted a;; with 0 <7 <3 and 0<j < 7.

The first transformation layer consists of an S-box function sl applied
at byte level. The chosen S-box has a number of attractive properties that
are described in [3].

The second operation shifts the rows of A, and sr is identical to the
row shifting operation of Rijndael. sr shifts (i.e., rotates) each row of A
to the left at byte level, shifting the first, second, third and fourth rows
0, 1, 3 and 4 bytes respectively.

The purpose of the third operation, miz, is to mix the columns of A.
This is also done at byte level according to

o, as,; @ ao,; D ay,;
mizgsg | “0 | = | 0 D ar Daz,
az,; a; @ az;®as;
as,; az,; © azj © ao,;

for every column j of A.
Note that sl, sr and miz are all both invertible and byte oriented.
Finally, the 256 bits of keystream that are output at time ¢ are given by

out(t) = X(t) & W(t — 16). (2)

This last equation introduces a time delay of 16 time units. The first
block of keystream is produced at ¢ = 0 and the key schedule takes care
of defining W (t) for ¢t < 0.

3 Describing the Attack

3.1 1Idea of Attack

A conceptual basis for understanding the attack is obtained by dividing
it into the four parts listed below. Each part has been attributed its own
section.

LFSRization of FCSRs
Combining Output Blocks
Analytical Unwinding
Brute-forcing the State

In Section 3.2 we describe a trick we call “LFSRization of FCSRs”. We
explain how an observation in [5] can be used to allow treating FCSRs
as LFSRs. There is a price to pay for introducing this simplification, of
course, but the penalty is not as severe as one may expect.

We observe that we can combine a number of consecutive output
blocks to effectively remove most of the dependency on X (¢) introduced
in (2). The LFSRization process works in our favor here as it provides a
linear relationship between FCSR variables. Output block combination is
explored in Section 3.3.

Once a suitable combination @) of output blocks is defined, state re-
covery is the next step. This is done in two parts. In Section 3.4 we explain
how to work with () analytically to transform its constituent parts into

something that will get us closer to the state representation. As it turns
out, we can do quite a bit here. Finally, having exhausted the analytical
options available to us, we bring in the computational artillery and do the
remaining job by brute-force. We find that the state can be divided into
several almost independent parts and perform exhaustive search on each
part separately. This is described in Section 3.5.

3.2 LFSRization of FCSRs

As mentioned above, an observation in [5] provides a way of justifying the
validity in treating FCSRs as LFSRs, and does so at a very reasonable
cost. We call this process LFSRization of FCSRs, or simply LFSRization
when there is no confusion as to what is being treated as an LESR. There
are two parts to the process, a flush phase and a linearity phase.

The observation is simply that a zero feedback bit causes the contents
of the carry registers to change in a very predictable way. Adopting a
statistical view and assuming independent events is helpful here. Assuming
a zero feedback bit, carry registers containing zeros will not change, they
will remain zero. The carry registers containing ones are a different matter,
though. A ’one’ bit will change to a zero bit with probability % In essence
this means that one single zero feedback bit will cut the number of ones
in the carry registers roughly in half.

The natural continuation of this observation is that a sufficient amount
of consecutive zero feedback bits will eventually flush the carry registers
so that they contain only zeros. On average, roughly half of the carry
registers contain ones to start with, so an FCSR with N active carry
registers requires roughly lg % + 1 zero feedback bits to flush the ’ones’
away with probability % By expected value we therefore require roughly
lg % + 2 zero feedback bits to flush a register completely. For X-FCSR-
256 we have N = 210, indicating that we need no more than nine zero
feedback bits to flush a register.

After the flush phase, a register is ready to act as an LFSR. In order
to take advantage of this state we need to maintain a linearity phase in
which we keep having zero feedback bits fed for a sufficiently long dura-
tion of time. As we will see from upcoming arguments, we will in principle
require the linearity property for two separate sets of six consecutive zero
feedback bits, with the two sets being sixteen time units apart. We will
need the FCSRs to act as LFSRs during this time, so our base require-
ment consists of two smaller LFSRizations, each requiring roughly 9 + 6
bits for flush and linearity phase respectively. The probability of the two
smaller LEFSRizations occurring in both registers Y and Z simultaneously

is 274(9+6) = 960 In other words, our particular LFSRization condition
appears once in about 2% output blocks.

A real life deviation from the theoretical flush reasoning was noted
in [5]. We cannot flush the carry register entirely as the last active carry
bit will tend to one instead of zero. As further noted in [5], flushing all
but the last carry bit does not cause a problem in practice. Consider
the linearized FCSR in Figure 3, it produces a maximal number of zero
feedback bits for an FCSR of its size.

c@t) o 0 0 0 0 0 1 0
M(t) Q 1 1 Q 1 Q 1 Q 0 0

£

d 1 0 1 0 1 1 1 0

Fig. 3. Maximally linearized FCSR.

In simulations and analytical work we must compensate for this effect,
of course, but the theoretical reasoning to follow remains valid as we
allow ourselves to treat FCSRs as simple LFSRs. The interested reader is
referred to [5] for details on this part.

Furthermore, assumptions of independence are not entirely realistic.
Although the theoretical reasoning above is included mainly for reasons of
completeness, simulations show that we are not far from the truth, effec-
tively providing some degree of validation for the theory. Our simulations
show that we have 2287 for the Y register and 227 for Z for a total of
at most 2°62 expected output blocks for LFSRization in X-FCSR as we
require it.

Our requirements for the basic attack are as follows. At some specific
time instance ¢ we require the carry registers of X and Y to be completely
flushed except for the last bit. Here we also require the tails of the main
registers to contain the bit sequence 111100 as in Figure 3 to guarantee at
least six consecutive zero feedback bits. At ¢ + 16 we require this precise
set-up to appear once again. In each set, the first five zero feedback bits
are needed to ensure that the main registers are linear. The last remaining
zero feedback bit is used only to facilitate equation solving in the state
recovery part, as it guarantees that the last carry bit remains set.

To be fair and accurate we will use the simulation values, which puts
us at

56.2
COSTLFS’Rization <2

for the basic attack. Later, in Section 4.2, we will see how we can reduce
the requirements to only four consecutive zero feedback bits per set for a
complexity of

49.
COSTLFSRization < 2 9 3-

3.3 Combining Output Blocks

The principal reason for combining consecutive output blocks is to obtain
a set of data that is easier to analyze and work with, ultimately lead-
ing to a less complicated way to reconstruct the cipher state. Remember
that we now treat the two FCSRs as LFSRs with the properties given in
Section 3.2.

The main observation is that the modest and regular clocking of the
two main registers provides us with the following equality:

XteXt+)<l]a[X(t+1)>1]eX(t+2) = (%0,0,...,0,%)
(3)

The shifting operations < and > on the left hand side denote shifting
of the corresponding 256-bit block left and right, respectively. From this
point onward we discard bits that fall over the edge of the 256 bit blocks,
and we do so without loss of generality or other such severe penalties. The
right hand side is then the zero vector!, with the possible exception of the
first and last bits which are undetermined (and denoted x). Define

OUT(t) = out(t) @ [out(t + 1) < 1] @ [out(t + 1) > 1] @ out(t +2) (4)

! Recall that we ignore the effects of the last carry bit being one instead of zero, as
explained in Section 3.2. The arguments below are valid as long as adjustments are
made accordingly.

in the corresponding way. We have

OUT(t) =
X Xt+) <@ [X(t+1)>1]dX(t+2)®
W(t—16)® [W(t—15) < 1] @ [W(t—15) > 1] ¢ W(t — 14)

(%,0,0,...,0,%) ®
W(t—16) @ [W(t—15) < 1] & [W(t—15) > 1] e W(t — 14)

W(t—16) @ [W(t—15) < 1] @ [W(t—15) > 1] & W(t — 14),
(5)

where & denotes bitwise equality except for the first and last bit. This
expression allows us to relate keystream bits to bits inside the generator
that are just a few time instances apart. This will turn out to be very
useful when recovering the state of the FCSRs. In order to further unwind
equation (5) we need to take a closer look at the constituent parts of W,
namely the round function operations s, sr and mizx.

3.4 Analytical Unwinding

Reviewing the round function operations from Section 2.2, recall that all
of the operations are invertible and byte oriented. We can also see that
the operations mix, sr and their inverses are linear over @, such that

miz(A @ B) = miz(A) & miz(B),
sr(A® B) = sr(A) @ sr(B).

Obviously, sl does not harbor the linear property. So, in order to un-
wind (5) as much as possible, we would now ideally like to apply miz~*
and sr~! in that order. Let us begin with focusing on the mix operation.

The linearity of mix over @ is the first ingredient we need as it allows
us to apply miz~! to each of the W terms separately. The shifting does
cause us some problems, however, since

miz~t (W(t) < 1) # miz~t (W(t)) < 1.
Therefore mixz =1

that miz—!

cannot be applied directly in this way, but realizing
is a byte-oriented operation, it is clear that the equality holds

if one restricts comparison to every bit position except the first and last
bit of every byte. This is easy to realize if one considers the origin and
destination byte of the six middlemost bits as miz~! is applied. One single
bit shift does not affect the destination byte of these bits. Furthermore,
the peripheral bits that are shifted out of their byte position are mapped
to another peripheral bit position. We therefore have

miz~t (OUT(t)) = sr (sl (X(t —16))) ®
[sr(sl(X(t—15)))<1]a®
[sr(sl(X(t—15)))>1]a
sr(sl(X(t—14))),

~

where = denotes equality with respect to the six middlemost bits of
each byte. The same arguments apply to sr—! so we define Q(t) =
sr~ (miz™! (OUT(t))) to obtain

Q)= sl(X(t—16))® (6)
[sl(X(t—-15))<1]®
[sl(X(t—-15)>1]®

sU(X(t—14)).

Loosely put, we can essentially bypass the effects of the mix and sr op-
erations by ignoring the peripheral bits of each byte.

We have combined consecutive keystream blocks out(t) into @ in hope
of @ being easier to analyze than out(t). Since the ultimate goal is to map
out(t) to Y and Z, we don’t have very far to go now. As our expression for
Q@ involves only X and s, let’s see how and at what cost we can brute-force
Q@ and solve for Y and Z.

3.5 Brute-forcing the State

The brute-forcing part can most easily be understood by focusing on one
specific byte position in Q(t). Given the, say, seventh byte in Q(t¢), how
can we uniquely reconstruct the relevant parts of Y and Z7 Let us first
figure out which bits one needs from Y (¢ — 16) and Z(¢ — 16) in order to
be able to calculate the given byte in Q(¢). Note that this step is possible
only because of the LFSRization described in Section 3.2.

Have another look at the first part of expression (6): sl (X (¢t — 16)).
Since sl is an S-box function that operates on bytes, we need to know the
full corresponding byte from X (¢t — 16). Those eight bits are derived from

Y (t— 16) Y (t— 16) Y (t - 16)
Z(t — 16) Z(t — 16) Z(t — 16)
Y (t—15) Y (t—15)
Z(t —15) Z(t —15)
Y (t—14)
Z(t - 14)
X(t — 16) X(t—15) X(t—14)
Q)

Fig. 4. Bit usage for one byte in Q(t).

eight bits in each of Y and Z, totaling 16 bits, as shown in the left column
of Figure 4 below.

The next parts of (6) involves sl(X (¢ — 15)). The same reasoning
applies here, we need to know the full corresponding byte of X (¢ — 15)
in order to be able to calculate this S-box value. But, since the main
registers act like LFSRs, most of the bits we need from Y and Z for
X (t —15) have already been employed for X (¢t — 16) previously. Since the
two main registers are clocked only one step at each time instance, only
two more bits are needed, one from Y and one from Z. This is illustrated
by the middle column of Figure 4 below. We count 18 bits in Y and Z so
far.

In the same vein, two more bits are needed from Y and Z to calculate
sl(X(t — 14)), illustrated in the remaining part of Figure 4. This brings

the total up to 20 bits. All in all, for one byte position in Q(¢) we have
total bit usage as shown in Figure 5.

Y (t — 16)
Z(t — 16)
Q(t)

Fig. 5. Bit usage in Q(t).

So, 10 bits in Y (¢ — 16) and 10 bits in Z(¢ — 16) is what we require
to be able to calculate one specific byte position in Q(t). By restricting
our attention to the six middlemost bits of each byte in Q we accomplish
two objectives; we effectively reduce the number of unknown bits we are
dealing with in Y and Z, and we simplify the expression for calculating
the byte in @ by safely reducing the effects of the shifting operation.
Specifically, shifting one bit left or right does not bring neighboring bytes
into play.

Focusing on one single byte position gives us six equations, one for
each of the six middlemost bits, and 20 unsolved variables, one for each
bit position in Y and Z. This amounts to an underdetermined system,
of course, but we can easily add more equations by having a look at the
same byte position in Q(t 4+ 1). The six middle bits of that byte give us
six new equations at the cost of introducing a few new variables. To see
how many, we must perform the analysis for Q(¢ + 1) corresponding to
Figure 4. The total bit usage for one byte position in Q(¢t+ 1) in terms of
bits in Y (¢t — 16) and Z(t — 16) is given in Figure 6.

From this we see that the six new equations have the downside of
introducing two new variables. In total we therefore have 12 equations and
22 variables after including Q(¢+1). The system is still underdetermined,
so we can add Q(t + 2) as well. This brings us to 18 equations and 24
variables, and so on. Adding Q(t+3) provides 24 equations for 26 variables,
but at this level we will obtain a resulting system that provides hope of
being fully determined as we may also reduce the number of variables by
reusing already determined values as we scan @ byte by byte from one

Y (t — 16)
Z(t — 16)
Qt+1)

Fig. 6. Bit usage in Q(¢ + 1).

end to the other to solve for bits in Y and Z. The corresponding bit usage
for our four consecutive @’s in terms of bits in Y (¢ — 16) and Z(t — 16) is
illustrated in Figure 7 below.

Y(t — 16)
Z(t — 16)
Q1)

Fig. 7. Total bit usage for Q(i), t <7 <t + 3.

When brute-forcing one byte position in) we essentially solve for 26
bits. If we scan @ from left to right, solving the corresponding system
for each byte, we can reuse quite many of these bits. Instead of solving
for 26, we need only solve for 16 as the remaining 10 have already been
determined. This is illustrated in Figure 8. Reusing bits in this way works
fine for all byte positions except the first one. For the first byte position
we don’t have any prior solution to lean back on, but we can use the
LFSRization assumption. We have already assumed that we have 'zero’
feedback bits coming in and these are valid to use when solving the system.
The system for the first byte contains 21 unsolved variables, so the 24
equations do indeed provide a fully determined system.

Employing bit reuse, the total cost for the brute-forcing part becomes

Y (t — 16)
Z(t — 16)
Q(t)

Fig. 8. Reusing bits when solving for Q(t).

COSThrute— force < 221 +31 x 26 < 222,

This calculation is a little bit idealized, however, since we in practice
do obtain multiple solutions in some cases. These occur sometimes be-
cause the peripheral bits in the system appear in only one or two of the
equations, causing false solutions. These are easy to spot, though, as the
succeeding equation system will generally be unsolvable as we attempt to
reuse 10 of the bits from the false solution. And since the false solutions
do not appear in abundance, we do not compensate for this complexity
wise.

This concludes the basic attack, in which we have assumed availability
of four separate sets of six consecutive zero feedback bits as described in
Section 3.2.

4 Improving the Attack

4.1 Precomputation

We can reduce the workload of the brute-force part almost entirely using
precomputation. A precomputation table for solving the first byte system
would require 22% entries? as we have the 24 bits from the four Q’s as
input to resolve 21 bits. For succeeding byte positions we may limit the
number of @’s to three, which provides 18 equations for the 16 unsolved
variables. Adding the already determined 8 bits to the formula, we can
see that a table with 2'8+8 = 226 entries will suffice. In this context we
consider these tables to be of reasonable size.

2 The storage is trivially realized using on average at most two 4-byte words per entry.

The total amortized cost for attempting to solve for the entire state
is then given by considering the relative frequencies of table lookups per
byte position. Using table lookups as unit, we have

1 1 1
COSTb’r'ute—force <1 + — (]_ + -4+ — +) —

7
P ER Y

using no more than 227 table entries worth of storage.

4.2 Lowering the required keystream

In the basic attack we assumed existence of four separate sets of six con-
secutive zero feedback bits, as explained in Section 3.2. Our next im-
provement is to reduce the required keystream by loosening the above
requirement to only four consecutive zero feedback bits in each set and
increasing the calculation effort correspondingly.

To shine some light upon some of the details involved in this process,
consider equation (5) once more. The purpose of the second of the two
sets of zero feedback bits is to make way for the X’s to cancel out properly
according to equation (3). A ’one’ feedback bit in the second set prohibits
the X’s from canceling out entirely. We can cope with this anomaly by
compensating for such a non-null aggregate of the X’s in equation (5).
The important issue is that we are in control of the resulting changes.

The first set of zero feedback bits govern the composition of the W’s.
With zero feedback bits all the way we obtain a well defined system when
solving for the first byte position in Q. If the fifth feedback bit is a ’one’
the system changes somewhat, but it is still as well defined as before.
Here, too, we are in control of the resulting changes. Our increase in
computational effort consists of constructing and using the corresponding
tables for the resulting systems, so that we can solve the resulting system
regardless of these last bit values.

Without the sixth and last zero feedback bit in each set we would
not know if the last remaining carry bit has ultimately been nullified
or not. Our basic attack assumptions allow us to easily figure out the
value of the last carry bit. We may remove the requirement of the sixth
zero feedback bit in each set if we instead solve all the 16 similar but
essentially different resulting variants of the system. In principle, we can
allow creation of 16 new tables, one for each system, for a total workload
increase factor of 16. Therefore, storage requirements increase to 228 table
entries for the first byte position systems but remain at at most 226 for the
succeeding byte position systems for a total of 22 table entries. Note that

no specialized tables for the last byte position system are needed because
of the symmetry in the systems for the first and last byte positions.

The corresponding arguments are valid when removing the require-
ment of the fifth zero feedback bit. The fifth feedback bit from two of the
sets affect the system of the first byte position for an increase in storage
and computation of a factor of at most 16, again. Storage requirements
increase to 232 table entries for the first byte position systems and remain
at at most 220 for succeeding byte position systems. All in all, we can
solve the entire system for all cases using only

7
COSTbrute—force < 24+4 X 6 < 28.3

table lookups into at most 233 table entries of storage. The interested
reader is referred to [5], in which a similar situation is discussed.

In practice, the COSTLrsRization part tells us how many keystream
blocks we need to analyze before we can find a favorable situation that
allows the brute-force method to go all the way to recovering the state.
The COSTyyte— force Part is payed by performing that many calculations
for each analyzed keystream block. To summarize, we have

COST = COSTLrsRization X COSTorute— force < 2193183 = 2576

using no more than 233 table entries worth of precomputational storage.

5 Concluding remarks

It is clear that the design of the X-FCSR stream cipher family is not
sufficiently secure. Depending on one’s inclination, it is possible to at-
tribute this insufficiency to the modest clocking of the two FCSRs, the
size or number of FCSRs, how they are combined, the complexity of the
round function or some other issue. All of these factors are parts of the
whole, but the key insight, however, is that it is important not to rely on
the non-linear property of FCSRs too heavily. The LFSRization process
shows that it is relatively cheap to linearize FCSRs, the cost being roughly
logarithmic in the size of active carry registers.

More details on the last improvements and a more in-depth exposé of
the effects of the last carry bit on system solving are available in the full
version of this paper. There we also exploit the symmetry situation of re-
quiring several consecutive 'one’ feedback bits for an additional reduction
in required keystream.

Let us end with a note on applicability to X-FCSR-128. The basic
attack presented here works for X-FCSR-128 as well, but the resulting
complexity is much less impressive. The LFSRization process is identi-
cal for both variants of X-FCSR, as is the analytical unwinding. Enter
round functions. The two registers are 256 bits in size in both cases, but
X-FCSR-128 “folds” the contents of the registers to produce a 128-bit re-
sult, implying that more bits are condensed into one byte position of @
as analyzed in Section 3.5. This affects cost in a negative way, actually
making the attack more expensive for X-FCSR-128. We estimate that at
least twelve consecutive QQ’s are needed for a fully determined first byte
system. This leads to a guesstimated expected value of about 27 output
blocks for the attack to come through in the basic setting, each output
block requiring roughly one table lookup into a storage of at most 272
table cells.

References

1. F. Arnault and T. Berger. F-FCSR: Design of a new class of stream ciphers. In
H. Gilbert and H. Handschuh, editors, Fast Software Encryption 2005, volume 3557
of Lecture Notes in Computer Science, pages 83-97. Springer-Verlag, 2005.

2. F. Arnault, T. Berger, and C. Lauradoux. Update on F-FCSR stream ci-
pher. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/025, 2006.
http://www.ecrypt.eu.org/stream.

3. F. Arnault, T. P. Berger, C. Lauradoux, and M. Minier. X-FCSR. - a new software
oriented stream cipher based upon FCSRs. In K. Srinathan, C. Pandu Rangan,
and M. Yung, editors, Progress in Cryptology—INDOCRYPT 2007, volume 4859 of
Lecture Notes in Computer Science, pages 341-350. Springer, 2007.

4. ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932. Avail-
able at hitp://www.ecrypt.eu.org/stream/.

5. M. Hell and T. Johansson. Breaking the F-FCSR-H stream cipher in real time.
ASTACRYPT 2008, To Appear, 2008.

6. E. Jaulmes and F. Muller. Cryptanalysis of ECRYPT candidates F-FCSR-8 and
F-FCSR-H. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/046, 2005.
http://www.ecrypt.eu.org/stream.

7. E. Jaulmes and F. Muller. Cryptanalysis of the F-FCSR stream cipher family.
In B. Preneel and S. Tavares, editors, Selected Areas in Cryptography—SAC 2005,
volume 3897 of Lecture Notes in Computer Science, pages 36-50. Springer-Verlag,
2005.

8. A. Klapper and M. Goresky. 2-adic shift registers. In R.J. Anderson, editor, Fast
Software Encryption’93, volume 809 of Lecture Notes in Computer Science, pages
174-178. Springer-Verlag, 1994.

