Lund University

Phylogenetic analysis of lichen-forming fungi of the family Teloschistaceae (Ascomycota) after nuclear and mitochondrial DNA sequences.

Kondratyuk, Sergey Y.; Fedorenko, Nataliya; Jeong, Min-He; Stenroos, Soili; Kärnefelt, Ingvar; Elix, John A.; Thell, Arne; Hur, Jae-Seoun

Published in:
Molecular phylogeny and recent taxonomy of terrestrial spore plant.

2013

Link to publication

Citation for published version (APA):
Kondratyuk, S. Y., Fedorenko, N., Jeong, M.-H., Stenroos, S., Kärnefelt, I., Elix, J. A., Thell, A., \& Hur, J.-S. (2013). Phylogenetic analysis of lichen-forming fungi of the family Teloschistaceae (Ascomycota) after nuclear and mitochondrial DNA sequences. In S. Kondratyuk (Ed.), Molecular phylogeny and recent taxonomy of terrestrial spore plant. (pp. 7-57). Kyïv : Naukova dumka.

Total number of authors:
8

General rights

Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

 MOJIN:NIMHA (4) OH H HI ICYACHA TAKCOHONIE HABHMHXXIOPOBIX РОСЈИН

НАЦІІОНАЛЬНА
 АКАДЕМЇЯ НАУК УКРАЇНИ
 ЇНСТИТУТ БОТАНІКИ ім. М.Г. ХОЛОДНОГО

NATIONAL ACADEMY OF SCIENCES OF UKRAINE
M.H. KHOLODNY INSTITUTE OF BOTANY

MOLECULAR PHYLOGENY AND RECENT TAXONOMY OF TERRESTRIAL SPOREN PLANTS

«SCIENTIFIC BOOK»
PROJECT

МОЛЕКУЛЯРНА ФІЛОГЕНІЯ I СУЧАСНА ТАКСОНОМІЯ НАЗЕМНИХ СПОРОВИХ РОСЛИН

ПРОЕКТ

«НАУКОВА КНИГА»

Автори

С.Я. Кондратнк, Т.І. Михайънк, Т.М. Ларіснко, О. В. Падсіпа, А.О. Воїцехонич, Н. М. Федоречко, А. Луксиюва, А. Массаиьський, Т. Фрідя, М.-Х. Лжеонг, С. Стнеруи, 1. Чарнефельт, цж:А. цікс, А. Тел, Т.О. Кондратюк, Д.-С. Хо

Вперше в Україні наведено результати молекулпрно-філогенетичного аналізу за лдерною (18 S велика субодиниця, ділянка $\mathrm{ITS} 1 / \mathrm{TTS} 2$), мітохондріальною (12 S та 23 S малі субодиниші) та хлоропластною ДНК, які порівнено із сучасними відомостями шодо морфо-лого-анатомічних й біохімічних особливостей лишайників, симбіотичних і наземних зелених водоростей, а також мікроскопічних міцеліальних гриб́ів. Уточнено описи морфологічних, анатомічних і біохімічних особливостей таксонів лишайників, симбіотичних і наземних водоростей, статус яких зазнав суттєвої ревізії у зв’язку з отриманням результатів молекулярно-філогенетичного аналізу досліджених груп наземних спорових рослин. Вперше подано таблиші для визначення опрашьованих таксонів лишайників, симбіотичних і наземних водоростей, статус і об́яг яких уточнено за традиційними морфоло-го-анатомічними ознаками.

Для ботаніків, мікологів, фікологів, екологів, викладачів і студентів біологічних, аграрних і лісівничих факультетів виших навчальних закладів, а також длл прашівників управлінь охорони природи.

Results of molecular phylogenetic analysis after nuclear (ISS LSU, ITSI/ITS2), mitochondrial (12 S and 23 S SSU) and chloroplast DNA of lichen-forming fungi, symbiotic and terrestrial algae as well as microscopic tilamentous fungi obtained for the tirst time in Ukraine are compared with recent data on morphology, anatomy and biochemical characters. Taxonomical treatment of several groups of lichen-forming fungi, i.e. families Teloschistaceae and Physciaceae as well as symbiotic algae of the Trebouxiophyceae and terrestrial algae of the Myrmeciaceae and Klebsormidiaceae as well as original keys for identitication of sporen plants mentioned are provided.

For botanists, mycologists, phycologists, ecologists, tutors and students of biological, agricultural and forestry faculties of universities.

Відповідальний редактор С.Я. Кондраткк

Репензенти
д-р біол. наук, проф. /І.М. Наренко, д-р біол. наук. проф. О.Є. Ходосониея

Рекомендовано до друку вченок радок
Iнспитуту ботаніки ін. М.І: Ховодного IIAII України

(nротокяд No 1.3 вid 21.06 .2011 р.)

Видания зоіиснено за держаєним замовленням на випуск видавничої продукцій

Науково-видавничий відділ медико-біологічної, хімічної та геологічної літератури Редактор O.I. Ка:аииинова
 А. О. Войехович, ІІ.М. Фецоренко, А. Јукенюова, А. Массаиьський, Т. Фрі, М. М. Х. Джсон', С. (1енруи,
 2013

ISBN 978-966-00-1332-2
 201.3

ПЕРЕДМОВА

Молекулярна філогеніл окремих груп спорових рослин отримала особливо інтенсивний розвиток із середини 1990 -х років. На жаль, в Україні відповідні дослідження здійснюють лише поодинокі дослідники і на сьогодні відчувається повна відсутність україномовної літератури із зазначеного питання.

Незважаючи на те шо розвиток молекулярної філогенії наземних спорових рослин України (включаючи лишайники, симбіотичні та наземні водорості, міцеліальні гриби тошо) до останнього часу не мав системного та планомірного характеру, метою цього видання є спроба узагальнення робіт співробітників відділу ліхенології та бріології Їнституту ботаніки ім. М.Г. Холодного НАН України шодо молекулярної філогенії лишайників, симбіотичних і наземних водоростей, а також повного опису всіх етапів роботи шодо зазначених досліджень.

Отримання наведених у книзі результатів було б неможливе без залучення широкого кола фахівшів з інших установ, зокрема закордонних лабораторій, які є співавторами наведених результатів. Як правило, базою проведення даних досліджень слугували саме закордонні лабораторіі, в яких молекулярно-філогенетичні дослідження є звичайною практикою вже значний проміжок часу.

У монографії описано результати молекулярно-філогенетичних лосліджень різних груп спорових рослин, а також висвітлено у доступній формі всі етапи екстрагування, ампліфікацї, секвенування ДНК. Розглянуто особливості молекулярно-філогенетичного й традиційного морфолого-анатомічного вивчення лишайників родин телосхістових, фісцієвих і калішієвих лишайників, наземних і симбіотичних водоростей класу требуксієфісцієвих й порядку клебсормідієвих, а також мікроскопічних мішеліальних грибів родів Cladosporùm та Exophiala. Невеликий розділ присвячено загальним особливостям використання різних генетичних маркерів у молекулярно-філогенетичних дослідженнях водоростей, а також проблемі впровадження бар-коду для різних організмів.

Сподіваємося, що це видання стане у пригоді українським ученим, які працюють у галузі таксономії спорових рослин і грибів й шікавляться новітніми метолами та результатами досліджень, шо активно проводяться у світі.

Деякі етапи досліджень були підтримані Державним комітетом з науки, інновацій та інформатизації України (№ М 317-2011-409, М 111-2012-409), Міжнародним фондом INTAS (гранти № 05-109-5431; 05-109-4864; 06-1000014-6216), Німецьким фондом фундаментальних досліджень (DEF).

Автори висловлюють ширу вдячність колегам, які допомогли у освоєнні методів молекулярної філогенії та обговоренні отриманих результатів: проф. X. Майгоферу і проф. М. Грубе (Австрія), проф. Ї. Чарнефельту та д-ру А. Тель (Швеція), д-ру С. Стенруш і д-ру Ф. Хогнаба (Фінляндія), проф. У. Карстем, д-ру Т. Прошольд і д-ру А. Бек (Німеччина).

Автори третього розділу висловлюють вдячність М.В. Пирогову (Львів) за ініціювання проведення вивчення молекулярних ознак представників роду Cladosporium і М.А. Березовській за надання зразків культури водоростей Chbrococum vacuolatum. А. Войцехович вдячна проф. Т. Фрідлу (Німеччина) за надання автентичних штамів родів Trebouxia та Asterochloris і також канд. біол. наук О.Б. Блюму за можливість дослідження пігментів водоростей на базі його відділу.

3 питань подальшого обговорення описаних результатів, а також проведення молекуляр-но-філогенетичних досліджень різних груп спорових рослин запрошуємо зацікавленого читача звертатися безпосередньо до авторів видання за адресою: віділ ліхенології та бріології, Іेститут ботаніки ім. М.Г. Холодного НАН України, вул. Терещенківська 2,01601 м. Київ.

СПИСОК ПРИЙНЯТИХ СКОРОЧЕНЬ

MБКН	- Міжнародний ботанічний кодекс номенктатури (сучасна назва - Номенклатурний кодекс рослин, грибів та водоростей)
Пі-теорія	теорія пізніх інтронів
ПЛР	олімеразно-ланиюгова реакці
Pİ-теоріл	теорія ранніх інтронів
ETS	- зовнішній спейсер, що зчитується (external tran scribed spacer)
ITS	- внутрішній спейсер, шо зчитується (internal transcribed spacer)
L	велика субодиниця рДНК (large subunit)
mtSSU	ма.ла субодиницл мітохондріа.льної рДНК
$r b c \mathrm{~L}$	- ветика субодиницл рибутьозо-1,5-біфосфат карбоксилази/оксигенази (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit)
SSU	- ма.та субодиниця рДНК (small subunit)

МОЛЕКУЛЯРНА ФІЛОГЕНІЯ I ТАКСОНОМІЯ ГРИБІВ

ро3діл
 ФІЛОГЕНЕТИЧНИЙ АНАЛІЗ ЛИШАЙНИКІВ РОДИНИ ТЕЛОСХІСТОВИХ - TELOSCHISTACEAE ЗА ПОСЛІДОВНОСТЯМИ ОКРЕМИХ ГЕНІВ ЯДЕРНОЇ ТА МІТОХОНДРІАЛЬНОЇ ДНК

Лишайники (біотогічна група грибів, шо утворюють лишайникові симбіотичні асоціації) на цей час не вивчені повністю. Про це свідчить один з останніх проектів щодо опублікування 100 нових для науки видів лишайників з різних екосистем земної кулі, у пізготовші якого брали участь 120 достідників (Lumbsch et al., 2011).

Сучасний етап розвитку таксономії лишайників пов'язаний з широким застосуванням молекулярної фітогенії. Однак сктадність у таксономії лишайників зумовтена тим, що вони включені до системи грибів лише в останні 30 років і їх класифікашійна система зазнає суттєвих змін кожні $5-10$ років. До часів K. Ліннея лишайники розглядали як окрему групу рос.тин разом з мохоподібними. К. Лінней запропонував відносити їх до водоростей, вважаючи лишайники статевою формою водоростей. Цей погляд К. Ліннея панував до пругої по.ловини XIX ст., незважаючи на те, шо Е. Ахаріус, учень К. Ліннея, засновник окремої науки ліхенології, запропонував виділяти окремий віддіт Lichenophyta ще на початку XIX ст. У 1867 р. німецький дослідник С. Швенденер відкрив «подвійну природу» лишайників, тобто існування як мінімум двох окремих компонентів - грибного (мікобіонта) та водорості (фотобіонта) лишайникової асоціації. Однак лише через понад 100 років (у 1980 -ті) .лишайники були віднесені до системи грибів. За останні роки система грибів зазнає суттєвих змін на рівні вищих таксонів (підвідділів, класів, підкласів тощо). Тому не дивно, шо положення лишайників у цій системі суттєво змінюється кожні 5-10 років.

Українські дос.лідники О.Б. Блюм і Г.П. Кашеваров є визнаними засновниками молекулярної фітогенії лишайників. Їх стаття про використання молекулярної філогенії у таксономії лишайників родини умбілікарієвих, що опублікована у Доповідях АН УРСР (Blum, Kashevarov, 1986), є визнаною піонерною роботою в цьому напрямку (див., наприктад: de Priest, 2004). 3 початку 1990-х років особливого розвитку набув фі.огенетичний аналіз за результатами секвенування ядерної та мітохондріальної ДНК. При цьому з середини $1990-$ х до 2011 р. було запропоновано декілька поко.лінь обладнання для секвенування окремих генів ДНК чи PHK (Park et al., 2011). У 2011 р. уперше проведено секвенування повного геному лишайнику Cladonia metacorallifera, шо знаменує початок нового напряму -

молекулярної філогенії за результатами секвенування повного геному цієї групи грибів. Однак для здешевтення та широкого використання молекулярної філогенії тишайників за резутьтатами секвенування повного геному на порядку денному є вирішення значної кількості методичних завдань (Park et al., 2011).

У пода.эьшому зупинимось на результатах молеку.лярної фі.七огенії лишайників за резутьтатами секвенування окремих генів ядерної та мітохондріатьної ДНК. У цілому в Генобанку наведено відомості про результати секвенування великої кіъькості нуклеотидних пос.эідовностей. Серед останніх найчастіше використовують гени великої субодиниші (18 S LSU), ділянки ITS1/ITS2 (шо містить послідовності генів ITSI, неве.ликої ділянки 5,8S та гена ITS2), малої субодиниці (28 S SSU) ядерної ДНК. Для окремих груп лишайників отримані дані щодо послідовностей генів 13 S та 23 S малої субодиниці мітохондріальної (mtSSU) ДНК, а також генів бета-тубуліну і низки інших генів, шо відповідають за синтез окремих бі.эків, ферментів тощо.

Приктадом успішного використання філогенетичного аналізу за результатами секвенування 3-6 й більше генів для таксономії .тишайників є роботи $з$ таксономіі лишайників родини Parmeliaceae, однієї з найкраше вивчених груп лишайників (Miadlikowska et al., 2006; Divakar et al., 2010). Такі дослідження є результатом об’єднання зусиль великих колективів, інко. $и$ до 20-40 співавторів.

Результати секвенування цілих груп генів, шо відповідають за синтез певних лишайникових речовин (6 M SAS type polyketide synthase), дали змогу розшифрувати їх і перенести до інших грибних організмів, зокрема до Aspergillus nidulans, шо легко культивується в умовах культури, для подальшого синтезу та індустріального виробництва лишайникових речовин (Kim , 2011).

1.1. КСАНТОРІОЇДНІ ЛИШАЙНИКИ

1.1.1. Молекулярні дослідження і стан таксономії лишайників до наших досліджень

У ході наших досліджень було вперше спеціально проаналізовано велику кількість таксонів ксанторіоїдних .тишайників, хоча представники родів або представники деяких груп із родів Xanthoria, Caloplaca та Xanthomendoza вже проанатізовано попередніми достідниками, зокрема: Xanthoria та Xanthomendoza (Sochting et al., 2002), Caloplaca та Xanthoria (Sochting, Lutzoni, 2003). Слід наголосити, що значна кітькість таксонів представників родини телосхістових (понад 50 таксонів у філогенетичному дереві) були опуб.эковані в останні 5 років дослідниками трьох різних ліхенологічних шкіл, зокрема швейцарської (Echenberger, 2007), американської (Gaya et al., 2008) та українсько-скандинавської (Fedorenko et al., 2009, 2012; Кондратюк и др., 2013). Однак тише в роботах останньої школи молекулярно-фітогенетичні дані були використані з таксономічною метою, оскільки було виявлено високий рівень коре.эяшії сучасних молеку.лярно-філогенетичних даних і даних традишійних морфолого-анатомічних та біохімічних даних

1.1. Ксанторіоїдні лишайники

щодо ксанторіоїдних лишайників. На відміну від наших робіт (Fedorenko et al., 2009, 2012; Кондратюк и др., 2013), дос.тідники швейцарської та американської шкіл (Echenberger, 2007; Gaya et al., 2008) обмежувалися лише висновком про те, що роди лишайників Caloplaca, Fulgensia та Xanthoria є поліфілетичними. При шьому автори вбача.ли за можтиве розв'язання проблеми їх ктасифікації лише у переміщенні «лінії розмежування» вказаних родів у бік одного чи іншого роду (Caloplaca чи Fulgensia або Xanthoria чи Caloplaca).

Під час популяційних досліджень використано відомості шодо молекулярної будови окремих видів ксанторіоїнни лишайників: Rusavskia elegans, Xanthoria parietina, X. calcicola, X. ectaneoides, X. capensis i X. resendei (Dyer, Murtagh, 2001; Honegger et al., 2004a,b; Lindblom, Ekman, 2006, 2007) або невеликих груп видів - Oxneria ulophyllodes, Rusavskia elegans, Xanthoria candelaria та X. parietina (Franc, Kärnefelt, 1998; Arup, Grube, 1999; Gaya et al., 2003; Sochting, Lutzoni, 2003; Sochting et al., 2002; Lindblom, Ekman, 2005). Фотобіонти ксанторіоїдних лишайників, а також молекулярні маркери, важливі для екології чи фізіо.огії цієї групи лишайників, знаходимо в публікаціях (Martin, Winka, 2000; Scherrer et al., 2000, 2005; Beck et al., 2002; Martin et al., 2003; Scherrer, Honegger, 2003; Kahng et al., 2004).

Положення таких великих родів, як Caloplaca, Fulgensia, Teloschistes i Xanthoria, показано у декітькох пубтікаціях з використанням мотекулярнофіогенетичного аналізу (Arup, Grube, 1999; Gaya et al., 2003; Sochting, Lutzoni, 2003). Останніми роботами Е. Гая з колегами (Gaya et al., 2008) виявтено, шо ксанторіоїдні .тишайники утворюють монофілетичну гі.тку, включаючи деякі види родів Caloplaca та Fulgensia.

Стан таксономії ксанторіоїних. Представники родини телосхістових характеризуються наявністю унікатьного так званого Teloschistes-типу сумки, біполярних спор та антрахінонів у коровому та епігіменіатьному шарах. До середини 1990 -х років традиційно до сктаду родини відносили найбільші три роди. Так, рід Teloschistes Norman включав до 30 видів кущистих лишайників, рід Xanthoria (Fr.) Th. Fr. охоплював понад 20 видів листуватих лишайників, найбільший більш-менш гомогенний рід Caloplaca Th. Fr. включав понад 500 видів накипних лишайників. Разом 3 тим було запропоновано декілька менших родів, зокрема: Fulgensia A. Massal. et De Not., шо вкюючав до 15 видів, та 5 монофілетичних родів: Apatoplaca Poelt et Наfellner, Cephalophysis (Hertel) Kilias, Ioplaca Poelt, Seirophora Poelt, XanthodactyIon P.A. Duvign. i Xanthopeltis R. Sant. (Kärnefelt, 1989).

Ксанторіоідні лишайники є визнаною поліфілетичною групою лишайників у родині телосхістових Teloschistaceae. Різні автори виділяли декілька «морфо.огічних» підгруп, серед яких деякі були описані як окремі роди лишайників в останні роки, зокрема: Josefpoeltia S.Y. Kondr. et Kärnefelt, Oxneria S.Y. Kondr. et Kärnefelt, Rusavskia S.Y. Kondr. et Kärnetelt, Xanthodactylon P.A. Duvign. and Xanthomendoza S.Y. Kondr. et Kärnefelt (Kondratyuk, Kärnefelt, 1997, 2003).

Фі.логенетичне по.оження лишайників ми досліджували за допомогою фітогенетичного анатізу, що трунтувався, у свою чергу, на резутьтатах вивчення послідовностей ядерної та мітохондріальної ДНК. Висновок шодо

таксономічного статусу окремих груп зроблено за результатами порівнлльного аналізу фітогенетичного і традиційного морфотого-анатомічного вивчення вказаних лишайників.

Для певної частини таксонів у процесі наших дос.ліджень були запропоновані нові назви, такі як Gallowayella (для групи видів Xanthomendoza gallowayi), Massjukiella (для групи видів Xanthoria candelaria), Honeggeria (дтя групи видів Xanthomendoza rosmariae) тощо. У ході виктадення історичного огляду за хронологією та висвітлення власних результатів достіджень нові назви родових груп наведено за датою їх опублікування.

Групи Xanthoria candelaria та X. parietina. До останнього часу в сктаді роду Xanthoria виді.ляли .эише 2 групи видів: Xanthoria parietina, що характеризується широкими плескуватими й тонкими лопатями, які прикріптюються до субстрату короткими, але широкими гаптерами та широкими яйшеподібними конідіями; X. elegans - з вузькими випуклими лопатями, у яких відсутні будь-які спеціалізовані органи прикріптення до субстрату, та паличкоподібними конідіями.

Група X. parietina значною мірою перекривається групою X. candelaria, за термінологією Й. Пельта та П. Петучніга (Poelt, Petutschnig 1992a,b) (іншими словами, від X. parietina-групи не відмежовували останню). Типові види обох груп, зокрема X. parietina (L.) Beltr. і X. candelaria (L.) Th. Fr., дуже поширені, тоді як велика кітькість видів цих груп відрізняється значно вужчим поширенням. Так, X. africana Almborn зростає .иише в Тропічній Африші, X. mediterranea Giralt, Nimis et Poelt - .лише у середземноморській частині Європи, Азії та Північної Африки, X. coomae S.Y. Kondr. et Kärnefelt - ендемічний вид Австралії.

Pid Rusavskia. Порівнлно недавно ми запропонува.ли віднести види групи X. elegans до роду Rusavskia (Kondratyuk, Kärnefelt, 2003). Види цього роду, наприклад R. elegans (Link) S.Y. Kondr. et Kärnefelt та R. sorediata (Vain.) S.Y. Kondr. et Kärnefelt, широко поширені в обох півкулях земної кулі, проте є й вузько поширені види. Так, R. mandschurica (Zahlbr.) S.Y. Kondr. et Kärnefelt зростає лише у Східній Азії, R. papillifera (Vain.) S.Y. Kondr. et Kärnefelt i R. domogledensis (Vězda) S.Y. Kondr. et Kärnefelt - у ПівденноСхідній Європі, R. digitata (S.Y. Kondr.) S.Y. Kondr. et Kärnefelt та R. hafelIneri (S.Y. Kondr. et Kämefelt) S.Y. Kondr. et Kärnefelt є ендемічними видами відповідно Криму та Аъьп.

Група Oxneria-Xanthomendoza. Відповідає групі Xanthoria ulophyllodes, шо бута введена Й. Пельтом і П. Петучнігом (Poelt, Petutschnig, 1992a,b), poбота яких ініціювала подальше спеціальне вивчення цієї мало вивченої до того часу групи (Kondratyuk, Poelt, 1997; Kondratyuk, Kärnefelt, 1997a,b; 2003; Kondratyuk, Zelenko, 2002; Lindblom 2006; Kondratyuk et al., 2010). y результаті було показано, що вона включає два різні роди Oxneria та Xanthomendoza, які характеризуються наявністю ризин, па.личкоподібних конідій та високим вмістом парієтину, телосхістину чи фалацинату. Як і в попередніх групах, декі.七ька видів дуже поширені в Го.тарктиші, зокрема: Oxneria ulophyllodes (Räsänen) S.Y. Kondr. et Kärnefelt, O. fallax (Hepp ex Arnold) S.Y. Kondr. et Kärnefelt, Xanthomendoza poeltii (S.Y. Kondr. et Kärnefelt) S.Y. Kondr. et Kärnefelt и X. weberi (S.Y. Kondr. et Kämefelt) L. Lindblom.

1.1. Ксанторіоїдні лишайники

Водночас досить вузько поширені види Oxneria alfredii (S.Y. Kondr. et Poelt) S.Y. Kondr. et Kärnefelt - зростає лише на сході Азіатського континенту; Xanthomendoza galericulata L. Lindblom, X. montana L. Lindblom, X. wetmorei S.Y. Kondr. et Kärnefelt та X. tibellii S.Y. Kondr. et Kärnefelt - лише в Північній Америці; X. sogdiana S.Y. Kondr. et Kudratov - ендемічний вид Центратьної Азії, X. hermonii S.Y. Kondr. - відомий лише з Передньої (Малої) Азї.

Pid Xanthodactylon s. I. Група спочатку була представтена .тише одним видом роду Xanthodactylon Duvign., шо відомий .эише 3 Південної Африки (Duvugneaud, 1941). Цей рід доповнено трьома видами (Kondratyuk et al., 2008; Fedorenko et al., 2009). Група характеризується пальцеподібними або подешієподібними, порожнистими всередині лопатями, наявністю коротеньких розгалужених ризин уздовж країв .опатинок, па.ичкоподібними конідіями та унікальним типом спор з цибулиноподібними клітинами, що утворюються внас.лідок одночасного потовшення клітинної оболонки в екваторіальній частині спори, а також біля полюсів (Kondratyuk et al., 2008).

Група Xanthoria elixii. Морфологічно досить гетерогенна, спільною рисою видів є наявність дуже коротких, роздвоєних на кіншях ризин, шо подібні до ризин групи Xanthodactylon flammeum. Містить широко поширений у Південній півкулі вид X. ligulata (Körb.) P. James, а також ендемічні австра.лійські (Xanthoria elixii S.Y. Kondr. et Kärnefelt, X. streimannii S.Y. Kondr. et Kärnefelt i X. filsonii Elix) та африканські (Xanthoria dissectula S.Y. Kondr. et Kärnefelt) види.

Pid Josefpoeltia. Характеризується унікальним типом анатомії слані (обидва корові шари слані є псевдопрозоплектенхімними), рясною сіточкою дуже тонких ризин, а також веретеноподібними (виразно потовщеними біля екватора і із загостреними кінцями) конідіями. Рід включає 2 види, 3 яких J. parva (Räsänen) Frödćn et L. Lindblom до останнього часу відомий лише з Південної Америки під назвами Xanthoria parva Räsänen i Josefpoeltia boliviensis S.Y. Kondr. et Kärnefelt, за нашими даними, також зростає на о-ві Мадагаскар. Їнший вид J. sorediosa S.Y. Kondr. et Kärnefelt поширений лише в Південній Америці.

Pid Seirophora. Включає широко поширені у Північній півкулі види, шо нешодавно були виключені з роду Teloschistes за виразною лопатевою сланню, у якої відсутній нижній коровий шар, та за наявністю патичкоподібних конідій, до нового роду Xanthoanaptychia S.Y. Kondr. et Kärnefelt (Kondratyuk, Kärnefelt, 2003). Однак вже піс.яя опублікування цього роду Frödćn i Lassen (2004) проведено .тектотипіфікацію роду Seirophora Poelt таким чином, шо вказаний рід Пільта має пріоритет для запропонованої нами назви Xanthoanaptychia.

Види $з$ невизначеним положенням. Види Xanthoria inflata Eichenberger, Aptroot et Honegger, X. karrooensis S.Y. Kondr. et Kärnefelt i X. bonae-spei S.Y. Kondr. et Kärnefelt, як зазначено у відповідних публікаціях Kärnefelt et al., 2002; Kondratyuk et al., 2004), мають досить унікатьні комбінації ознак, морфолого-анатомічних і біохімічних. Однак вони не віднесені до жодної з відомих до останнього часу груп у родині телосхістових.

1.1.2. Матеріали і методи

Відбір зразків. 3 метою оцінки філогенетичного положення всіх груп ксанторіоїдних лишайників до філогенетичного аналізу зроблено спроби включити всі можтиві групи родини Teloschistaceae. Дтя цього використовували ко.екції не старіші за 10 років із таких гербаріїв світу: C, CANL, CHR, H, HBG, LD, KW i M. Для порівняння (як outgroup) були взяті представники родини Physciaceae, шо за останніми даними є найближчою сестринською групою до родини Teloschistaceae (Miadlikowska et al., 2006) (див. також розд. 2, рис. 2.6).

Дані щодо морфологічних особтивостей наведених .тишайників трунтуються переважно на вивченні наших власних зборів, шо були зібрані під час декі..ькох експедицій до різних регіонів (Європа, Африка, Австралія, Нова Зеландія). Дтя анатомічних достіджень використовувати зрізи, підготовтені вручну або за допомогою заморожувального мікротома Kryomat, Leitz freezing microtome. При шьому зрізи вивча.ли у воді та метиленовій синші (lactophenol cottonblue) під мікроскопом Zeiss Axioscope.

Загатом проанатізовано 201 зразок .тишайників, шо належить до 45 видів, з яких дาя 33 видів відомості шодо послідовностей ДНК бу.ии отримані вперше. Дані шодо послідовностей деяких видів були взяті з генобанку дтя отримання повнішої картини резу.тьтатів філогенетичного анатізу.

Для проведення молекулярно-філогенетичних дослідкень лишайників родини телосхістових особливо важ.ливим є залучення для екстракиії ДНК свіжезібраних зразків лишайників, зокрема зразків, шо бути зібрані впродовж поточного року. Тому в ході підготовки цього видання в першу чергу бу.七о переглянуто найсвіжіші колекшії лишайників, шо зберігаються в ліхенологічному гербарії ІІнституту ботаніки ім. М.Г. Холодного НАН України (KW-L), а також у 2011 р. - усі зразки, які зберігаються у гербарії Корейського інституту вивчення . лишайників Сунчонського нашіонального університету (KoLRI). Крім того, в 2011 р. спітьно з корейською стороною (зокрема проф. Дж.-С. Хо, директором Корейського інституту вивчення лишайників Сунчонського націона.эьного університету) була проведена експедиція для збору ліхенологічного матеріалу в НПП «Гуцултщина» Косівського р-ну Івано-Франківської об.л. Загалом було зібрано понад 200 зразків .эишайників, більша частина яких зберігається в ліхено.эогічному гербарії KW-L. Дублікати окремих видів також представлені в гербарії KoLRI.

Для подальшого молеку.ляно-філогенетичного вивчення представників роду калоплака також були використані зразки з колекції С.Я. Кондратюка: з ІІрану - зібрана у вересні 2011 р. у провінції Есфахан на території природного парку Каркас; з Кореї, район гір Джірі (Jiti Mts.) - вересніжовтні 2011 р.; з Росії - Да.екий Схід (Приморський край) - у вересні 2011 р. Крім того, для молекутярних досліджень бути використані зразки з колекції лишайників, зібраної корейськими колегами в Румунії у жовтні 2011 p.

У ліхенологічному гербарії KW-L серед наявних колекцій особливо детально були переглянуті збори С.Я. Кондратюка з Австралії, Канарських

1.1. Ксанторіоӥдні лишайники

островів (Їспанія) та різних регіонів України за зборами М.В. Пирогова, О.Є. Ходосовцева та інших ко.текторів. У гербарії KoLRI були переглянуті всі наявні колекції з Кореї, Китаю, арктичних та антарктичних районів, а також декітькох країн Східної Азії та Європи (Угоршини, Боттарії та Румуніі).

Методи морфолого-анатомічних і б́іохімічних досліджень лишайників. у ході достіджень були використані загальноприйняті методи збору та камеральної обробки лишайників, вивчення морфолого-анатомічних особливостей, а також методи тонкошарової хроматографії і методи високоефективної рідинної хроматографії (BEPX). Дтя вивчення біохімічних особливостей лишайників методом тонкошарової хроматографії використовува.ли третю систему (систему С), стандартом для гірофорової кислоти був лишайник виду Punctelia subrudecta, за рекомендаціями відповідних видань.

Методи молекулярних досліджень. Методи мо.екулярного ана.ізу детально описані у публікації (Fedorenko et al., 2009). Дослідження основані на втасних даних шодо ядерної (ITSI/ITS2) та 12 S малої субодиниці мітохондріальної ДНК, а також даних, залучених із генобанку, щодо генів 18 S малої субодиниці ядерної ДНК і 23 S мітохондріальної ДНК.

Екстракція. Фрагменти слані діаметром до $2-3$ мм або апотеції поміщали в 1,5 -міліметрові стерильні мікроцентрифужні піпетки. Два різні кіти, зокрема DNeasy Plant Mini Kit i DNeasy Animal Tissue Kit (QIAGEN), однаково забезпечували екстрагування ДНК за дотримання протоколів, прикладених до них. По закінченні процедури екстраговану ДНК зберігали в 100-120 мкп елюювального буфера (the elution buffer).

Ампліфікація. Полімеразно-ланцюгову реакцію (ПЛР) проводи.ли з використанням Taq Ready-To-Go PCR Beads виробництва GE Healthcare. При шьому до 4 мкт ДНК додавали 19 мкл води та 1 мкл 10 мМ конщентрованих праймерів. Використовува.ли такі праймери: ITSIF (Gardes, Bruns, 1993), ITS4 (White et al., 1990), mtSSU1-KL (5^{\prime}-AGTGGTGTACAGGTGAGTA- 3^{\prime}) i $\mathrm{mtSSU} 2-\mathrm{KL}\left(5^{\prime}-\right.$ ATGTGGCACGTCTATAGCCCA-3') (Lohtander et al., 2002). При цьому два останні праймери були використані вперше для представників родини Teloschistaceae. Амптіфікація починалась з 5 -хвилинного цик.ту при $95^{\circ} \mathrm{C}$, за яким с.ідували 5 цик.ів по 30 с при $95^{\circ} \mathrm{C}$ для денатурації, $58^{\circ} \mathrm{C}$ для ITS - відпа.эювання (=відпалу) (annealing temperature), $52^{\circ} \mathrm{C}$ - для мітохондріальної малої субодиниці (mtSSU) протягом 30 c та подовження (=елонгаціі) за температури $72{ }^{\circ} \mathrm{C}$ протягом 1 хв. У подальших 30 циклах температуру відпа.эювання підвишува.эи до 56 і $50{ }^{\circ} \mathrm{C}$ для ITS та mtSSU відповідно. У деяких випадках для особливо важких зразків використовували 40 циклів. Указану процедуру здійснювали з використанням PTC-100 Programmable Thermal Controller (MJ Research, Inc.). Продукти ПЛР очишати з використанням GFX PCR DNA i Gel Band Purification Kit виробнитва GE Healthcare і елюювали з 50 м.и стерильної води.

Очищення та селвенування. Секвенування проводили додаванням 2 мкл розчину ДНК, 3 мкл води та 1 мкт 2.5 мМ концентрашії кожного праймера з використанням Big Dye Terminator v 1.1 Cycle Sequencing Kit (Applied Biosystems). При цьому використовували такі самі температурні умови, як і для амп.ліфікашії. Продукти секвенування очищали з 1 мкл розчину EDTA,

1 мкл розчину NaOAc і 30 мкл 95%-го етанолового спирту. Послідовності отримано на автоматичному секвенаторі ABI Prism 377 виробництва Perkin Elmer.

Філогенія. Філогенетичний аналіз послідовностей, які вирівнювали вручну, виконано з використанням програми PAUP version 4.0bl0 (Swofford 2002). Філогенетичні дерева будували на основі розрахунків загального евристичного пошуку, з максималізацією кількості збережених дерев до 1000 , тоді як проміжки розгэядали як відсутні ознаки. Бутстрепову підтримку визначали за 1000 повторностей з такими самими установчими параметрами. Рівні підтримки, вищі за 50 , показано на консенсусних деревах.

Для визначення молекулярних дистанцій був використаний кластерний ана.із із застосуванням коефіцієнтів подібності NLxy. Для наочного відображення зага..ьної картини генетичних взаємовідносин між усіма дос.лідженими таксонами на основі отриманих коефіцієнтів генетичної дистанції будували дендрограми за методом UPGMA - незваженого парногрупового методу кластерного аналізу, який також є сктадовою частиною програмного пакета PAUP version 4.0b10. Ктастеризашія починасться з найменшої генетичної дистаншії. Метод послідовно поєднує, кластеризує таксони в порядку збільшення генетичних дистаншій між ними, при цьому генетичні дистанції усереднюють у кожному цикті підрахунку.

Три філогенетичні дерева були отримані відповідно на основі матриксів повних послідовностей ділянки ITS1/ITS2, повних послідовностей mtSSU та матриксу, в якому всі дані шодо ДНК бу.ии об’єднані.

1.1.3. Перевірка статусу «морфологічних» родових груп

Були проведені три окремі філогенетичні аналізи один з використанням матриксів: а) повних послідовностей ділянки ITS1/ITS2; б) повних послідовностей mtSSU ; в) комбінованих ITS-mtSSU даних. Однакові монофілетичні групи, шо мають високий рівень підтримки, були вияв.тені у трьох філогенетичних деревах, хоча окремі зразки, шо представляли кожну гітку, дешо відрізня.тись.

Фі.огенетичний аналіз за даними шодо ITS1/ITS2 діэянки ядерної ДНК грунтувався на даних 105 зразків і 639 ознак, включаючи пропуски, з яких 362 ознаки були достовірно інформативними. У результаті евристичного пошуку отримано дерево завдовжки 2209 змін, індекс консистентності (=густоти) [consistency index]) $\mathrm{CI}=0,4052$, індекс затримки ([retention index]) $\mathrm{RI}=0,7837$. Філогенетичний аналіз за даними мітохондріальної ДНК (mtSSU) виконано за даних 99 зразків і 1080 ознак, з яких 325 були достовірно інформативними. За евристичним пошуком отримано перево завдовжки 1174 зиіни, $\mathrm{CI}=0,5307, \mathrm{RI}=0,8437$. Фітогенетичний анатіз за об'єднаними даними щодо ITSI/ITS2 дітянки ядерної ДНК і мітохондріальної ДНК здійснено за даними 105 видів з 1724 ознаками, з яких 692 ознаки були достовірно інформативними. У результаті евристичного пошуку отримано дерево завдовжки 3399 змін, $\mathrm{Cl}=0,4445, \mathrm{RI}=0,7933$. В усіх евристичних аналізах кількість дерев збітьшено до 8200,8100 та 7700 для матриксів шодо ITS1/ITS2 діэянки, мітохондріальної ДНК та об'єднаних даних відповідно.

Монофілетичні групи. Листуваті представники родини те.эосхістових, тобто ксанторіоїдні лишайники, за даними філогенетичного аналізу, натежать до великих монофілетичних груп: 1) Seirophora; 2) Xanthoria s. 1; 3) Xanthoria candelaria; 4) Rusavskia; 5) Xanthomendoza s. 1. Групи Xanthoria s. I. i Xanthomendoza s. l. розділено на декілька дрібніших монофілетичних гілок, $2 \mathrm{a}-2 \mathrm{c}$ і $5 \mathrm{a}-5 \mathrm{~d}$, шо мають також високі рівні підтримки; деякі з останніх запропоновані як окремі роди у публіканії (Fedorenko et al., 2009). Зроблено висновок, шо групи $2-5$ сктадають монофілетичне ядро ксанторіоїних лишайників з деякими спорідненими групами видів родів Caloplaca і Fulgensia.

1. Seirophora. Рід утворює монофілетичну кладу, яка займає положення серед декількох груп видів родів Caloplaca та Fulgensia, вктючаючи типові види вказаних родів, зокрема: Caloplaca cerina (Ehrh. ex Hedw.) Th. Fr. i Fulgensia fulgens (Sw.) Elenkin (рис. 1.1, 1.2). На шьому етапі до молекулярного аналізу були включені зразки 4 видів Seirophora, зокрема: S. contortuplicata (Ach.) Frödén, S. lacunosa (P Rupr.) Frödén, S. orientalis Frödén i S. villosa (Ach.) Frödén. Seirophora має найвищі рівні підтримки в усіх трьох філогенетичних деревах (рис. 1.1, 1.2).

Piд Seirophora запропонований на основі гербарного зразка Physcia magara Kremp., який, як нещодавно виявииося, складається з механічної суміші двох лишайників, зокрема: Ramalina maciformis (Delise) Bory та представника роду Teloschistes, тобто T. villosus (Ach.) Norman. Власне останній вид нешодавно .ектотипіфікований шведськими дослідниками (Frödén, Lassen, 2004) як тип роду Seirophora, хоча назва «seirophora» відображає анатомічні особливості механічних тканин лишайника Ramalina maciformis, i, на нашу думку, є дуже невдалою для представників родини те.осхістових.
2. Група Xanthoria s. I. Групу поділено на 3 пілгрупи: 2a - Xanthoria s. str.; 2b - Jackelixia; 2c - Xanthodactylon s. I., та 2 окремі таксони - ктади з окремими видами, Xanthokarrooa karrooensis та Ovealmbornia bonaespei. Група в цілому, а також її підгрупи мають найвиші або дуже б.лизькі до найвищих рівні бутстреп-підтримки, до того ж вони є окремими гі.тками, за даними філогенетичного ана.ізу, за мітохондріальною ДНК (рис. 1.1, 1.2).

2a. Xanthoria s. str. Ядро роду в дослідженнях представлено двома групами бтизько споріднених видів, з яких 3 види - X. coomae S.Y. Kondr. et Kärnefelt, X. monofoliosa S.Y. Kondr. et Kärnefelt та X. parietina (L.) Th. Fr. утворюють 1 підгрупу, а види X. calcicola Oxner, X. mediterranea Giralt, Nimis et Poelt та X. ectaneoides (Nyl.) Zahlbr. - іншу.

2b. Jackelixia. Ктада має високі рівні підтримки на всіх фітогенетичних деревах. Вона вкнчча 3 австралійські види, зокрема: Jackelixia elixii (S.Y. Kondr. et Kärnefelt) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt et A. Thell, J. filsonii (Elix) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt et A. Thell, J. streimanniï (S.Y. Kondr. et Kärnefelt) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt et A. Thell, i широко поширений вид у Південній півкулі Jackelixia ligulata (Körb.) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt et A. Thell. Положення J. ligulata в межах підгрупи є дешо несподіваним з морфологічного погляду, оскі.эьки шей вид відрізняється від видів групи J. clixii набагато вужчими, випуклими лопатинками та наявністю палісадної плектенхіми в корових шарах.

Розділ 1. Філогенетичний аналіз лишайників родини Телосхістових - Teloschistaceae ...

Рис. 1.1. Філогенетичне дерево ксанторіоїдних лишайників на основі даних щодо ITS1/ITS2ділянки ядерної ДНК

2c. Xanthodactylon s. l. Підгрупа 2с є сильною кладою з $96-100 \%$-ми рівнями підтримки в різних аналізах (рис. 1.1, 1.2). Більшість видів групи були віднесені до роду Xanthodactylon за морфологічними даними ще до проведення молекулярно-філогенетичного аналізу (X. flammeum (L. f.) C.W. Dodge, X. turbinatum (Vain.) C.W. Dodge та X. alexanderbaai (S.Y. Kondr. et Kärnefelt) S.Y. Kondr. et Kärnefelt (Kärnefelt et al., 1995; Eichenberger et al., 2007; Kondratyuk et al., 2008). Однак для 2 видів відповідну комбінацію ми запропонували вже після отримання даних філогенетичного аналізу (X. inflatum (Eichenberger, Aptroot et Honegger) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix et A. Thell ta X. capensis (Kärnefelt, Arup et L. Lindblom) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix et A. Thell). Слід наголосити, що для визначення природного відмежування роду Xanthodactylon до філогенетичного аналізу потрібно залучити додатково ще декілька близько споріднених таксонів з Південної Африки.

Xanthokarrooa karrooensis та Ovealmbornia bonae-spei. Види Xanthoria bo-nae-spei S.Y. Kondr. et Kärnefelt (Kondratyuk et al., 2004) та X. karrooensis S.Y. Kondr. et Kärnefelt утворюють окремі базальні клади в межах гілки Xanthodactylon s. I, за даними всіх аналізів. Їх ізольоване положення за морфологічними, анатомічними та біохімічними даними (Kärnefelt et al., 2002, Kondratyuk et al., 2004) дало змогу виділити їх в окремі родові групи Ovealmbornia та Xanthokarrooa.
3. Xanthoria candelaria. Група утворює окрему гілку з високим рівнем підтримки (98 \%) за мітохондріальною ДНК, значно нижчим рівнем (74%) за даними ядерної ДНК і ще нижчим рівнем в аналізі з об'єднаними даними за ядерною та мітохондріальною ДНК. До цієї групи належать 3 широко поширені види Xanthoria candelaria (L.) Th. Fr., X. polycarpa (Hoffm.) Rieber i

Розділ 1. Філогенетичний аналіз лишайників родини Телосхістових - Teloschistaceae ...

Рис. 1.2. Філогенстичне дсрсво ксанторіоїдих лишайників на основі даних щодо 12 SmtSSU мітохондріальної ДНК

дещо менше поширений X. ucrainica S.Y. Kondr. (Kondratyuk, 1997). Крім того, до філогенетичного аналізу були також включені вузько поширені види X. alaskana J. W. Thomson i X. kaernefeltii S.Y. Kondr., D. J. Galloway et Goward, а також X. candelaria var. marginata Räsänen, що поширений в Балтійському регіоні (див. також підрозд. 1.1.4).
4. Rusavskia. Рід Rusavskia S.Y. Kondr. et Kärnefelt (Kondratyuk, Kärnefelt, 2003) представлений 4 видами у філогенетичному аналізі. ІІз них 2 види (R. elegans (Link) S.Y. Kondr. et Kärnefelt i R. sorediata (Vain.) S.Y. Kondr. et Kärnefelt) широко поширені в обох півкулях, тоді як R. papillifera (Vain.) S.Y. Kondr. et Kärnefelt відома лише 3 Євразії, а R. digitata (S.Y. Kondr.) S.Y. Kondr. et Kärnefelt, близько споріднений з R. papillifera, є ендемічним видом Півден-но-Східної Європи.
5. Група Xanthomendoza s. I. Група має високу (92%) підтримку за даними ядерної ДНК та об'єднаними даними ядерної та мітохондріальної ДНК (рис. 1.1, 1.2). Однак за мітохондріальною ДНК вона представлена 3 окремими групами ($5 \mathrm{~b}-5 \mathrm{~d}$), які також мають високу підтримку як за ядерною ДНК, так і за об'єднаними даними.

Хоча рід Xanthomendoza визнано більшістю сучасних дослідників, його об'єм потребує подальшої ревізії. У публікації (Fedorenko et al., 2009) припущено, що третім родом, який, очевидно, близько споріднений з родами Oxneria and Xanthomendoza, є Josefpoeltia. На жаль, на той час наші власні результати з ампліфікації ДНК представників роду Josefpoeltia були безуспішними (див. також підрозд. 1.1.4).

5a. Oxneria. До філогенетичного аналізу були включені 3 види: дуже поширені у Північній півкулі Oxneria ulophyllodes (Räsänen) S.Y. Kondr. et Kärnefelt та O. fallax (Hepp ex Arnold) S.Y. Kondr. et Kärnefelt, а також ендемічний для Східної Азії Oxneria alfredii (S.Y. Kondr. et Poelt) S.Y. Kondr. et Kärnefelt. Молекулярні дані підтвердили близьку спорідненість «пари видів» у розумінні Й. Пельта, яку утворюють фертильний вид O. alfredii та соредіозний вид O. ulophyllodes (Kondratyuk, Poelt, 1997).

Як показано пізніше (Kondratyuk et al., 2010) O. fallax є досить гетерогенним видом. До фітогенетичного аналізу фактично були вктючені зразки виду Oxneria huculica S.Y. Kondr. (Kondratyuk et al., 2010). По.эоження ж O. fallax у філогенетичному дереві родини телосхістових ще потребує подальшого спеціального вивчення.

5b. Xanthomendoza novozelandica. Вид включений до роду Xanthomendoza (Sochting et al., 2002) i pоду Oxneria (Kondratyuk, Kärnefelt, 2003b). Однак за даними ядерної ДНК він утворює окрему кладу, тоді як за мітохондріальною ДНК та за об'єднаними даними він є сестринською групою до клади Oxneria. По.ложення цього таксона обговорено у підрозд. 1.1.4.

5c. Xanthomendoza s.str. Південноафрикансько-американський вид Xanthomendoza mendozae утворює окрему ктаду, і, відповідно до першоопису (Kondratyuk, Kärnefelt, 1997a), філогенетичні дані підтверджують вузьке трактування роду (Kondratyuk, Kärnefelt, 2003), на відміну від дуже широкого погтяду, вистовтеного у статті У. Зохтінга та співавт. (Sochting et al., 2002). До цього роду також належить вид, дуже близький до Xanthomendoza mendozae, - X. kashiwadanil (Kondratyuk et al., 2009). Про його положення у фітогенетичному дереві див. підрозд. 1.1.4.

5d. Групи Xanthomendoza poeltii та X. weberi. Ці групи не мають підтримки як окремі групи за мітохондріальною ДНК, однак характеризуються високою підтримкою за ядерною ДНК і об'єднаними даними (рис. 1.1, 1.2).

Група (Xanthomendoza poeltii) включає 2 види - X. poeltii та X. coppinsii S.Y. Kondr., Kärnefelt et Sochting, шо часто зростають разом у Північній Європі, де їх розмежування утруднено (Kondratyuk, Kärnefelt, 1997b; Kondratyuk, 2004; Kondratyuk et al., 2010). Однак вид X. coppinsii значно ширше поширений у Євразії. Дешо несподіваним є те, що за молекулярними даними північноамериканський вид X. galericulata Lindblom є сестринським до групи X. coppinsii та X. poeltii. На відміну від них X. galericulata має досить довгі та часто розсічені та вузькі при основі лопаті і дуже нагадує за морфологією види групи X. weberi. Група X. weberi представлена 2 видами, широко поширеними у Північній півкулі, X. fulva (Hoffm.) Poelt et Petutschnig, X. weberi (S.Y. Kondr. et Kärnefelt) L. Lindblom, та вузько поширеним середньоазійським видом Xanthoria sogdiana S.Y. Kondr. et Kudratov (Kondratyuk, 2004; Kondratyuk et al., 2010).

Види родів Caloplaca та Fulgensia, близько споріднені до ксанторіоїдних лишайників. Як визначено попередніми дослідниками, деякі групи видів родів Caloplaca та Fulgensia виявляють тісніші зв’язки спорідненості з ксанторіоїними лишайниками, ніж з типовими видами родів Caloplaca та Fulgensia (Arup 2006; Sochting, Lutzoni, 2003; Gaya et al., 2003). Крім того, Е. Гайя зі співавт. (Gaya et al., 2008) показали, що деякі види цих родів розміщуються в ядрі ксанторіоїдних лишайників. Дослідники також припускають, що, можливо, було б доцільно вктючити окремі види родів Caloplaca та Fulgensia до роду Xanthoria. Однак згідно з нашими даними, .тише одна група ксанторіоїдних . лишайників, зокрема рід Seirophora, знаходиться у філогенетичному дереві родини те.осхістових в одній гі.七ці з родами Caloplaca s. str. i Fulgensia s. str. (рис. I.1, 1.2). Однак всі ці групи мають однаково високі рівні підтримки і, на нашу думку, їх можна розг.ядати як окремі родові.

1.1. Ксанторіоїдні лишайники

Відповідно до наших даних (див. підрозд. 1.1.4), види групи Caloplaca flavorubescens утворюють достатньо добре виражену монофі.летичну групу, що споріднена з родом Fulgensia s. str.

На жаль, станом на 2009 р. у генобанку бути наявні відомості переважно шодо ядерної ДНК деяких видів родів Caloplaca та Fulgensia, тоді як дані шодо мітохондріальної ДНК були відсутні. При цьому за даними ядерної ДНК (ITSI/ITS2 ді..яянки) одну з клад, яка утворена видами Caloplaca saxicola (Hoffm.) Nordin, C. biatorina (A. Massal.) J. Steiner, Fulgensia schistidii (Anzi) Poelt та F. subbracteata (Nyl.) Poelt і має високі рівні підтримки, на нашу думку, не можна розглядати як складову частину будь-якої з груп ксанторіоідних лишайників. Т. Касаліцький зі співавт. (Kasalicky et al., 2000) вказував на близько споріднені зв'лзки Fulgensia schistidii та Xanthoria parietina. Олнак за нашими даними, Fulgensia schistidii знаходиться в ктаді Caloplaca subg. Gasparrinia: C. saxicola та C. biatorina (рис. 1.1). Тому, відповідно, цей вид краще розглядати у сктаді роду Caloplaca (як Caloplaca schistidii).

Таким чином, на етапі перевірки статусу "морфологічних» родів ми провели філогенетичний аналіз ксанторіоїних лишайників родини телосхістових за ядерною ДНК (ді..янка ITS 1/ITS2) і малою субодиницею мітохондріальної ДНК. Результати досліджень грунтуються на вивченні 201 зразка, шо репрезентують 50 видів групи ксанторіоїдних лишайників, з яких 183 послідовності отримані вперше.

За резу.лттатами фітогенетичного аналізу встановлено 5 груп з високим рівнем підтримки: Seirophora, Xanthoria s. str. - Xanthodactylon, Xanthoria candelaria, Rusavskia та Xanthomendoza.

Дві з указаних груп вктючають 7 підгруп з найвишими рівнями підтримки: 2 a - Xanthoria parietina (або рід Xanthoria s. str.), 2 b - Jackelixia, Xanthodactylon flammeum (або piд Xanthodactylon s. str.), 5a - Oxneria, 5b Xanthomendoza novozelandica, $5 \mathrm{c}-X$. mendoza, та $5 \mathrm{~d}-X$. poettii.

Для кожної з названих груп обговорено альтернативні погляди на їх таксономічне положення, які б відповідати сучасній молекулярній філогенії ксанторіоїдних лишайників. Представники родів Caloplaca, Fulgensia та Teloschistes, що є особливо близько спорідненими до ксанторіоїдних лишайників, також включені до фіэогенетичного дерева, і їх статус теж коротко проаналізовано.

1.1.4. Порівняння морфолого-анатомічних і біохімічних особливостей деяких «молекулярних» груп

Морфологічна група ксанторіоїних лишайників є поліфілетична і розпорошена серед монофілетичних груп накипних та плакоїдних представників родини Teloschistaceae (Gaya et al., 2003, 2008; Sochting, Lutzoni, 2003). Попередній філогенетичний аналіз групи ксанторіоїдних лишайників, який грунтувався на резутьтатах секвенування ядерної та мітохондріальної ДНК (Fedorenko et al., 2009), показав високу кореляцію молеку.ярних, морфологічних, анатомічних і біохімічних ознак. Були відокремлені родові групи ксанторіоїдних лишайників Jackelixia S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt et A. Thell, Ovealmbornia S.Y. Kondr., N.M. Fedorenko, S. Stenroos,

Рис. 1.3. Філогенетичне дерево родини Teloschistaceae зі спеціальним наголосом на ксанторіоїдні лишайники за даними послідовностей ITS-ділянки ядерної ДНК. Товстішими лініями виділсні зв’язки, які підтвсрджсні в декількох аналізах, і ті, що мають найвищі рівні бутстреп-підтримки

Kärnefelt, Elix et A. Thell, Oxneria S.Y. Kondr. et Kärnefelt, Rusavskia S.Y. Kondr. et Kärnefelt, Seirophora Poelt, Xanthodactylon P.A. Duvign, Xanthokarooa S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix et A. Thell, Xanthomendoza S.Y. Kondr. et Kärnefelt, Xanthoria (Fr.) Th. Fr., які є монофілетичними групами в родині телосхістових.

Три монофілетичні групи з найвищими рівнями підтримки були виявлені раніше (Fedorenko et al., 2009), однак опис нових родів було відкладено у зв’язку з необхідністю включення додаткових видів до порівняльного аналізу. Додатковий матеріал, досліджений як за ядерною, так і за мітохондріальною ДНК, дав змогу встановити 5 нових родів лишайників.

Дані, отримані у попередніх дослідженнях (див. підрозд. 1.1.1 та статтю Fedorenko et al., 2009), значно розширені й доповнені новими зразками i послідовностями. Результати філогенетичного аналізу послідовностей наведено на консенсусних деревах (рис. 1.3-1.6). П’ять монофілетичних груп мають таку саму високу підтримку, як і попередні описані роди ксанторіоїних лишайників. Тому ці групи наведено як нові роди: Gallowayella, Jesmurraya, Honeggeria, Massjukiella та Martinjahnsia (Fedorenko et al., 2012).

Результати секвенування ядерної ДНК. Найвищі рівні бутстреп-підтримки для таких груп, які описано як окремі роди Gallowayella, Jesmurraya та Massjukiella, вперше продемонстровані у статті (Fedorenko et al., 2009). Роди Gallowayella та Jesmurraya належать до Xanthomendoza гілки в широкому розумінні і є сестринськими монофілетичними гілками відповідно до Xanthomendoza та Oxneria, за даними ITS-послідовностей (див. рис. 1.3). У зазначеній публікації представлені досить не повні молекулярні дані щодо Jesmurraya novozelandica, щоб зробити таксономічні висновки. Наші власні дані щодо морфології цього лишайника, а також додаткові дані з генобанку дали змогу встановити високий рівень бутстреп-підтримки цього роду. Рід Massjukiella утворює сестринську групу з накипними лишайниками родини,

Рис. 1.4. Філогенстичне дерево родини Teloschistaceac зі спеціальним наголосом на ксанторіоїдні лишайники за даними послідовностей гена 18 S ядерної ДНК

зокрема $з$ групами Caloplaca phlogina та C. ulcerosa. Рід Martinjahnsia є сестринською групою до гілки Xanthoria s. str., тоді як Honeggeria займає досить ізольоване положення.

Філогенетичне дерево за 18 S великою субодиницею ядерної ДНК показує подібний родовий поділ, за винятком Martinjahnsia та Massjukiella, хоча і 3 нижчими рівнями підтримки (див. рис. 1.4). Martinjahnsia утворює групу разом $з$ родом Xanthoria, а Massjukiella - монофілетичну гілку разом 3 лишайниками групи Caloplaca verruculifera (див. рис. 1.4).

Результати секвенування мітохондріальної ДНК. Gallowayella, Jesmurraya та Massjukiella утворюють клади з високими рівнями підтримки за даними 12 S малої субодиниці мітохондріальної ДНК (див. рис. 1.5). У філогенетичному дереві за даними 23 S малої субодиниці мітохондріальної ДНК Massjukiella є сестринською групою до роду Rusavskia (див. рис. 1.6). Усі інші
1.1. Ксанторіӧ̈дні лишайники

Рис. 1.5. Філогенетичне лерево родини Teloschistaceae зі спеціальним наголосом на ксанторіоідні лишайники за даними послідовностей гена 12 S SSU мітохондріальної ДНК

роди ксанторіоїних лишайників утворюють клади з високими рівнями підтримки в гітці разом з родом Teloschistes з порівняно невисоким рівнем підтримки (див. рис. 1.6).

Місце ксанторіоїдих лишайників у філогенетичному дереві родини телосхістових. Ксанторіоїдні .тишайники утворюють відокремлені групи серед накипних і плакодіоїдних представників родини Teloschistaceae. Нові роди Gallowayella, Honeggeria, Jesmurraya, Martinjahnsia та Massjukiella є монофілетичними групами з найвищими рівнями підтримки за всіма анатізами (див. підрозд. 1.2).

На відміну від попередніх результатів (див. підрозд. 1.1.1; статтю Fedorenko et al., 2009), Gallowayella та Jesmurraya є дуже віддатеними від роду Josefpoeltia, лкий, в свою чергу, займає найвідокремленіше положення серед ксанторіоїдних . лишайників родини Teloschistaceae. До родів Gallowayella i Jesmurraya бтижчими є роди Oxneria й Xanthomendoza, а також групи видів Caloplaca intrudens і C. trachyphylla.

Martinjahnsia є найбиижче спорідненою з родами Xanthoria i Caloplaca aurantiella (Nyl.) C. Moreau et M. Moreau. Massjukiella - це сестринська група плакодіоїдних . эишайників групи Caloplaca verruculifera й накипних лишайників груп Caloplaca bolacina, C. ignea та C. phlogina.

Отже, на основі спеціальної перевірки морфотого-анатомічних і біохімічних особливостей 5 «молекулярних» груп ксанторіоїдних лишайників, вияв.ених ще під час фі.огенетичного аналізу до 2009 р., а також додаткового фітогенетичного аналізу лишайників на основі використання двох генів (ITSI/ITS2 і 18S ма.пої субодиниці) ядерної ДНК та двох генів (12 і 23 малих субодиниць) мітохондріальної ДНК, описані як нові роди: Gallowауella, Jesmurraya, Honeggeria, Massjukiella та Martinjahnsia.

Нові комбінашії запропоновані для 24 видів лишайників: Gallowayella aphrodites, G. borealis, G. concinna, G. coppinsii, G. fulva, G. hasseana, G. montana, G. galericulata, G. gallowayi, G. oregana, G. poeltii, G. sogdiana, G. tibellii, G. wetmorei, Honeggeria rosmarieae, Jesmurrava novozelandica, Massjukiella alaskana, M. candelaria, M. kaernefeltii, M. nowakii, M. polycarpa, M. ucrainica, M. ucrainica ssp. marginata тa Martinjahnsia resendei.

Рис. 1.6. Філогенетичне дерево родини Teloschistaceae зі спеціальним наголосом на ксанторіоїдні лишайники за даними послідовностей гена 23 S SSU мітохондріальної ДНК

1.1.5. Сучасна таксономія

На сьогодні ксанторіоїдні лишайники представлені в 15 родах, коротку характеристику кожного з яких наведено нижче (табл. 1.1).

Gallowayella S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix, J.-S. Hur et A. Thell in Fedorenko et al., Bibl. Lich. 108: 58 (2012) (рис. 1.7, a-z, див. вклейку).

Типовий вид роду: Gallowayella gallowayi (S.Y. Kondr. et Kärnefelt) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnetelt, Elix, J.-S. Hur et A. Thell.

Табличя I.l. Перелік родів ксанторіоїдних лишайників та їх типових видів з вказівками найосновніших синонімів

$\begin{gathered} \mathrm{N}, \\ 11 / 11 \end{gathered}$	Pit	Типовий вия	Публікаигія діниюму ролу
1	Gallowayiella S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kimefelt, Elix, J.-S. Hur et A. Thell	Gallowayella gallowayi (S.Y. Kondr. et Kärnefelt) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix, J.-S. Hur et A. Thell = = Xanthoria gallowayi S.Y. Kondr. et Kärnefelt	$\begin{aligned} & \text { Fedorenko et al., } \\ & 2012 \end{aligned}$
2.	Honeggeria S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix, J.-S. Hur et A. Thell	Honeggeria rosmarieae (S.Y. Kondr. et Kärnefelt) S. Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix, J.-S. Hur et A. Thell $=$ Xanthomendoza rosmarieae S.Y. Kondr. et Kärnefelt	Там само
3	Jackelixia S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt et A. Thell	Jackelixia elixï̈ (S.Y. Kondr. et Kärnefelt) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnetelt et A. Thell = Xanthoria elixii S.Y. Kondr. et Kärnefelt	$\begin{aligned} & \text { Fedorenko et al., } \\ & 2009 \end{aligned}$
4	Jesmurraya S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix, J.-S. Hur et A. Thell	Jesmurraya novozelandica (Hillmann) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnetelt, Elix, J.-S. Hur et A. Thell = Xanthoria nowozelandica Hillmann	$\begin{aligned} & \text { Fedorenko et al., } \\ & 2012 \end{aligned}$
5	Joseffipettia S. Y. Kondr. et Kärnefelt	Josefpoeltia parva (Rusisinen) Froden = Xanthoria parva Räsinen $=$ Josefpoeltia boliviensis S. Y. Kondr. et Kärnefelt	Kondratyuk, Kirnefelt, 1997
6	Martinjahnsia S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix, J.-S. Hur et A. Thell	Martinjahnsia resendei (Poelt et C. Tav.) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnetelt, Elix, J. -S. Hur et A. Thell = Xanthoria resendei Poelt et C . Tav.	Fedorenko et al., 2012
7	Massjuhiella S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kirnefelt, Elix, J.-S. Hur et A. Thell	Massjukiella polycarpa (Hoffm.) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefèlt, Elix, J.-S. Hur et A. Thell = Lobaria polycarpa Hoffm.	Там само
8	Ovealmbornia S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix et A. Thell	Ovealmbornia bonae-spei (S.Y. Kondr. et Kärnefelt) S. Y. Kondr., N.M. Fedorenko, S. Stenroos, Kïrnefelt, Elix et A. Thell $=$ Xanthoria bonae-spei S.Y. Kondr. et Kärnefelt	Fedorenko et al., 2009
9	Oxneria S.Y. Kondr. et Kärnefelt	Oxneria alfredii (S.Y. Kondr. et Poelt) S.Y. Kondr. et Kärnefelt = Xanthoria alfredii S.Y. Kondr. et Poelt	Kondratyuk, Kärnefelt, 2003; Кондратюк и ар., 2004
10	Rasarskia S.Y. Kondr. et Kärnefelt	Rusavskia elegans (Link) S.Y. Kondr. et Kärnefelt = Xanthoria elegans (Link) Th. Fr.	Там само
11	Seirophora Poelt = Xanthoanaplychia S.Y. Kondr. et Kürnefelt	Seïophora villosa (Ach.) Froden = Physcia magara $=$ Xanthoanaptychia villosa (Ach.) S.Y. Kondr. et Kärnefelt	Kondratyuk, Kärnetelt, 2003; Froden, Lassen, 2004; Kондратюк и др., 2004

1.1. Ксанторіоїдні лишайники

			Закінчения табл. І.I
$\begin{array}{\|c\|c\|} \hline N 0 \\ \mathrm{~N} / \mathrm{IN} \end{array}$	Pit	Типовий вия	Пубнікаиія дiannosy pory
12	Xanthodactylon	Xanthodactylon flammeum (L.f.) Duvign. $=$ = Xanthoria flammea (L.f.) Dodge	Duvigneaud, 1941
13	Xanthokartooa S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnetelt, Elix et A. Thell	Xanthokarrooa karmonensis (S.Y. Kondr. et Kämefelt) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix et A. Thell = Xanthoria karrooensis S.Y. Kondr. et Kärnefelt	Fedorenko et al., 2009
14	Xanthomendoza S.Y. Kondr. et Kärnefelt	Xanthomendoza mendozae (Rüsinen) S.Y. Kondr. et Kärnefelt = Xanthoria mendozae Ruisinen	Kondratyuk, Kärnefelt, 1997
15	Xanthoria (Fr.) Th.Fr.	Xanthoria parietina (L.) Beltr.	Кондратюк и др., 2004

Слань .тистувата. Верхній та нижній корові шари параптектенхімні, клітинні просвіти матенькі, до 5(7) мкм у діаметрі / поперечнику. Ризини Oxneria-типу численні на нижній поверхні. Апотеції леканорові до зеоринових, справжній ексшипул псевдопрозоплектенхімний. Спори біполярні Xanthoria-типу. Конідії широко паличкоподібні.

Етимологія: рід названий на честь новозеландського ліхенолога Девіда Галловія (David J. Galloway), який зробив надзвичайно ве.тикий внесок до наших сучасних знань шодо ліхеноф.лори його рідного регіону.

Примітки: 3 з 6 видів, віднесених до цього роду, підтверджені за молекулярними даними. До останнього часу види роду відносили до родів Xanthomendoza (Sxchting et al., 2002) та Oxneria (Kondratyuk et Kärnefelt, 2003). У ші.ому рід вкюючає 14 видів, поширених в обох півкулях.

Jackelixia S.Y. Kondrstyuk, N.M. Fedorenko, S. Stenroos, Kärnefelt et A. Thell in Fedorenko et al., Bibl. Lich. 100: 74 (2009) (рис. 1.7, д-ж; 1.8-1.10, див. вктейку).

Типовий вид роду: Jackelixia elixii (S.Y. Kondr. et Kärnefelt) S.Y. Kondr., Fedorenko, S. Stenroos, Kärnefelt et A. Thell.

Слань листувата, проста чи в скупченнях, лопаті звичайно добре виражені, рідко менше розвинені і не помітні з-під апотеціїв, міцно або слабко прикріплена до субстрату; рівномірно жовта, оранжева до зрідка сірої чи білувато-сірої; слань дуже тонка (товщина $80-110$ мкм на зрізі) до досить товстої і з порожниною в серцевині; верхній коровий шар - палісадна параклектенхіма; нижній коровий шар складається з 1-2 рядів клітин з дуже потовщеними стінками; гаптери вздовж країв лопатей, Xanthodactylon типу. Апотеції зеоринові, леканорові чи біаторові, звичайно численні; диск червонуватий до оранжевого; справжній ексципул псевдопрозоплектенхімний; спори Xanthoria типу; конідї̆ паличкоподібні.

Хімічні особливості: телосхістин займає домінуюче положення, тоді як парієтин і парієтинова кистота представтені у невеликій кількості.

Поширення: рід включає 10 видів у Південній півкулі, серед них Jackelixia ligulata та J. elixii найширше поширені (перший у Південній півкулі в цітому, другий - в Австратії).

Етимологія: рід названий на честь відомого австралійського ліхенолога та фахівця з органічної хімії Джона ІІтікса (John A. Elix).

Примітки: Jackelixia відрізняється від Xanthoria s. str. за анатомією слані, зокрема за наявністю палісадної параплектенхіми у верхньому коровому шарі та більш-менш мезодермно параплектенхімного нижнього корового шару с.ані, прозоплектенхімного справжнього ексципула та паличкоподібних конідій. Крім того, види цього роду мають гаптери Xanthodactylon типу і тетосхістин (на відміну від парієтину) як домінуючу тишайникову речовину.

Слід наготосити, шо рід включає 2 морфологічно відмінні групи видів, які умовно назвемо J. clixii та J. ligulata. Остання відрізняється від першої набагато товстішою сланню, з добре вираженою і заповненою плектенхімою чи порожнистою серцевиною, випуктими топатями та наявністю парієтину як домінуючої речовини. Крім того, стань менше притиснена до субстрату, лопаті звичайно вужчі та довші, не бувають загорнутими догори на кінцях, як у J. clixii. Однак фітогенетичний аналіз показує, що види цих морфологічних груп утворюють одну монофілетичну групу і, відповідно, об'єднані в один рід.

Jesmurraya S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix, J.-S. Hur et A. Thell in Fedorenko et al., Bibl. Lich. 108: 58 (2012) (рис. 1.11, а, б, див. вктейку).

Типовий вид роду: Jesmurraya novozelandica (Hillmann) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnetelt, Elix, J.-S. Hur et A. Thell.

Слань .эистувата. Верхній та нижній корові шари парап.าектенхімні, клітинні просвіти маленькі, до 10 мкм діам./поперечнику. Ризини Oxneriaтипу, численні. Апотешії звичайно чис.ленні, леканорові до зеоринових, справжній ексципу.л склероплектенхімний, Xanthoria-типу. Спори біполярні, Xanthoria-типу. Конідії вузькопаличкоподібні.

Етимологія: рід описаний на честь хіміка д-ра Джеймса Mapi (Dr. James Murray) на відзнаку його внеску у вивчення австралазійських представників родини те.оосхістових.

Примітки: Jesmurraya novozelandica бу.о включено до родів Xanthomendoza (Sochting et al., 2002) та Oxneria (Kondratyuk, Kärnefelt, 2003). Однак рід Jesmurrava відрізняється від обох указаних груп за морфо.логією та високою мо.лекулярною підтримкою.

Josefpoeltia S.Y. Kondr. et Kärnefelt, Bibl. Lich. 68: 22 (1997) (рис. 1.11, вe, див. вклейку).

Типовий вид роду: Josefpoeltia parva (Räsänen) Frödén (syn. Josefpoeltia boliviensis S.Y. Kondr. et Kärnefelt).

Слань листувата. Верхній та нижній корові шари псевдопрозоплектенхімні (слань Josefpoeltia-типу). Ризини дуже тоненькі й чис.ленні, утворюють густу сіточку на нижньому боці слані (ризини Josefpoeltia-типу). Апотеції леканорові до зеоринових, справжній ексципул склероплектенхімний. Спори біполярні, Xanthoria-типу. Конідії веретеноподібні.

Етимолодія: рід описаний на честь відомого німецького ліхенолога Йозефа Петьта (Josef Poelt, Münich, Berlin, Germany та Graz, Austria) за його унікатьний внесок у вивчення, зокрема, представників родини телосхістових Teloschistaceae, а також .тишайників світу в цітому.

Примітки: рід вктючає 2 види - Josefpoeltia sorediosa S.Y. Kondr. et Kärnefelt, відомий лише з Південної Америки, та J. parva, відомий на сьогодні з Південної Америки та Мадагаскару.

Honeggeria S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix, J.-S. Hur et A. Thell in Fedorenko et al., Bibl. Lich. 108: 58 (2012) (рис. 1.12, a, σ, див. вк.ейку).

Типовий вид роду: Honeggeria rosmarieae (S.Y. Kondr. et Kärnefelt) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix, J.-S. Hur et A. Thell.

Стань тистувата. Верхній та нижній корові шари параптектенхімні, клітинні просвіти матенькі, до 10 мкм діам./поперечнику. Ризини Oxneriaтипу, численні. Апотеції леканорові до зеоринових, справжній ексципул невизначеної природи (тканина «textura intricata») або зовсім не розвинений. Спори біполярні, Xanthoria-типу. Конідії патичкоподібні.

Етимологія: рід описаний на честь швейцарського ліхенолога Розмарі Хонегтер (Rosemarie Honegger, Zürich) за ïi унікатьний внесок у вивчення анатомії лишайників, зокрема представників родини телосхістових Teloschistaceae.

Примітки: рід включає два види: H. rosmaricae, відомий з Північної Америки, та поки шо ще не описаний вид, досить звичайний в Євразії. Матеріал H. rosmarieae до останнього часу зберігають у гербаріях під назвою Xanthomendoza weberi (Eichenberger, 2007) і . ᄀише нещодавно описаний нами як окремий вил (Lumbsch et al., 2011).

Martinjahnsia S.Y. Kondr., N.M. Fedorenko, S. Stenroos, I. Kärnefelt, J. Elix, J.-S. Hur et A. Thell in Fedorenko et al., Bibl. Lich. 108: 58 (2012) (рис. 1.12, в-е, див. вктейку).

Типовий вид роду: Martinjahnsia resendei (Poelt et C. Tav.) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, I. Kärnefelt, J. Elix, J.-S. Hur et A. Thell.

Стань листувата, з дуже товстими та вузькими лопатинками. Обидва верхній та нижній корові шари склероплектенхімні Caloplaca regalis-типу, сершевина з добре розвиненою склероплектенхімною тканиною і без порожнини. Гаптери Xanthoria-типу, досить рідко. Апотешії невідомі. Конідії вузькое.ліпсоїдні до .тінзоподібних.

Етимологія: рід названий на честь відомого німешького ліхенолога Ханса Мартіна Янса (Hans Martin Jahns) за його внесок у ліхенологію в цілому.

Примітки: цей монотипічний рід відомий із середземноморської частини Європи та Північної Африки. Зовнішньо лишайник дуже подібний до Rusavskia elegans (Link) S.Y. Kondr. et Kärnefelt, чим пояснюється попереднє його включення до роду Rusavskia (Kondratyuk et Kärnefelt, 2003). За морфологією слані, зокрема склероплектенхімною тканиною корових шарів, та наявністю добре розвиненої серцевини вид також дуже подібний до Caloplaca regalis групи і роду Xanthomendoza.

Masșukiella S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix, J.-S. Hur et A. Thell in Fedorenko et al., Bibl. Lich. 108: 58 (2012) (рис. 1.13, див. вклейку).

Типовий вид роду: Massjukiella polycarpa (Hoffim.) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix, J.-S. Hur et A. Thell.

Слань листувата до кущикоподібної чи кушистої. Верхній та нижній корові шари параплектенхімні, ктітинні просвіти досить великі - в діамет$\mathrm{pi} /$ поперечнику до 13 мкм. Органи прикріплення до субстрату відсутні. Апотеції численні, леканорові до зеоринових на зрізі, справжній ексципул параплектенхімний (апотеції Massjukiella-типу). Спори біполярні, Xanthoriaтипу. Конідії широко етіпсоїдні.

Хімічні особливості: парієтин як домінуюча .лишайникова речовина.
Поиирения: вктючає щонайменше 12 видів, поширених від полярних арктичних та антарктичних регіонів до гірських масивів у тропічних районах.

Етимологія: рід названий на честь відомого українського атьголога Надії Прохорівни Масюк (1930-2009) на вшанування її внеску в підготовку молодого покоління криптогамістів для Національної академії наук України.

Примітки: рід Massjukiella є унікальним у родині тетосхістових за морфологією апотеціїв (справжній ексципут параптектенхімний) та відсутністю органів прикріплення до субстрату.

Ovealmbornia S.Y. Kondratyuk, N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix et A. Thell in Fedorenko et al., Bibl. Lich. 100: 75 (2009) (рис. 1.14, див. вктейку).

Типовий вид роду: Ovealmbornia bonae-spei (S.Y. Kondr. et Kärnefelt) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix et A. Thell.

Слань сіра до блідо-сіруватої чи частково брудно-жовтуватої, лопаті досить випукті з краями, шо характерно загорнуті донизу, дешо розсічені на менші фрагменти по краю; ризини досить короткі, товсті, дешо роздвоєні чи розширені на верхівках, досить рясні на нижній поверхні; на зрізі верхній коровий шар патісадний, серцевина виповнена бітьш-менш компактною серцевинною плектенхімою, нижній коровий шар лептодермний параплектенхімний. Апотеції зеоринові, диск жовтуватий до жовто-оранжевого, добре контрастує із сірим станевим краєм; справжній ексципут дуже масивний, сктадається з 2 відмінних шарів - верхнього мезодермного параплектенхімного та нижнього псевдопрозоп.лектенхімного; спори біполярні, однак з дуже потовшеними стінками (завширшки до $1,5-2,0$ мкм) бітя полюсів; конідії довгі, вузькопаличкоподібні.

Хімічні особливості: парієтин як домінуюча .лишайникова речовина.
Поиирення: вктючає шонайменше 2 види, поширені у Південній Африші, один з яких поки що не описаний, хоч відомий з декількох локалітетів.

Етимологія: рід названий на честь шведського ліхенолога Ове Атьмборна (Ove Almborn), який приктадав багато зусиль для вивчення ліхенофлори Південної Африки.

Примітки: представники роду відрізняються від ксанторіоїдних .лишайників інших родів переважно сірою станню, досить товстою станню з добре вираженою серцевиною, наявністю вузькопаличкоподібних конідій та рясними роздвоєними короткими ризинами.

Piд Ovealmbornia відрізняється від інших південноафриканських родів Xanthodactylon і Xanthokarrooa товстою станню з рясними роздвоєними короткими ризинами, мезодермно параплектенхімним спражнім ексципулом і вузькими паличкоподібними конідіями. Рід Ovealmbornia має напіввипуклі лопаті з характерно загорнутими донизу краями, а також відрізняється відсутністю типово випуклих до циліндричних лопатей з порожниною та ризин Xanthodactylon-типу. У представників обох родів Xanthodactylon і Xanthokarrooa і верхній, і нижній корові шари сктероптектенхімні, тоді як нижній коровий шар лептодермно параплектенхімний у роду Ovealmbornia відрізняється від верхнього палісадного. У представників родів Xanthodactylon і Xanthokarrooa справжній ексципул псевдопрозоплектенхімний, тоді як у Ovealmbornia він дуже желатинізований і двошаровий.

Oxneria S.Y. Kondr. et Kärnefelt, Ukr. Bot. J. 60 (4): 428 (2003) (рис. 1.15, див. вклейку).

Типовий вид роду: Oxneria alfredii (S.Y. Kondr. et Poelt) S.Y. Kondr. et Kärnefelt.

Стань листувата. Верхній та нижній корові шари мезодермно-параптектенхімні, ктітинні просвіти досить малі (до 3-5 мкм у поперечнику), а клітинні перегородки досить товсті (товщина понад 1 мкм). Органи прикріплення до субстрату - численні справжні ризини (ризини Oxneria-типу). Апотеції численні, леканорові до зеоринових на зрізі, справжній ексципут псевдопрозоплектенхімний (апотеції Oxneria-типу). Спори біполярні, Xanthoria-типу. Конідії вузькопатичкоподібні.

Хімічні особливості: три домінуючі лишайникові речовини, зокрема: парієтин, тетосхістин та фатацинал, а також неве.тика кількість парієтинової кистоти та емодину.

Поширення: включає шонайменше 3 види, 2 з яких широко поширені в Голарктиці, а типовий вид - у Східній Азії. Статус ще одного виду з Європи, відомого з багатьох .окалітетів Центральної та Приатлантичної Європи, потребує пода.тьшої ревізії.

Епимологія: рід названий на честь відомого українського вченого Альфреда Мико.лайовича Окснера (1898-1973) на вшанування його внеску у вивчення представників родини телосхістових і ліхенофлори Євразії у шілому.

Примітки: рід Oхпегіа є унікальним у родині телосхістових за морфологією апотешіїв (поєднання мезодермно парап.эектенхімного корового шару та псевдопрозоплектенхімного справжнього ексшипу.аа), за морфо.логією органів прикріплення до субстрату (ризини Oxneria-типу) та вузькопа.าичкоподібними конідіями.

у статті (Kondratyuk, Kärnefelt, 2003), де наведено першоопис роду Oxneria, до його складу віднесено до 18 видів. Однак за резу.льтатами фі.огенетичного аналізу за ядерною та мітохондріа.七ною ДНК обсяг роду Oxneria значно звузився (див. також примітки до родів Gallowayella, Jesmurrava).

Rusavskia S.Y. Kondr. et Kärnefelt, Ukr. Bot. J. 60 (4): 433 (2003) (рис. 1.16, див. вклейку).

Типовий вид роду: Rusavskia elegans (Link) S.Y. Kondr. et Kärnefelt.
Слань листувата до кушистої. Верхній та нижній корові шари склероплектенхімні лише $з$ невеликими включеннями параплектенхіми. Спеціалізовані органи прикріплення до субстрату відсутні (прикріплоється до поверхні субстрату всією нижньою поверхнею). Апотеції численні, леканорові до зеоринових на зрізі, справжній ексципул склероплектенхімний (апотеції Xantho-ria-типу). Спори біполярні, Xanthoria-типу. Конідії широкопаличкоподібні.

Хімічиі особливості: домінуючою .лишайниковою речовиною є лише парієтин, у невеликих кількостях наявні парієтинова кислота, емодин, телосхістин і фалацинат.

Поширення: включає щонайменше 13 видів, переважна більшість яких широко поширені в Готарктиці та Південній півкулі.

Етимологія: рід названий на честь української сім’ї І̀вана Каленьовича Русавського (1907-1996).

Примітки: рід Rusavskia є унікатьним у родині телосхістових за морфологією стані (поєднання склероплестенхіми і параплектенхіми в коровому

шарі та відсутністю спеціалізованих органів прикріплення до субстрату) й широкопаличкоподібними конідіями.

Seirophora Poelt, Flora, Jena 174 (5/6): 440 (1983) (рис. 1.17, див. вклейку).
Типовий вид роду: Seirophora villosa (Ach.) Froden (syn. Seirophora magara (Krempl.) Poelt) (рис. 1.17).

Слань листувата до кушистої, часто зеленувато- або білувато-сіра до сірожовтуватої, а також $з$ дрібненькими війками до повстистих. Верхній коровий шар прозоптектенхімний, нижній, як правило, відсутній. Спеціатізовані органи прикріплення до субстрату відсутні. Апотеції численні, леканорові до зеоринових на зрізі, справжній ексципу. склероплектенхімний (апотешії Xanthoriaтипу). Спори біпотярні, Xanthoria-типу. Конідії патичкоподібні.

Хімічні особливості: антрахінони переважно відсутні в слані, представлені лише в апотеціях, де домінуючою .лишайниковою речовиною є парієтин, у невеликих кількостях наявні парієтинова кислота, емодин, телосхістин та фа.ацинал.

Поиирения: включає близько 12 видів, поширених від арктичних регіонів до пустель та атьпійських лук південних гір Готарктики.

Етимологія: назва роду пов'язана з анатомічними особливостями лишайнику Ramalina maceformis, зразок якого бу.七о змонтовано разом з фрагментами слані Seirophora villosa з апотеціями на одному гербарному зразку, і тому його помилково розглядали як представника цього роду (під назвою Physcia magara).

Фактично типовий зразок Physcia magara сктадається з 2 видів лишайників, Seirophora villosa та Ramalina maceformis. Однак оскільки саме цей зразок був нешодавно лектотипіфікований як тип роду Seirophora, ми змушені використовувати цю назву, а не запропоновану нами назву Xanthoanaptychia (див. нижче).

Примітки: ріл Seirophora є унікальним у родині телосхістових за морфологією слані (відсутність нижнього корового шару і органів прикріплення до субстрату) та паличкоподібними конідіями.

Саме за такою ознакою, як відсутність нижнього корового шару, ми запропонували іншу назву для шієї групи - Xanthoanaptychia S.Y. Kondr. et Kärnefelt, Ukr. Bot. J. 60 (4): 434 (2003). Однак після тектотипіфікації типового зразка Physcia magara як Seirophora villosa назва виявилася пізнішии синонімом назви Й. Пе.льта.

Представників роду Seirophora до останнього часу розглядати у складі роду Teloschistes (рис. 18, a, σ, див. вклейку).

Xanthodactylon Duvigneaud, Bull. Jard. Bot. de l’Etat Bruxeles 16:259 (1941) emend. S.Y. Kondr., Kärnefelt, Elix et A. Thell in Kondratyuk et al. Sauteria 15: 265 (2008) (рис. $1.18, ~ в-\partial ; 1,19 ; 1.20, a, \sigma$, див. вк.ейку).

Типовий вид роду: Xanthodactylon flammeum (L.t.) C.W. Dodge.
Слань тистувата до кущистої. Верхній та нижній корові шари сктероплектенхімні, лише з невеликими включеннями параплектенхіми. Прикріплення до субстрату за допомогою коротеньких розгалужених гаптер, шо розвиваються переважно вздовж країв лопатей (гаптери Xanthodactylon-типу). Апотеції численні, леканорові до зеоринових на зрізі, справжній ексципут сктероплектенхімний (апотеції Xanthoria- або Rusavskia-типу). Спори

біполярні, Xanthodactylon-типу, хоча може бути суміш спор і Xanthoria-типу. Конідії широкопа.личкоподібні.

Хімічні особливості: домінуючою тишайниковою речовиною є лише парієтин, у невеликих кітькостях наявні парієтинова кислота, емодин, те.тосхістин і фалацина.л.

Поиирения: включає щонайменше 5 видів, відомих переважно лише 3 Південної Африки, хоча I вид широко поширений у Південній півкулі.

Етимологія: рід названий за пальцеподібними (подецієподібними) виростами типового виду Xanthodactylon flammeum.

Примітки: тривалий час рід Xanthodactylon був унікальним у родині телосхістових за морфо.погією слані (подецієподібними - циліндричноподібними, порожнистими всередині топатинками слані), однак нещодавно ми встановили також унікальний тип спор, за яким цей рід відрізняється від інших представників родини (Kondratyuk et al., 2008).

Xanthokarrooa S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärmefelt, Elix et A. Thell in Fedorenko et al., Bibl. Lich. 100: 76 (2009) (рис. 1.20, с, див. вктейку).

Типовий вид роду: Xanthokarrooa karrooensis (S.Y. Kondr. et Kärnefelt) S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix et A. Thell.

Слань листувата, лопаті плоскі до напіввипуклих, фіолетово-червоні до коричнево-червоних в експонованих ді.яянках і до білуватих й сіруватих чи зеленуватих у затінку; знизу жовтувата до верхівок лопатей і білувата у центральній частині; гаптери вздовж краю топатинок Xanthodactylon-типу та ризини Oxneria-типу в центральній частині слані; верхній коровий шар палісадний; нижній коровий шар дуже тонкий, складається 31 1(2) рядів клітин з дуже потовшеними стінками. Апотешії леканорові до зеоринових, справжній ексципул псевдопрозоплектенхімний; сумки Teloschistes-типу, спори біполярні. Конідії широкопаличкоподібні.

Хімічні особливості: цитреорозеїн та емодина.я як основні лишайникові речовини.

Поиирения: монотипний рід, який поки що відомий лише з Південної Африки.

Етимологія: назва роду Xanthokarrooa утворена поєднанням двох частин «Xantho-» - від родової назви ксанторії та «Karroo» - назви відомого пусте.льного регіону Карроо у Південній Африші.

Примітки: представники роду Xanthokarrooa відрізняються від ксанторіоїдних .тишайників інших родів вмістом у стані цитреорозеїну та емодиналу як основних лишайникових речовин, шо, очевидно, зумовлюють дуже характерну гаму кольорів слані - від фіолетово-червоного до коричневочервоного на експонованих ділянках і до бі.эуватого та сіруватого чи зеленуватого в затінку, а також наявністю 2 типів ризин і широкопаличкоподібними конідіями.

Xanthomendoza S.Y. Kondr. et Kärnefelt, Bibl. Lich. 68: 26 (1997) (рис. 1.20, д-ж, див. вк.าейку).

Типовий вид роду: Xanthomendoza mendozae (Räsänen) S.Y. Kondr. et Kämefelt.
Слань листувата. Верхній коровий шар параплектенхімний з досить великими, до 13 мкм у діаметрі/поперечнику, клітинними просвітами (параплектенхіма Massjukiella-типу); сершевина заповнена спеціальною механічною

плектенхімою; нижній коровий шар прозоплектенхімний. Органи прикріплення до субстрату - довгі товсті ризини (ризини Xanthomendoza-типу). Апотеції траптяються дуже рідко, теканорові, однак коровий шар не виражений, справжній ексципут псевдопрозоптектенхімний (апотеції Xanthomendoza-типу). Спори біполярні, Xanthoria-типу. Конідії широкопаличкоподібні.

Хімічиі особливості: домінує 1 (парієтин) або 3 лишайникові речовини, зокрема: парієтин, тетосхістин і фатацинал, а також наявна невелика кількість парієтинової кис.тоти та емодину.

Поиирения: вкาючає щонайменше 3 види, один 3 яких широко поширений на обох американських континентах та Африці, а 2 відомі лише з Південної Америки.

Етимологія: родова назва утворена від об’єднання двох частин попередньої назви типового виду роду «Xanthoria mendozae».

Примітки: рід Xanthomendoza є унікальним у родині телосхістових за морфологією слані (різні типи плектенхіми у верхньому та нижньому корових шарах, наявність серцевинної плектенхіми) та наявністю ризини Xanthomendoza-типу), за морфологією апотеціїв (с.ланевого краю без корового шару та псевдопрозоплектенхімного справжнього ексципула) і широкопаличкоподібними конідіями.

У публікації У. Зохтінга зі співавт. (2002) до складу роду Xanthomendoza віднесено до 18 видів. Однак за результатами філогенетичного аналізу за ядерною та мітохондріальною ДНК обсяг роду Xanthomendoza значно звузився (див. також примітки до родів Gallowayella, Jesmurraya, Oxneria).

Xanthoria (Fr.) Th. Fr., Nova Acta R. Soc. Sci. Upsal., Ser. 3, 3: 1661861 (1860) (рис. $1.21, a, \sigma$, див. вклейку).

Типовий вид роду: Xanthoria parietina (L.) Beltr.
Стань листувата. Верхній та нижній корові шари тептодермно-парап.лектенхімні, клітинні просвіти досить малі (у поперечнику до 5-7 мкм). Органи прикріплення до субстрату - короткі, матовиражені гаптери (гаптери Xanthoria-типу). Апотеції численні, .леканорові до зеоринових на зрізі, справжній ексципул сктероплектенхімний (апотеції Xanthoria-типу). Спори біполярні, Xanthoria-типу. Конідії широкоовальні.

Хімічні особливості: домінуюча лишайникова речовина парієтин, також наявна невелика кількість парієтинової кис.лоти, емодину, телосхістину та фалациналу.

Поиирения: включає б.าизько 15 видів, серед яких бі.าьшість широко поширені в Голарктиці та Середземномор"і.

Етимологія: родова назва «зо.лотянка» пов’язана $з$ жовтим ко.эьором слані лишайників роду.

Примітки: рід Xanthoria є унікальним у родині телосхістових за морфологією апотеціїв (поєднання лептодермного параплектенхімного корового шару та сктероплектенхімного справжнього ексципула), за морфологією органів прикріплення до субстрату (гаптери Xanthoria-типу) та широкоовальними конідіями.

До 1990-х років рід вктючав понад 30 видів. Однак з кінця 1990-х зі сктаду роду видітено понад 10 родових груп, тому його обсяг суттєво скоротився.

1.1. Ксанторіоїдні лишайники

1.1.6. Таблиця визначення родів

1. С.ань з дуже широким спектром варіювання кольору від білувато-сірого до густо-червоного та фіолетового в межах однієї слані; містить цитреорозеїн та емодинал як основні .лишайникові речовини; південноафриканський таксон Xanthokarrooa (рис. 1.20, τ; тут і далі див. вклейку)

- Слань звичайно жовта до оранжевої, зрідка сіра до білувато-сірої в межах тієї самої слані; парієтин і телосхістин - основні лишайникові речовини 2

2. Слань звичайно вся біла чи сірувато-біла, ризини двох типів (різняться за розмірами); серцевинна плектенхіма добре розвинена; справжній ексципул апотеція двох типів, власне мезодермно парапректенхімний та псевдопрозоплектенхімний; південноафриканські таксони

Ovealmbornia (рис. 1.14)

- Слань переважно жовта чи помаранчева, лише зрідка у затемнених умовах білувата чи бітувато-сіра; види поширені в обох півку.яях . . . 3

3. Слань утворена дуже випуклими лопатями, які звичайно містять порожнину в серцевині

4

- Слань утворена плоскими, виразно дорзовентральними лопатями 7

4. Слань дуже товста, утворена вертикально орієнтованими або пухко розташованими лопатями, шо налягають одна на одну; лопаті повністю або тише в центрі слані радіатьної будови; спори Xanthodactylonтипу

Xanthodactylon (рис. 1.18-і.20)

- Слань розеткоподібна, лопаті переважно горизонтально орієнтовані; спори Xanthoria-типу

5. Сланеві топаті з чистенними матенькими ризинами вздовж країв; корові шари - патісадна параплектенхіма

Jackelixia [J. hypogymnioides група] (рис. 1.8

- Сланеві лопаті з гаптерами або без спеціатьних органів прикріплення до субстрату

6
6. Станеві лопаті дуже товсті, завтовшки понад 0,5 мм, обидва корові шари сктероплектенхімні типу Caloplaca regalis; конідії вузькоеліпсоїдні

Martinjahnsia (рис. 1.12, в, г)

- С. ааневі лопаті звичайно тонші, дуже варіабельні - від товстих з порожниною в серцевині до пооскуватих в межах однієї слані; конідії паличкоподібні

Rusavskia (рис. 1.16)
7 (3). Корові шари добре розвинені 8

- Нижній коровий шар відсутній Seirophora (рис. 1.17)

8. Верхній та нижній корові шари однакової природи 9

- Верхній та нижній корові шари різні: верхній - парап.еектенхіма, нижній - прозоплектенхіма; серцевина з добре розвиненою плектенхімою

Xanthomendoza (рис. 1.20, д-ж)
9 (7). Гаптери розвиваються лише в місцях контакту слані з субстратом Xanthoria (рис. 1.21, a, б)

- Справжні ризини (розвиваються без будь-якого контакту з субстратом) наявні або органи прикріплення до субстрату відсутні10

10. Справжні ризини наявні, звичайно добре помітні 11

- Спеціальні органи прикріплення до субстрату відсутні 17

11. Ризини різних типів (та різного розміру) наявні в межах однієї с.лані Ovealmbornia (рис. 1.14)

- Ризини бі.эьш-менш однакового розміру в межах однієї слані . . . 12

12. Ризини дуже короткі, на кінчиках роздвоєні чи потовшені, звичайно численні вздовж країв лопатей; корові шари - палісадна параплектенхіма; види поширені у Південній півкулі . . Jackelixia (рис. 1.8-1.10)

- Ризини досить довгі (довжина до I-2 мм чи бітьша), звичайно чис.тенні на нижній поверхні13

13. Ризини дуже тоненькі (діаметр до 40 мкм), утворюють густу сітку знизу; корові шари псевдопрозоплектенхімні; конідії веретеноподібні Josefipoeltia (рис. 1.11, в, г, див. вктейку)

- Ризини звичайно ширші (діаметр понад 40 мкм; конідії паличкоподібні 14

14. Слань утворена плоскими горизонтально спрямованими лопатями ве.иикого розміру; корові шари мезодермні параплектенхімні

Oxneria (рис. 1.15)

- С.аневі лопаті звичайно вузькі і неве.тикі, вертикатьно чи горизонтально спрямовані; корові шари параплектенхімні

15. Справжній ексципу.л апотеніїв добре розвинений, псевдопрозоплектенхімний або склероплектенхімний . 16

- Справжній ексципут апотеціїв відсутній або погано виражений, структура «textura intricata» Honeggeria (рис. 1.12, a, б)

16. Справжній ексшипул апотеціїв Gallowayella (рис. 1.7, $a-$ г)

- Справжній ексципуу апотешіїв склероплектенхімний Jesmurraya (рис. 1.11, a, б)
17 (10). Слань розеткоподібна, складається з випуктих лопатей, які часто порожнисті всередині; конідії паличкоподібні Rusavskia (рис. 1.16)
- С.ань від розеткоподібної до напівкущистої чи подушкоподібної; лопаті звичайно дуже малі, дорсиветра.ъьної чи радіальної будови; конідії широкоеліпсоїдні Massjukiella (рис. 1.13).

1.2. КАЛОПЛАКОЇДНІ ЛИШАЙНИКИ

Для накипних лишайників - представників родини Teloschistaceae, визнаними на сьогодні є переважно 2 роди - Caloplaca та Fulgensia. Однак переважна більшість таксонів належить до роду Caloplaca. 3 метою відмежування від того, шо нижче проаналізовано переважно накипні представники, які включені до роду Caloplaca в широкому розумінні (Caloplaca s. lat.), ми в цілому називаємо цю групу лишайників калоплакоїдними.

У «премолекулярний» період було декілька спроб виділити зі сктаду роду Caloplaca менші групи видів. Так, у цілому було запропоновано близько 20 родових груп. Однак за даними табт. 1.2 дтя частини родів важко визначити типовий вид, оскітьки вони не були вказані авторами таксонів. Наприклад, дтя встановлення статусу роду Ниеа існує проблема виявлення та збору свіжих зразків для їх подальшого включення до молекулярного вивчення і фітогенетичного аналізу.
1.2. Калоплакоїдні лишайники

Таблиця 1.2. Назви родів та їх типових видів, запропонованих для накипних представників родини Teloschistaceae

Pim	Pik оเублікушайя	Тилоший шы
Aglaopisma De Not. ex Bagl.	1856	?
Amphiloma Körb.	1855	?
Blastenia A. Massal.	1852	Blastenia ferruginea
Caloplaca Th. Fr.	1860	Caloplaca cerina (Hedw.) Th. Fr.
Candelariopsis (Sambo) Szatala	1959	?
Follmannia C.W. Dodge,	1967 [1966]	Follmannia nufa C.W. Dodge
Iulgensia A. Massal. et De Not.	1853	Iitlgensia vulgaris A. Massal. et De Not.
(iasparrinia Tornab.	1848	(iasparrinia murroum (Hoftm.) Tornab. $=$ Caloplaca saxicola (Hotfim.) Nordin
Gyalolechia A. Massal.	1852	Gyalolechia aurea (Schaer.) A. Massal.
Iluea C.W. Dodge et G.E. Baker	1938	Iluea flava C.W. Dodge et G.E. Baker
Kueulingeria Trevis.	1857	Kuetlingeria visianica (A. Massal.) Trevis.
Leproplaca (Nyl.) Nyl., in Hue	1888	Leproplaca xantholyta (Nyl.) Nyl.
Mawsonia C.W. Dodge	1948	Mawsonia harrissonii C.W. Dodge
Meroplacis Clem.	1909	Meroplacis brebissonï (Fée) Clem.
Nispsora A. Massal.	1861	Niopsora ecklonii A. Massal.
Polycauliona Hue	1908	Polycauliona regalis (Vain.) Hue
Pyrenodesmia A. Massal.	1853	Pyrenodesmia chalybaea (Fr) A. Massal.
Tetrophthalmuium (Mull. Arg.) Hillm.		?
Thamnonoma (Tuck.) Gyeln.	1933	?
Triophthalmidurm (Müll. Arg.) Gyeln.	1933	' '
Xanthocarpia A. Massal. et De Not.	1853	Xanthocarpia ochracea (Schaer.) A. Massal. et De Not.

Більшу частину таксонів, наведених у табл. 1.2, розглянуто як підроди у складі роду Caloplaca або їх ранг був ще нижчий. Як правило, вказані таксони виділяли лише на основі одної-двох простих ознак і тому розглядали як дуже штучні (Kärnefelt, 1989). Тому стід визнати справедливим висновок У. Зохтінга та Ф. Лутзоні (Sochting et Lutzoni, 2003), шо сучасне розуміння роду Caloplaca затишається майже таким самим, яким воно було понад 100 років тому.

Найдетатьніший перетік внутрішньородових груп дтя роду Caloplaca наведений у роботах А. Вейда (Wade, 1965), Г. Ктозаде, К. Py (Clauzade, Roux 1985), Й. Пельта, Е. Хінтерегтер (Poelt, Hinteregger, 1993). Вейд (Wade, 1965) видітив дтя лишайників роду Caloplaca Британських островів чотири секціі: Sect. Caloplaca, Sect. Triophthalmidium, Sect. Gasparrinia, Sect. Leproplaca. Пepша з них (Sect. Caloplaca) включала види з накипною сланню та апотеніями з або без сланевого краю та із сушільним чи несушіъьним водоростевим шаром під гіпотецієм. За А. Вейдом, ця секція охоплює види з різними пігментами.

Друга секція (Sect. Triophthalmidium) включала таксони 3 накипною сланню, апотеції без сланевого краю та аскоспори з чотирма клітинами.

До третьої секції (Sect. Gasparrinia) належали види з плакодіоїдною чи лускатою сланню і апотешії зі сланевим краєм.

Секція Leproplaca включала лише таксони з лепрозною сланню, які звичайно бувають .лише стерильними.

Для лишайників Західної Європи Г. Клозаде та K. Py (Clauzade, Roux, 1985) пропонували 6 підродів, 3 з яких (Caloplaca, Gasparrinia та Leproplaca) були, відповідно, подібними до концепції А. Вейда. Однак підрід Caloplaca у розумінні Г. Ктозаде та К. Ру було поділено на 3 групи, зокрема: C. citrina, C. cerina та C. ferruginea. Підрід Gasparrinia був розді.еений на 5 груп видів: C. aurantia, C. aurea, C. carphinea, C. persica та C. saxicola.

Підрід Руrenodesmia включав види з білувато-сірою с.танню (яка давала або не давала позитивну фіолетову реакцію з KOH) та майже чорними апотеціями зі сланевим або лецидеєвим краєм i, відповідно, епітецієм з позитивною (фіолетовою) чи негативною реакцією на КОН.

Підрід Gyalolechia об'єднував види зі спорами, шо мали дуже тонку перегородку (менша 3 мкм завт.).

Підрід Xanthocarpia включав види з тонкою чи ендолітною сланню та з 4-к.тітинними (або 3-септованими) спорами.

Пізніше Хенсен з колегами (1987) для представників роду Caloplaca 3 Гренландії виділили 10 груп видів: C. cerinae, C. chlybeae, C. citrinae, C. fernugineae, C. nivales, C. pauliae, C. pyraceae, C. saxicolae, C. sinapispermae та C. trachyphyllae.
Й. Пельт та Е. Хінтереггер (1993) для гімалайських представників роду Caloplaca виділили 21 групу видів.

Першочерговими завданнями ревізії накипних представників родини телосхістових, зокрема роду Caloplaca, є перелік всіх родових груп, які були запропоновані в XIX та XX ст. дтя цих лишайників, установлення типових видів для кожної з родової групи, аналіз положення типових видів у філогенетичному дереві родини (іншими стовами - перевірка статусу «морфологічних родів» за молекулярними даними) та анатіз обсягу «морфологічних родів» за молеку.лярними ознаками.

1.2.1. Положення у філогенетичному дереві родини Teloschistaceae

Наявні відомості шодо ядерної ДНК у генобанку та отримані в ході наших досліджень дані щодо ядерної та мітохондріальної ДНК накипних представників родини засвідчують, шо філогенетичне дерево родини телосхістових має 3 основні філогенетичні гітки (або філи); умовно ше Seirophora Caloplaca s. str. - Fulgensia s. str. (перша), Josefpoeltia - Teloschistes - Letrouitia (друга) та Honeggeria - Xanthoria s. str. - Xanthomendoza (третя) (рис. 1.22). С.тід зазначити, шо інколи перша та друга гілки міняються місцями у філогенетичному дереві родини (рис. $1.22-1.29$), однак при цьому склад указаних гілок залишається незмінним.

Перша філа Seirophora - Caloplaca s. str. - Fulgensia s. str. включає декілька монофітетичних груп, серед яких лише 3 мають відповідні назви як окремі родові групи: Seirophora, Caloplaca s. str. i Fulgensia s. str. Кожна $з$ указаних монофітетичних гілок представлена кі.тькома видами, в тому числі типовими видами вказаних родів. Так, гітка Seirophora вктючає типовий вид S. villosa; гілка Caloplaca s. str. - типовий вид C. cerina; гілка Fulgensia s. str. - типовий вид F. fulgens.

Для зручності подання всіх проанатізованих таксонів у першій філі (Seirophora - Caloplaca s. str. - Fulgensia s. str.) наводимо їх характеристику

Рис. 1.22. Основні три філи філогснстичного дерсва родини Tcloschistaceac за даними послідовностей ITS-ділянки ядерної ДНК. Товстішими лініями виділені зв’язки, які підтверджені в декількох аналізах, і ті, що мають найвищі рівні бутстреп-підтримки

Розділ 1. Філогенетичний аналіз лишайників родини Телосхістових - Teloschistaceae ...

Рис. 1.23. Філогенетичне дерсво родини Teloschistaccac за даними послідовностсй ITSділянки ядерної ДНК (збільшсний фрагмент субфіли la)
1.2. Калоплакоїдні лишайники

Рис. 1.24. Філогенстичне дерево родини Teloschistaceac за даними послідовностей ITS-ділянки ядерної ДНК (збільшений фрагмент субфіли 1b)

Рис. 1.25. Філогенетичне дерево родини Teloschistaceae за даними послідовностей ITSділянки ядерної ДНК (збільшений фрагмент філи 2)

за двома умовно розділеними субфілами: la Seirophora - Caloplaca s. str. (див. рис. 1.23) та Ib, шо умовно названа Fulgensia s. str. (див. рис. 1.24).

У субфілі Seirophora - Caloplaca s. str. (див. рис. 1.23) спеціальної ревізії потребують власне роди Caloplaca s. str. i Seirophora. Таксономія групи Caloplaca cerina (що і є родом Caloplaca s. str.) розроблена у дисертації Я. Шона (Šuon, 2009). Однак за результатами секвенування ITSI/ITS2 ділянки ядерної ДНК положення у складі цього роду підтверджене лише для видів C. cerina, C. stillicidiorum, C. hanneshertelii, C. chlorina та C. «areolata». Питання про положення видів C. cirrochroa-групи (зокрема, видів C. cirrochroa i C. proteus), а також видів Caloplaca xantholyta-групи (або власне роду Leproplaca s . str.) залишається відкритим, оскільки для цих видів отримані лише одиничні послідовності. Для уточнення їх статусу необхідно отримати додаткові молекулярні дані й бажано за декількома різними генами.

Рис. 1.26. Філогенетичне дерево родини Teloschistaceae за даними послідовностей ITSділянки ядсрної ДНК (збільшсний фрагмснт субфіли 3а)

Рис. 1.27. Філогенетичне дерево родини Teloschistaceae за даними послідовностей ITSділянки ядерної ДНК (збільшений фрагмент субфіли 3b)

1.2. Калоплакоїдні лишайники

Рис. 1.28. Філогенетичне дерево родини Teloschistaceae за даними послідовностей ITSділянки ядерної ДНК (збільшений фрагмент субфіли 3с)

Перша субгілка (Seirophora - Caloplaca s. str.) включає декілька груп видів, які до останнього часу розглядали у складі роду Caloplaca s. I. (рис. 1.23). Так, до її складу входять групи видів C. aurantia і C. variabilis (=chalybea). За молекулярними даними, група Caloplaca aurantia включає види C. aurantia, C. thallincola, C. flavescens (рис. 1.21, д, е, див. вклейку) і C. aegaea. 3 цією групою має найтісніші родинні зв'язки ще не описаний із Середньої Азії вид Caloplaca sp . kudl (рис. 1.30 , в, г, див. вклейку), який зовнішньо дуже подіб-

Рис. 1.29. Філогснстичне дсрсво родини Tcloschistaccac за даними послідовностсй ITSділянки ядерної ДНК (збільшений фрагмент субфіли 3d)

ний до азійського виду C. scrobiculata (див. рис. 1.27). Однак Caloplaca sp. kudl відрізняється від C. scrobiculata (рис. 1.30, д, е, див. вклейку) значно меншими розмірами сланевих ареол, апотеціїв, а також розмірами спор i паразитичним способом існування. Як показано на рис. 1.23, 1.24, Caloplaca sp. kudl утворює виразну зовнішню групу до групи Caloplaca aurantia видів. С.під також наго.осити, що, відповідно до даних ITSI/ITS2-ділянки ядерної ДНК, потоження видів C. alpigena, C. paulii, C. australis у сктаді групи C. aurantia потребує податьшого вивчення. Група C. variabilis (=chalybea) (або рід Pyrenodesmia s. str.), за даними ITS1/ITS2 ділянки ядерної ДНК, включає види C. variabilis, C. transcaspica, C. chalybaea, C. badiorufa, C. concreticola. Статус видів C. albopustulata, C. bicolor, C. aractina, C. aetnensis, C. teicholyta, C. pelioscypha, C. cretensis, які за даними ITSI/ITS2 дітянки ядерної ДНК виявляють найбітьшу близькість до групи C. variabilis, має бути перевірений за даними фітогенетичного ана.лізу за іншими генами та морфо-лого-анатомічними ознаками.

Субфіла Fulgensia s. str. першої філи (Seirophora - Caloplaca s. str. - Fulgensia s. str.) (див. рис. 1.24) включає втасне монофітетичну гілку роду Fulgensia s. str. і декілька груп видів, які входять до складу роду Caloplaca s. lat. Це група C. ferruginea (або рід Blastenia s. str.), яка включає види C. ferruginea, C. furfuracea, C. ammioslipea, C. crenularia та C. herbidella. Крім роду Blastenia s. str. друга субфіта об'єднує також групи видів Caloplaca demissa-, C. fla-vorubescens-, C. gloriae- та C. haematommona-.

Таким чином, перша гілка Seirophora - Caloplaca s. str. - Fulgensia s. str. фі.огенетичного дерева родини те.осхістових включає роди Caloplaca s. str., Fulgensia s. str. i Seirophora, шо визнано у бі.льшості . эіхенологічних праць, а також роди Pyrenodesmia s. str. і Blastenia s. str., які до останнього часу розглядали у складі штучного роду Caloplaca s. lat. Крім того, у цій гілці представлений рід Leproplaca, статус якого потребує подальшого вивчення.

Друга філа Josefpoeltia - Teloschistes - Letrouitia включає описані на сьогодні роди Josefpoeltia, Teloschistes і Letrouitia, а також групи видів Caloplaca rexfilsonii (рис. 1.31, a, б, див. вклейку) і C. yarraensis (див, рис. 1.25). Розмішення представників роду Letrouitia у складі цієї гілки ставить під сумнів виділення родини Letrouitiaceae (Lumbsch, Huhndotf, 2007). Згідно 3 нашими даними, її виділення недоцільно, а також необхідні перегляд обсягу і суттєве зниження до обсягу другої фіти. ІІншими словами, родина Teloschistaceae s. str. emend. cum loco включає лише вказані више 3 роди (Josefpoeltia, Teloschistes, Letrouitia), а також новий чи навіть декілька ше не описаних родів, до складу яких входять накипні представники фіти. Представники зазначеної родини є переважно видами тропічних районів і регіонів Південної півкулі. Представники першої й третьої філ складають відповідно окремі родини Caloplacaceae s. str. emend. cum loco тa Xanthoriaceae s. str. emend. cum loco.

Третя філа Honeggeria - Xanthoria s. str. - Xanthomendoza включає 4 більш-менш однакові субфі.七и. Оскі.льки третя філа є найчис.七еннішою за кількістю груп видів, шо утворюють монофілетичні гілки, для зручності їх анатіз наведений за такими субфілами (див. рис. 1.26-1.29): 3а - Xanthoria - Xanthodactylon - Rusavskia (рис. 1.26); 3b - Massjukiella s. lat. (рис. 1.27);

3c - Xanthomendoza s. lat. - Oxneria (puc. 1.28); 3d - Polycauliona - Xanthocarpia (рис. 1.29).

Суб́філа 3a Xanthoria - Xanthodactylon - Rusavskia (рис. 1.26) включає переважно представників листуватих лишайників, зокрема родів Jackelixia, Martinjahnsia, Ovealmbornia, Rusavskia, Xanthodactylon, Xanthokarrooa, Xanthoria (див. Fedorenko et al., 2009, 2012), а також двох груп диморфних накипних лишайників - Caloplaca saxicola та C. lucens.

Слід зазначити, що листуваті представники утворюють 3 окремі гі.лки в межах субфіти: Xanthodactylon s. lat., Xanthoria s. lat. і Rusavskia. При цьому роди Jackelixia, Xanthokarrooa, Ovealmbornia входять до складу гі.าки Xanthodactylon s. lat., а рід Martinjahnsia - до Xanthoria s. lat. На жаль, запропоновані нами нові роди Jackelixia, Ovealmbornia, Xanthokarrooa (Fedorenko et al., 2009, 2012; Kondratyuk et al., 2009; Wirth, Kondratyuk, 2010) на сьогодні включають до роду Xanthoria s. lat. (Lumbsch et al., 2009; Printzen, 2010). Однак останнє повністю протирічить даним фітогенетичного анатізу. За мо.екулярними даними, роди Jackelixia, Ovealmbornia та Xanthokarrooa можуть бути віднесені до Xanthodactylon s. l., a.ее ні в якому разі не до роду Xanthoria s.l.

Група Caloplaca saxicola, шо також входить до складу субфіли 3с Xanthoria - Xanthodactylon - Rusavskia включає види, які традиційно розглядають як ч.оенів роду Gasparrinia (C. saxicola, C. decipiens, C. subbracteata, C. schistidii, C. biatorina, C. arnoldii), а також нешодавно описані (Caloplaca rouxii) й ше не описаний азійський вид Caloplaca sp . ival.

Цікавим є те, шо до субфі.าи 3а входить також рід Ниеа, який до наших досліджень визнавали лише антарктичним родом і родом, що охоплює лише види з темним ексципулом і темним гіпотецієм. Однак за нашими даними, вид роду Huea, зокрема H. cerusata, входить до складу гілки, яка об'єднує лишайники, що мають апотеції з яскравим жовтим станевим краєм і безбарвним гіпотецієм. Тому подальша ревізія представників гілки має бути спрямована на уточнення об'єму роду Hиеа і статусу видів, шо виявляють бтизькість до інших його представників.

Суб́філа 3b Massjukiella s. lat. (рис. 1.27) включає лише один рід Massjukiella .листуватих лишайників, а також декілька груп накипних представників: Caloplaca marina (рис. 1.31, д, e, див. вктейку), C. holocarpa, C. verrисиlifera, C. scrobiculata та C. ulcerosa.

Субфіла 3с Xanthomendoza - Oxneria (рис. 1.28) включає роди Xапthomendoza s. str., Gallowavella, Jesmurraya та Oxneria (Fedorenko et al., 2012). Однак крім указаних родів листуватих . ишайників до складу субфіли входять представники накипних лишайників, які до останнього часу розглядали у сктаді роду Caloplaca s. lat. Це дві групи видів - Caloplaca trachyphylla (рис. 1.30, а, див. вклейку) та C. intrudens. Перша 3 них дуже близька до роду Xanthomendoza s. str., друга утворює зовнішню групу до всієї субфіли Xanthomendoza s. 1. (див. рис. 1.28).

Слід наголосити, шо рід Honeggeria, який в усіх анатізах утворює зовнішню групу до третьої філи (Honeggeria - Xanthoria s. str. - Xanthomendoza) в цілому, логічно розглядати як дуже близький саме до 3 с субфі.ли (Xanthomendoza - Oxneria). Лишайники цього роду спочатку відносили до роду

Xanthomendoza, зокрема, до виду X. weberii (сучасна назва Gallowavella weberii). Однак нашими дос.тідженнями (Lumbsch et al., 2011) показана приналежність цього матеріалу до іншого виду - Honeggeria rosmariae, який і є типовим видом роду.

Субфіла 3d Polycauliona - Xanthocarpia (рис. 1.29) вктючає досить численну групу накипних представників, яку до цього часу зараховували до роду Caloplaca s. lat. Центральне положення в групі займає вид C. ochracea. Досить часто види цієї гілки розглядати як члени групи C. crenulatella (рис. 1.21, в, $е$, див. вклейку). Однак у зв’язку з тим, шо типовий вид роду Массалонто Xanthocarpia ochracea входить до сктаду цієї гітки, дтя всіх їі видів (від Caloplaca borysthenica до C. erichansenii, C. marmorata, C. aquensis) слід прийняти назву Xanthocarpia. Окрему гілку субфіли 3d сктадають накипні лишайники, які донині відносити до роду Caloplaca s. lat. Однак фактично вони є представниками роду Polycauliona, оскітьки типовий його вид P. regalis входить до сктаду шієї гі.лки разом $з$ видами Caloplaca sublobulata та C. johnstonii. Окрему гілку субфіли 3d сктадають також накипні лишайники Caloplaca subsoluta-групи, до складу якої крім C. subsoluta входить також C. irrubescens.

Отже, субфіла 3d включає досить численну групу накипних представників, які дотепер зараховували до роду Caloplaca s. lat., однак фактично вони є представниками 2 родів (Polycauliona та Xanthocarpia), шо до останнього часу не визнавали.

Отже, використання методів молекулярної філогенії дало змогу підтвердити існування набагато більшої кількості груп видів у сктаді родини телосхістових, порівняно з кількістю груп, виді.าених за морфолого-анатомічними та біохімічними даними. Серед ксанторіоїдних (листуватих) представників родини те.осхістових на основі результатів філогенетичного ана.лізу за даними секвенуввння ядерної та мітохондріальної ДНК ми підтвердили існування 13 родових груп: Gallowayella, Jackelixia, Jesmuraaya, Josefpoeltia, Martinjahnsia, Massjukiella, Oxneria, Ovealmbornia, Rusavskia, Seirophora, Xanthodactylon, Xanthokarrooa та Xanthoria s. str. Результати філогенетичного аналізу представників родини телосхістових як за ядерною, так і за мітохондріа.ьною ДНК засвідчують, шо роди Seirophora, Xanthoria s. str. i Xanthodactylon s. str. також є поліфілетичними. Статус різних груп видів, що входить до їх складу, потребує детальної ревізї̈ в подальшому. Ми проводимо ревізію вказаних груп видів за морфологічними, анатомічними та біохімічними ознаками.

Кушисті . иишайники родини телосхістових на сьогодні розглядають у складі одного роду Teloschistes (рис. 1.18, а, б, див. вклейку). Однак за нашими даними, цей рід також не є монофітетичним і, очевидно, податьша таксономічна ревізія роду Teloschistes підтвердить відчленування декітькох груп видів з його сктаду.

Філогенетичний анатіз усіх даних, шо налвні в генобанку шодо представників родини Teloschistaceae Zahlbr. свідчить про те, що переважна бі.льшість раніше описаних родових груп накипних лишайників за морфологічними ознаками мають найвищий рівень бутстрепової підтримки за молекулярними даними. Це насамперед роди Blastenia A. Massal., Pyrenodesmia A. Massal., Xanthocarpia A. Massal., Gasparrinia Tornab., Polycauliona Hue, які не визнавали до останнього часу і розглядали у складі роду Caloplaca Th. Fr. s. lat.

1.2.2. Рівні підтримки і таксономічний склад монофілетичних груп родини Teloschistaceae за молекулярними даними

Нами встановтено, що роди Letrouitia Hafellner et Bellemère, Josefpoeltia S.Y. Kondr. et Kärnefelt, Fulgensia A. Massal. et De Not., Xanthoria (Fr.) Th. Fr., Jackelixia S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt et A. Thell, Gasparrinia Tomab., Xanthococca A. Massal., Polycauliona Hue, Xanthomendoza S.Y. Kondr. et Kärnefelt утворюють монофілетичні групи з найвищим рівнем підтримки, тобто 100% (рідко 99%). Ми також виявили, шо роди Blastenia A. Massal., Xanthodactylon Duvigneaud em. S.Y. Kondr. et Kärnefelt, i Xanthokarrooa S.Y. Kondr., N.M. Fedorenko, S. Stenroos, Kärnefelt, Elix et A. Thell maють дуже високий рівень бутстреп-підтримки - $97-100 \%$ (рідко $95-97 \%$). Роди Caloplaca Th. Fr. [s. str.], Oxneria S.Y. Kondr. et Kärnefelt, Pyrenodesmia A. Massal., Rusavskia S.Y. Kondr. et Kärnefelt та Seirophora Poelt мають порівняно низький рівень підтримки, інколи нижче 95%-і бутстреп-підтримки.

Разом $з$ тим за нашими даними роди Gasparrinia, Blastenia, Pyrenodesmia, які були виділені за морфологічними ознаками у XIX ст., $є$ також поліфілетичними. Їх представники розмішуються на різних, часто значно віддалених монофілетичних гі.эках. Так, у складі роду Gasparrinia за даними мотекулярних достіджень підтверджено положення тише 7 видів, у тому числі типовий вид G. saxicola (Pollich) Tornab. (із понад 90 видів, включення яких до роду Gasparrinia пропонувалось різними авторами). Подібно до цього у складі роду Blastenia за молекулярними даними підтверджено положення 5 таксонів, включаючи типовий вид Blastenia fernuginea (Huds.) A. Massal. (понад 230 видів, по останнього часу зарахованих до шього роду). Так само положення лише 5 видів роду Pyrenodesmia, в тому числі типовий вид Pyrenodesmia variabilis (Pers.) A. Massal. (понад 45 видів, до останнього часу віднесених до роду Pyrenodesmia), підтверджено за молекулярними даними.

В цітому за результатами філогенетичного аналізу всіх даних, шо наявні в генобанку, нами виявтено понад 30 окремих монофітетичних гіток, що мають високу бутстреп-підтримку, серед яких більше 10 не можна віднести ні до яких відомих родів серед представників родини Teloschistaceae Zahlbr. На жаль, молекулярні дані шодо представників 5 родів - Apatoplaca Poelt et Hatellner, Cephalophysis (Hertel) Kilias, Huea C.W. Dodge et G.E. Baker (дані шодо типового виду роду), Ioplaca Poelt i Xanthopeltis R. Sant., відсутні у генобанку.

1.2.3. До ревізії лишайників груп Caloplaca flavorubescens і C. cinnabarina за морфолого-анатомічними та біохімічними ознаками

Значну кіэькість видів групи Caloplaca flavorubescens знайдено починаючи з 1920-х років. Так, відомий білоруський ліхенолог М.П. Томін описав C. gordejevi (як Blastenia gordejevi та Placodium gordejevi) з Дајекого Сходу Росії. 3 того часу цей вид наводили лише у російськомовній літературі (Томин 1956; Кондратюк и др., 2004). Європейські ліхенологи дотримувалися

пог.ляду M. Гіра.лт $з$ ко.легами (Giralt et al., 1993), які вивчали зразки лишайників C. gordejevi з Далекого Сходу Росії й віднесли їх до виду Caloplaca flavorubescens. Інакше кажучи, цей вид європейські автори не розрізняли, а вктючати як синонім до виду C. flavorubescens.
C. gordejevi відрізняється від C. flavorubescens набагато темнішими чер-вонувато-оранжевими чи іржасто-оранжевими дисками апотеціїв (на відміну від жовтих чи жовто-оранжевих у C. flavorubescens) та жовтувато-оранжевим власним краєм (на відміну від світлішого сланевого краю у C. flavorubescens) (див. також: Кондратюк и др., 2004).

Слід зазначити, що сктад .тишайникових речовин східноазійського матеріалу до останнього часу не вивчений.

У 1996 р. ми спі.льно з датським ліхенологом Ульріком Сохтінгом описати окремий вид Caloplaca oxneri S.Y. Kondr. et Sochting (Kondratyuk et al., 1996) на основі матеріалу з Далекого Сходу Росії.

Слід зауважити, шо відомий український .іхенолог A.M. Окснер пианував описати цей лишайник як новий для науки вид в 1920-1930-х роках під назвою Caloplaca phloginoides Oxner. Однак указана назва залишитася гербарною, оскільки ці дані ніколи не були опубліковані. Зазначений таксон ми назвати на честь А.М. Окснера як Caloplaca oxneri, тому шо в 1993 р. австрійські дослідники Й. Пельт і Е. Хінтереггер опублікували з Азії вид лишайника $з$ дуже близькою назвою - Caloplaca phloginopsis Poelt et Hinteregger.

Вид Caloplaca oxneri відрізняється від C. gordejevi та C. flaworubescens за наявністю ізидіїв або ізидієподібних, вертика.эьно спрямованих фрагментів слані.

Крім того, в тропічних районах відомий ще один вид з ізидіями із цієї групи - C. bassiae (Ach.) Zahlbr (рис. 1.31, в, г, див. вклейку). Однак на відміну від Caloplaca oxneri він має справжні ізидії, які є виразно циліндричними до па.тьце- та коралоподібних і утворюють густі суцільні дернинки із вертика.эьно спрямованих ци.піндричних елементів яскраво-жовтого кольору. Жовті ізидії часто контрастують на темнішій зеленуватій чи невиразній слані. Апотеції C. bassiae часто мають жовтий колір (як диск, так і край), без домішку темних оранжевих або червонуватих відтінків (як у видів C. gordejevi та C. flavorubescens).

у 2011 р. опубтіковані резутьтати корейських достідників Й. Йоші та Дж. Xo (Yoshi et al., 2010) шодо ревізії корейського матеріалу групи C. flavorubescens. При цьому описано новий для науки вид C. subflavorubescens, який відрізняється від C. flavorubescens наявністю гірофорової кислоти, а також ізидієподібних утворів. Однак, на жаль, зіставляючи C. subflavorubescens з близько спорідненими видами, автори не наводи.и порівняння з видами C. gordejevi та C. oxneri, описаними з Датекого Сходу Росії.

Наші результати спеціального вивчення лишайникових речовин корейського, російського та китайського матеріа.у вказаних видів засвідчують наявність 4 видів групи C. flavorubescens, які досить чітко розрізняються за комплексом морфолого-анатомічних і біохімічних ознак.

Так, Caloplaca gordejevi відрізняється як за відсутністю ізидієподібних, вертикально спрямованих виростів с.тані (іншими стовами, слань гтаденька

до горбкуватої), так і за біохімічними ознаками - наявністю речовин фрагілінового та 7-хлороемодинового хемосиндромів. Власне за біохімічними ознаками цей вид відрізняється від європейського виду C. flavorubescens, шо характеризується наявністю антрахінонів парієтинового хемосиндрому. Bi домості щодо біохімічних ознак виду C. gordejevi отримані в ході наших досліджень уперше.

Caloplaca oxneri розрізняється як за наявністю ізидієподібних, вертикатьно спрямованих виростів стані, так і за біохімічними ознаками: вияв.тено речовини фрагілінового, 7-хлороемодинового та гірофорового хемосиндромів. ІІншими словами, вид дуже подібний до східноазійського виду C. gordejevi, однак відрізняється від останнього наявністю ізидіозної слані, а також гірофорової кис.лоти у слані. Відомості шодо біохімічних ознак цього виду отримані в ході наших достіджень уперше.

За такої ситуації ми також змушені внести корективи щодо розуміння окремих видів. Вид Caloplaca subflavorubescens відрізняється як за біохімічними ознаками (наявністю речовин фрагілінового, 7-хтороемодинового та гірофорового хемосиндромів), так і морфологічними. Лишайники цього виду характеризуються сланню від гладенької до досить зморшкуватої чи горбкуватої. Однак зразки з ізидієподібними, вертикально спрямованими виростами с.лані, які раніше відносили до цього виду, належать до виду Caloplaca oxneri. Відомості шодо наявності антрахінонів фрагілінового та 7-хлороемодинового хемосиндромів у цього виду отримані під час наших достіджень уперше.

Слід також зазначити, що попередні вказівки Й. Йоші з колегами (Joshi et al., 2010) про наявність антрахінонів парієтинового хемосиндрому є помилковими, що пояснюється використаннями .лише методу тонкошарової хроматографіі. Для розмежування антрахінонів парієтинового та емодинового і фрагілінового та 7-хлороемодинового хемосиндромів можтиве лише за умови використання високочутливої рідинної хроматографії.

У результаті камеральної обробки колекцій з Далекого Сходу Росії було виявтено додаткові токалітети нових дтя науки видів тишайників Caloplaca kiewkaensis, C. trassii та C. ussuriensis, законні описи яких опубліковані в 2011 р. (Kondratyuk et al., 2011).

Шодо розуміння видів групи Caloplaca cinnabarina корейські дослідники (Joshi et al., 2011) заперечують видовий статус таксона Caloplaca aequata (Hue) Zahlbr., що був описаний французьким дослідником А. Гю в 1915 р. (Hue, 1915). При цьому вони порівнюють лише морфологічні ознаки обох таксонів, а відомості шодо складу .лишайникових речовин корейського матеріалу не наводять. Й. Йоші з колегами (Joshi et al., 2011) дійшли висновку щодо значного поширення виду C. cinnabarina, а вид C. aequata (Hue) Zahlbr. вважають синонімом останнього.

Ми опублікували результати ревізії австралійських представників групи C. cinnabarina (Kondratyuk et al., 201 lb) та описали новий дтя науки вид, який відрізняється від відомого C. cinnabarina комплексом морфологічних, а особ.ливо біохімічних ознак - наявністю широкого спектра лишайникових речовин: гірофорової, олеєвої та леканорової кислот тошо.

Висновок корейських колег шодо фактичного закриття Caloplaca aequa$t a$ (Hue) Zahlbr. і вктючення його як синоніма до C. cinnabarina ми сприйняли з деяким сумнівом, оскільки розуміємо важливість біохімічних даних у систематиці цієї групи. Тому, перебуваючи в Корейському інституті вивчення лишайників Сунчонського нашіонального університету у вересніжовтні 2011 р., ми провели спешіальне вивчення лишайникових речовин корейських і наявних китайських лишайників достіджуваної групи.

Отримані нами результати свідчать, шо корейські зразки містять такі самі лишайникові речовини, які були наведені нами для австралійського матеріалу під назвою Caloplaca brownliae. Іेнакше кажучи, стань містить найбільшу кількість гірофорової кислоти, тоді як о.еєва та леканорова кислоти наявні в менших коншентраціях.

Отже, на основі результатів дослідження хімічного складу лишайникових речовин корейського та китайського матеріалу зроблено такі таксономічні висновки.

По-перше, не можна погодитися з висновком корейських достідників шодо невизнання видового статусу виду Caloplaca aequata. Цей вид відрізняється від C. cinnabarina за наявністю депсинів гірофорового хемосиндрому - гірофорової, отеєвої та теканорової кислот (на відміну від C. cinnabarina, шо містить лише антрахінони парієтинового хемосиндрому).

По-друге, видова назва Caloplaca aequata є законною також для австралійського матеріату. Запропоновану нами назву C. brownliae с.тід розглядати як пізніший синонім до назви французького дослідника А. Гю Caloplaca aequata. Тому наші результати дають змогу підтвердити сучасними знахідками існування описаного А. Гю виду Caloplaca aequata та значно розширити відомості шодо поширення цього виду в Західному Тихоокеанському регіоні, від Кореї та Китаю на півночі до Австралї̈ включно на півдні.

* * *

Резутьтати спешіатьної ревізії морфологічних, анатомічних і хімічних ознак підтвердили родовий статус «мотекулярних» груп видів Gallowayella, Jesmurraya, Honeggeria, Massjukiella та Martinjahnsia, шо були виявтені як монофілетичні групи за філогенетичним аналізом даних ядерної та мітохондріальної ДНК.

Положення роду Letrouitia разом з родами Teloschistes та Josefpoeltia ставить під сумнів існування окремої родини Letrouitiaceae.

Високі рівні підтримки монофілетичних гілок, до складу яких входять групи видів Caloplaca fernuginea, C. saxicola, C. ochracea, C. variabilis, C. regalis, і які значно віддалені від Caloplaca s. str., шо вктючає лише групу C. cerina, свідчать про необхідність перегляду розуміння роду Caloplaca в цілому. Таким чином, наступним черговим завданням вивчення цієї групи лишайників ϵ ревізія накипних представників родини Teloschistaceae.

Філогенетичний аналіз представників родини те.осхістових за пос.лідовностями ядерної та мітохондріальної ДНК свідчить про те, шо групи видів Caloplaca flavorubescens, C. aurantia, C. trachyphylla та C. verruculifera займа-

ють відособлене положення від групи Caloplaca cerina (тобто роду Caloplaca s. str.). Останнє підтверджує наше припушення, що групи видів Caloplaca flavorubescens та C. trachyphylla утворюють окремі монофітетичні гілки у філогенетичному дереві родини телосхістових, а також дає підстави до перегляду їх родового статусу.

Опубліковано 3 нові дэя науки види лишайників з групи Caloplaca flavorubescens - C. kiewkaensis, C. trassii та C. ussuriensis. Отримано оригінальні дані щодо біохімічних особливостей східноазійських представників групи Caloplaca flavorubescens та зроблено висновок про необхідність емендації (зміни обсяту розуміння) 3 східноазійських видів цієї групи.

Окремі види наведені вперше дэя східноазійських країн, наприклад, для Kореї - Caloplaca oxneri, C. gordejevi. Крім того, понад 20 видів лишайників уперше наведені для Кореї та понад 10 видів - нових для Китаю.

На основі філогенетичного анатізу даних секвенування ядерної та мітохондріальної ДНК у 2011 р. підтверджено видовий статус більше 5 нових для науки видів родів Caloplaca (попередні назви: Caloplaca sp. kud1', Caloplaca sp. ival та C. sp. leol), Rusavskia (попередня назва Rusavskia sp. esfl) та Letrouitia (попередня назва Letrouitia sp. jirl).

[^0]
PHYLOGENETIC ANALYSIS OF LICHEN-FORMING FUNGI OF THE FAMILY TELOSCHISTACEAE (ASCOMYCOTA) AFTER NUCLEAR AND MITOCHONDRIAL DNA SEQUENCES

The molecular phylogeny of the Parmeliaceae, Physciaceae, Caliciaceae and many other families of lichen-forming fungi is now based on polyphasic approach using up to six or seven different genes of nuclear and mitochondrial DNA. As a consequence the taxonomy of the Parmeliaceae and other families can now be based on segregation of robust monophyletic groups of species.

The majority of phylogenetic analyses of small species groups of the Teloschistaceae (especially of the genus Caloplaca) is based on ITSI/ITS2 sequences of nuclear DNA as the main molecular tool.

There are fewer reports of polyphasic molecular data having been used in such phylogenetic analyses (Gaya, 2003, 2008; Eichenberger, 2007; Fedorenko, 2009, 2012; Kondratyuk et al., 2013). Such investigations have indicated that the currently accepted genem Caloplaca, Fulgensia, Xanthoria and Teloschistes are polyphyletic and the delineation of Caloplaca and Xanthoria and of Caloplaca and Fulgensia is problematic.

The existence of well defined monophyletic groups within species groups like those of Caloplaca cerina, C. saxicola, C. regalis, C. ferruginea, C. variabilis and Fulgensia fulgens [some of which are type species of different genera proposed in 'premolecular time'] are found to be distributed among other monophyletic branches of the xanthorioid lichens following analysis of nuclear molecular data.

As a consequence generic names proposed for the above species groups (i. e. Blastenia, Pyrenodesmia, Polycauliona etc.) can be used together with Caloplaca s.str., Teloschistes, Seirophora and Fulgensia.

However, it should be emphasized that following molecular analysis such groups/genera as Blastenia, Pyrenodesmia and the Caloplaca saxicola- group include far fewer species than was proposed from morphological segregation in the 'premolecular' period.

Alternatively, molecular data confirms that the morphologically defined groups (i. e. Blastenia, Pyrenodesmia, Polycauliona etc.) are just as polyphyletic as the genera Teloschistes, Seirophora and Fulgensia.

Caloplaca subgenus Gasparrinia is similarly polyphyletic.
Furthermore, there have been recent proposals to retain the xanthorioid genera Jackelixia, Ovealmbornia, Xanthokarrooa within Xanthoria. However, this is in complete disagreement with the presently accepted molecular phylogenetic tree of the Teloschistaceae. Molecular data indicates that Jackelixia, Ovealmbornia and Xanthokarrooa could be considered to belong to Xanthodactylon s.l., but certainly not Xanthoria s.l.

Further, present molecular data does not support the families Letrouitiaceae and Teloschistaceae.

In future we will probably have three families, i. e. Teloschistaceae s. emend., Caloplacaceae s. emend. and Xanthoriaceae s. emend., instead of the two mentioned above. Special attention to monophyletic groups in the current Teloschistaceae as well as wider usage of a polyphasic molecular approach will also help to clarify the position and circumscription of generic groups within these families.
ПЕРЕДМОВА 5
СПИСОК ПРИЙНЯТИХ СКОРОЧЕНЬ 6
Ч А С Т И Н А 1. МОЛЕКУЛЯРНА ФІЛОГЕНІЯ І ТАКСОНОМІЯ ГРИБІВ 7
Розділ 1. Філогенетичний анатіз лишайників родини тетосхістових - Teloschistaceae за пос.іідовностями окремих генів ядерної та мітохондріа.าьної ДНК (Кондратюж С.马., Федоренко Н.М., Джеонг М.-Х., Стенруи С., Чарнефезьт І., иікс Дж., Тезь А., Хо Д.-С.) 7
1.1. Ксанторіоїдні лишайники 8
1.I.I. Молекулярні дослідження і стан таксономії лишайників до наших досліджень 8
1.I.2. Матеріали і методи 12
1.1.3. Перевірка статусу «морфологічних» родових груп 14
1.1.4. Порівняння морфолого-анатомічних і біохімічних особливостей деяких «молекулярних» груп 21
1.1.5. Сучасна таксономія 27
1.1.6. Таблиця визначення родів 37
1.2. Калоплакоїдні лишайники 38
1.2.1. Положення у філогенетичному дереві родини Teloschistaceae 40
1.2.2. Рівні підтримки і таксономічний склад монофілетичних груп родини Teloschistaceae за молекулярними даними 52
1.2.3. До ревізії лишайників груп Caloplaca flavonubescens і C. cinnabarina за морфолого-анатомічними та біохімічними ознаками 52
Phylogenetic analysis of lichen-forming fungi of the family Teloschistaceae (Ascomycota) after nuclear and mitochondrial DNA sequences (Kondratyuk S.Y., Yedorenko N.M., Jeong M.H., Stenroos S., Kärnefelt I., Eix J., Thell A., Hur J.--S.) 57
Розді.т 2. Молекутярна філогенія і таксономія у родині фісшієвих (Надеіна О.В.) 58
2.1. Традиційна систематика на основі морфології на противагу молекулярній фі- логенії 58
2.2. Молекулярні маркери і іх функшіональна інформативність, для таксономії родини Physciaceae 64
2.3. Приклади застосування молекулярно-філогенетичних методів 65
2.3.1. Встановлення систематичної належності стерильних видів: І.есапога, Placodium чи Buellia? 65
2.3.2. Пара видів чи «криптичні» види? 66
2.3.3. Традишійна морфологія чи багатогенна філогенія? Новий погляд на між- родинні зв’язки 67
2.3.4. Підтвердження морфологічних даних молекулярно-філогенетичними ме- тодами 69
2.4. Матеріали до таксономії роду Rinodina (Physciaceae, Lichenized Ascomycotina) 3 використанням комбінованих даних ITS і mtSSU rDNA генів 69
2.4.1. Матеріали та методи 70
2.4.2. Результати 71
Molecular phylogeny and taxonomy in the family Physciaceae (Nadeina O.V.) 79
Розді.ı 3. Філогенетичний ана.ііз мікроскопічних грибів родів Cladosporium та Exophiala за ядерною ДНК (Кондратюк Т.О., Джеонг М.-Х., Хо Д.-С., Кондратюж С.Я.) 80
3.1. Особливості таксономії та молекулярної філогенії міцеліальннх грибів комплек- сів Cladosporium sphaerospermum, C. cladosporioides і чорних дріжджеподібних грибів роду Exophiala 80
3.2. Матеріали і методи досліджень 8
3.3. І̆ентифікашія мікроскопічних мішеліальних грибів роду Cladosporium за ITSI/ITS2-ділянкою ядерної ДНК 87
3.4. ІІдентифікашія чорних дріжджеподібних грибів роду Гхорhiala за ITSI/ITS2- ділянкою ядерної ДНК 91
Phylogenetic analysis of microscopic fungi of the genera Cladosporium and Exophiala after nuclear DNA (Kondratyuk I.O., Jeong M.-II., Mur J.-S., Kondralyuk S. Y.) 94
Ч А С Т И Н А 2. МОЛЕКУЛЯРНА ФІЛОГЕНІЯ І СУЧАСНА ТАКСОНОМІЯ НАЗЕМНИХ ВОДОРОСТЕЙ 95
Р 03 ді.. 4. Молеку.яярна філогенія, таксономія і біологія наземних водоростей порядку Klebsormidiales (Klebsormidiophyceae, Streptophyta) (Михайıж T.I., Луєєшова A., Maccalьсьиии A., Фрідл T.) 95
4.1. І̀сторія вивчення представників Klebsormidiales 96
4.2. Проблеми таксономії Klebsormidiales 98
4.3. Матеріали і методи дослідження 99
4.4. Micue Klebsormidiales у системі водоростей 103
4.5. Klebsormidiales - відокремлена група водоростей зі спільними морфологічни- ми, ультратонкими та біохімічними ознаками 107
4.6. Морфологія Klebsormidiales: єдність процесів ділення клітин і формування слані у різних представників 110
4.7. Pin Hormidiella: морфологічні та екологічні особливості, різноманіття 115
4.8. Рід Entransia: морфологічні та екологічні особливості, різноманіття 117
4.9. Філогенія двох близьких родів - Interfilum і Klebsormidium: проблеми розділен- ня, морфологічні ознаки, що мають філогенетичне значення, еволюшійні тен- денції в межах групи 118
4.10. Рід Interfilum: морфологічні та екологічні особливості, різноманіття, філогене- тичні зв’язки 123
4.11. Рід Klehsormidium: морфологічні, генетичні, екологічні особливості, різнома- ніття 128
4.12. Морфологічні виаи Klebsormidium, шо не включені до опрацювання. «Анома- льні» форми Klebsormidüm 141
4.13. Еволюшія і географічне поширення представників порядку. Еколого-фізіо- логічні особливості групи як ключ до таксономії Klebsormidiales 142
Molecular phylogeny, taxonomy and biology of terrestrial algae of order Klebsormidiales (Klebsormidiophyceae, Streptophyta) (Mikhailyuk T.I., Iukešová A., Massalski A., Fried T.) 144
Розді.л 5. Мо.леку.ıярна філогенія і морфологічні особ́.иивості найпоширеніших фотоб́і- онтів .пишайників - водоростей родів Trehouxia Puym. та Asterochloris Tscherm.-Woess (Войцехжви A.O.) 146
5.1. ІІсторія таксономічних досліджень родів 147
5.2. Матеріали і методи досліджень 151
5.3. Морфолого-генетичні особливості представників роду Trebouxia 154
5.4. Морфолого-генетичні особливості представників роду Asterochloris 171
5.5. Особливості молекулярного дослідження фотобіонтів лишайників 181
Molecular phylogeny and morphological characteristics of the most common photobionts of lichen - algae genera Trebouxia Puym. and Asterochhoris Tscherm.-Woess (Voytsekhorich A.O.) 183
Розді.. 6. Короткий ог.ляд найуживаніших мо.леку.пярно-фі.七генетичних маркерів у таксономії зе.тених водоростей (Дарієнко Т.M.) 185
6.1. Мала субодиниця рДНК (18S) 185
6.2. Рибульозо-1,5-біфосфат карбоксилаза/оксигеназа (ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL) gene) 186
6.3. Ялерні міжгенні ділянки ITSI та ITS2 187
6.4. Інтрони 188
6.5. ДНК бар-код інішіатива 190
6.6. Інформаційна система «Бар-код життл» BOLD 192
6.7. Молекулярна філогенія та приховане різноманіття 192
A brief of the commonly used molecular-phylogenetic markers in the taxonomy of green al- gae (Iarienko T.M.) 198
ПідСУМКИ 200
СПИСОК ЛІІТЕРАТУРИ 204

НАЦІОНАЛЬНА АКАДЕМЇЯ НАУК УКРАЇНИ

 ІІІІСТИТУТ БОТАІІЇки ім. М.Г. ХОЛОДНІГОКОНДРАТЮК Сергій Якович МИХАЙЛЮК Тетяна ІІванівна ДАРїЄНКО Тетяна Михаййізна та ін.

МОЛЕКУЛЯРНА ФІЛОГЕНІЯ I СУЧАСНА ТАКСОНОМІЯ НАЗЕМНИХ СПОРОВИХ РОСЛИН

Київ, Науково-виробниче підприємство
«Видавництво "Наукова думка" НАН України», 2013

Художнє оформлення М.А. Панаскк
Художній редактор 1.11. Ссишцька
Технічний редактор Т.С. Березяк
Коректор Л.Г. हузіаиві:і
Оператор I.A. Юр' 'сва
Комп’ютерна верстка О.I. Фужеико

Підп. до друку 16.05.2013. Формат $70 \times 100 / 16$. Папір офс. № 1.
Гарн. Таймс. Друк. офс. Фіз. друк. арк. $14,25+2,0$ арк. вкл. на крейд. пап.
Ум. друк. арк. 21,13. Ум. фарбо-відб. 25,3. Обл.-вид. арк. $21,0$.
Тираж 300 прим. Зам. № 13-04-0910
НВП «Видавництво "Наукова думка" НАН України»
Свідоцтво про внесення суб'єкта видавничої справи
до Державного реєстру видавшів, виготівників
і розповсюджувачів видавничої продукції
ДК № 2440 від 15.03.2006 р.
01601 Київ 1, вул. Терещенківська, 3
ТОВ "ПЕТ"
Свідоцтво про внесення суб'єкта видавничої справи до Державного реєстру
серія ДК № 3179 від 08.05.2008 р.
61024 Харків 24, вул. Ольмінського, 17, кв. 2

МОЛЕКУЛЯРНА ФІЛОГЕНІЯ ТА СУЧАСНА ТАКСОНОМІЯ НАЗЕМНИХ СПОРОВИХ РОСЛИН

ВОӤЦЕХОВИЧ АННА ОЛЕКСАНДРІВВНА
Їнститут ботаніки ім. М.Г. Холодного, 01601 Київ 1, вул. Терещенківська, 2, Україна
VOJTSEKHOVICH ANNA
M.H. Kholodny Institute of Botany, Tereshchenkivska str. 2, 01601 Kyiv, Ukraine
ДАРЇЄНКО ТЕТЯНА МИХАЙЛЇВНА
Їнститут ботаніки ім. М.Г. Холодного, 01601 Київ 1, ву.т. Терешенківська, 2, Україна
\section*{DARIENKO TETYANA}
M.H. Kholodny Institute of Botany, Tereshchenkivska str. 2, 01601 Kyiv, Ukraine

ДЖЕОНГ МЇН-ХЕ

Корейський інститут вивчення лишайників, Сунчонський національний університет, м. Сунчон, Корея
JEONG MIN-HE
Korean Lichen Research Institute, Sunchon National University, Sunchon, Korea

ІІЛІКС ДЖОН
Науково-дослідна школа з хімії, Австра.тійський націонатьний університет, м. Канберра, Австралія
ELIX JHON
Research School of Chemistry, Australian National University, Canberra, Australia

КОНДРАТЮК СЕРГІЙ ЯКОВИЧ
Іेнститут ботаніки ім. М.Г. Холодного, 01601 Київ 1, вул. Терешенківська 2. Україна KONDRATYUK SERGEY
M.H. Kholodny Institute of Botany, Tereshchenkivska str. 2, 01601 Kyiv, Ukraine (e-mail: ksya_net@ukr.net)

КОНДРАТЮК ТЕТЯНА ОЛЕКСАНДРІВВНА

Навчально-науковий центр «Іेститут біології, Київський національний університет імені Тараса Шевченка, 01601 Київ, Україна, вул. Володимирська, 64

KONDRATYUK TETYANA

'Institute of Biology' Educational and Scientific Centre, Taras Shevchenko Kyiv national University, Volodymyrska str. 64, 01601 Kyiv, Ukraine, e-mail: takbiofak@ukr.net

ЛУКЄШОВА АЛЬОНА
ІІнститут біології грунту, м. Чеське Будейовіце, Чеська Республіка LUKEŠOVÁ ALENA
Institute of Soil Biology, Academy of Sciences of the Czech Republic Na Sadkách 7, CZ-37005, České Budẹ̄iovice, Czech Republic, e-mail: luksa@upb.cas.cz

МАССАЛЬСЬКИЙ АНДЖЕЙ
І̀нститут біологіі, університет гуманітарних і точних наук, м. Кєльи, Польша
MASSALSKI ANDRZEJ
Jan Kochanowski University of Humanities and Sciences, Institute of Biology, Department of Botany, Swietokrzyska St. 15, PL-25-406, Kielce, Poland, e-mail: luksa@upb.cas.cz

МИХАӤЛЮК ТЕТЯНА ІВВАНІВНА
Їнститут ботаніки ім. М.Г. Холодного, 01601 Київ, вул. Терешенківська, 2 Україна MIKHAILYUK TETYANA
M.H. Kholodny Institute of Botany, Tereshchenkivska str. 2, 01601 Kyiv, Ukraine

НАДЄІНА ОЛЬГА ВОЛОДИМИРіВНА
Їнститут ботаніки ім. М.Г. Холодного, 01601 Київ 1 , вул. Терешенківська, 2, Україна
NADEINA OLGA
M.H. Kholodny Institute of Botany, Tereshchenkivska str. 2, 01601 Kyiv, Ukraine

СТЕНРУШ СОЇЛІ

Ботанічний музей, Фінський краєзнавчий музей, А.С. 7, FI-00014 Університет, м. Ге.льсінки, Фін.яяндія
STENROOS SOILI
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University, Helsinki, Finland

ТЕЛЬ АРНЕ
Біологічні Музеї, університет м. Лунд, Лунд, Швеиія
THELL ARNE
The Biological Museums, Lund University, Lund, Sweden
ФЕДОРЕНКО НАТАЛІЯ МИКОЛАЇВНА
Їнститут ботаніки ім. М.Г. Холодного, 01601 Київ, ву.. Терешенківська, 2, Україна
FEDORENKO NATALIYA
M.H. Kholodny Institute of Botany,

Tereshchenkivska str. 2, 01601 Kyiv , Ukraine

ФРіДЛ ТОМАС
Віддіт експериментальної фікотогії та колекції кутьтур водоростей, університет м. Геттінген, м. Геттінген, Німеччина
FRIEDL THOMAS
Experimental Phycology and Culture Collection of Algae, Geory-August University Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany, e-mail: tfriedl@uni-goettingen.de

ХО ДЖЕӤ-СОН
Корейський інститут вивчення лишайників, Сунчонський національний університет, м. Сунчон, Корея
HUR JAE-SEOUN
Korean Lichen Research Institute, Sunchon National University, Sunchon, Korea

ЧАРНЕФЕЛЬТ ЇНГВАР
Біологічні музеї, університет м. Лунд, м. Лунд, Швеція
KÄRNEFELT INGVAR
The Biological Museums, Lund University, Lund, Sweden

NOJEKYIHPHA ФाЈО H Н ICYYACHA TAKCOHOMIG HABEMHLXX CIOROBUX РОСЛИН

[^0]: ' За час підготовки видання до пруку опубліковано законний опис виду Caloplaca kudratovï S.Y. Kondr., B. Zarei-Darki et J.-S. Hur (Kondratyuk S. Y., Lökos I.., Zarei-Darki B. et al. Five new Caloplaca species (Teloschistaceae, Ascomycota) from Asia // Acta bot. Hungarica. - 2013. - 55, N I-2. - P. 69-88). Описи інших нових для науки видів підготовлюють до друку.

