
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Storage Efficient Particle Filters with Multiple Out-of-Sequence Measurements

Berntorp, Karl; Årzén, Karl-Erik; Robertsson, Anders

Published in:
15th International Conference on Information Fusion (FUSION), 2012

2012

Link to publication

Citation for published version (APA):
Berntorp, K., Årzén, K.-E., & Robertsson, A. (2012). Storage Efficient Particle Filters with Multiple Out-of-
Sequence Measurements. In 15th International Conference on Information Fusion (FUSION), 2012 (pp. 471-
478). IEEE - Institute of Electrical and Electronics Engineers Inc..

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 25. Apr. 2024

https://portal.research.lu.se/en/publications/4527a1d5-cf21-43c4-a353-8a544541a02c

Storage Efficient Particle Filters with Multiple

Out-of-Sequence Measurements

Karl Berntorp, Karl-Erik Årzén and Anders Robertsson
Lund University, Box 118, SE-221 00 Lund, Sweden (E-mail: firstname.lastname@control.lth.se)

Abstract—A particle filter based solution to the out-of-sequence
measurement (OOSM) problem is proposed. The solution is
storage efficient, while being computationally fast. The filter
approaches the multi-OOSM problem by not only updating
the estimate at the most recent time, but also for all times
between the OOSM time and the most recent time. This is done
by exploiting the complete in-sequence information approach
and extending it to nonlinear systems. Simulation experiments
on a challenging nonlinear tracking scenario show that the
new approach outperforms recent state-of-the-art particle filter
algorithms in some respects, despite demanding less storage
requirements.

I. INTRODUCTION

In multisensor target-tracking systems local sensor mea-

surements are typically sent to a common center, where the

measurements are fused to form position estimates. Some

measurements can arrive such that more current measure-

ments have already been processed; that is, they can be out

of sequence, caused by different data processing times and

transmission times. The ability to process out-of-sequence

measurements (OOSMs) is important for several reasons.

Obviously, discarding the OOSM can lead to poor performance

since the delayed measurement contains useful information.

Using the OOSM in the wrong way can, however, also lead

to degraded performance because of mismatch between the

different measurements.

We suggest an extension of a new type of storage effi-

cient particle filter derived in [1]. The particle filter in [1]

usually performs well, but it suffers from that the employed

fixed-point smoother only updates the most recent estimate

when a delayed measurement arrives. To remedy this we

extend the optimal complete in-sequence information fixed-

point smoother (CISI-FPS), described in [2] for linear systems,

to nonlinear systems and use it in the context of particle

filters. The CISI approach updates all states between the

OOSM timestamp and the current time, thus performing better

than only updating the current estimate. The modification

for the CISI-FPS approach to work for nonlinear models

is a Taylor expansion, analogous to those used in extended

Kalman smoothers, see [3]. It will be shown, using a similar

simulation example as in [1] and [4], that the new algorithm

outperforms the approach proposed in [1]. In addition, only

mean and covariances for the last lmax steps, where lmax is

the predetermined maximum number of lags of the OOSMs,

need to be stored, which is an improvement from the approach

in [1] where the measurements also need storage. This comes

with the price of slightly larger computational demands, but a

comparison shows that the increase is moderate.

A. Related Work

Over the last decade there has been substantial research

considering out-of-sequence measurements for tracking. An

overview of initial work spanning to the late 1990’s is found in

[5]. In [6], [7], and [8], the research progressed from deriving

the optimal solution when the OOSM was assumed to be

delayed less than one sampling interval, to deriving suboptimal

algorithms with delays that were several sampling intervals

long, and finally handling sensor bias. The optimal solution,

in the mean-square sense, was derived in [9] for different

amounts of available information.

One of the drawbacks with the presented approaches is that

only the most recent estimate is updated with the OOSM.

In real-life scenarios there are typically multiple OOSMs

arriving, either in succession or interleaved with in-sequence

measurements (ISMs). In this case the preceding approaches

will in general not be optimal. The first optimal solution to the

multi-OOSM problem is due to [10], where the assumption

was that the out-of-sequence measurements were not inter-

leaved with the in-sequence measurements. The first general

optimal solution with multiple out-of-sequence measurements,

denoted the complete in-sequence information (CISI) ap-

proach, was presented in [2]. A number of approaches yielding

the optimal solution were compared in terms of complexity.

The conclusion was that the CISI-FPS approach is superior

compared to the CISI fixed-interval smoothing approach,

the fading information approach, and the information filter-

equivalent measurement method in terms of computational

demands. Furthermore, the storage requirements in [2] are only

the mean and covariances for k−lmax, k−lmax+1, . . . , k−1, k,

where k is the current time index. For the scenario with several

OOSMs arriving at the same time the CISI approach is applied

sequentially, still giving optimality. For an overview of linear

smoothing methods, see [11].

All work presented above is for linear systems. The

implementation-wise easiest extension for nonlinear systems is

to use extended Kalman filter (EKF) type approximations. For

systems with significant nonlinearities and/or non-Gaussian

noise the use of EKFs can, however, lead to poor perfor-

mance. Several methods for exploring OOSMs in the more

general particle filter framework have been derived. Papers

[12] and [13] outlined a particle filter based solution, where

the measurement equation is allowed to be nonlinear. The

471

particle weights are updated without the OOSM and are then

modified utilizing the OOSM with a Markov chain Monte

Carlo smoothing step to overcome the problem of degeneracy

in the particle filter. However, the state-space model has to

be linear to be able to form the proposal density. Another

drawback with this approach is that the storage requirements

are large, since all particles have to be stored for the last lmax

steps. A workaround for this was described in [14], where

an invertible state-transition matrix is assumed. This matrix is

then used to retrodict the states back to the time of the OOSM.

The only storage requirements in this algorithm are the mean

and covariances for the last lmax steps. A comparison between

particle filters and Kalman filters for OOSM filtering is found

in [15]. For the presented example, which is linear, the two

types of estimators perform similarly.

To enable nonlinear state-space models, an extension of

[14] was presented in [1], denoted storage efficient particle

filter (SEPF). In that extension, only the mean, covariances,

and measurements for the last lmax steps are stored. Since

there is only one measurement vector yk at each time instant,

and since the dimension of the measurements usually is less

than that of the states, the storage requirements compared to

storing the particles should be considerably smaller. Different

fixed-point smoothers are used to determine the likelihood

of the measurement given each particle at the current time.

The likelihood is then utilized to update the weight of the

particle. When comparing extended Kalman smoothers (EKS),

unscented Kalman smoothers, and particle smoothers on a

highly nonlinear example, EKS seems to outperform the others

despite demanding less computational power. As mentioned

previously SEPF usually performs very well. The performance

may suffer, however, when the OOSMs change the particle

weights too much. This problem is partially overcome in [4]

and [16] where an algorithm for detecting these OOSMs was

derived, denoted SEPF with selective processing.

B. Outline

Section II presents the OOSM problem formulation and

makes a distinguishment of different types of OOSMs. We

give a brief presentation of particle filters in Section III. We

also give a review of the storage efficient particle filter with

and without selective processing, respectively. The proposed

algorithm is outlined in Section IV. A validation is performed

in Section V using a challenging simulation scenario. Finally,

the paper is concluded in Section VI.

II. PROBLEM FORMULATION

We consider the scenario of possibly nonlinear state dynam-

ics, possibly nonlinear measurement relations, and additive

process and measurement noise. Some measurements expe-

rience negligible delay, implying that they can be processed

without taking the delay into account. However, a considerable

portion of the measurements arrive with delays that have to

be accounted for. The considered systems are of the form

xk+1 = fk+1,k(xk) + vk+1,k, (1)

yk = hk(xk) + ek, (2)

where xk is the state at time index k, fk+1,k is the state-

transition function from time index k to k + 1, hk is the

measurement function, vk+1,k is the process noise, and yk is

the measurement corrupted with measurement noise ek. The

measurement noise ek is independent of vk+1,k. The times-

tamp is referred to as tk. Furthermore, the arrival time of a

measurement is written as tak. Denote the set of measurements

generated in the interval [i, j] available at time tk as Wi:j
k .

Let Zk,τ̄ denote the set of OOSMs available at time tk except

yτ . For clarity a definition of OOSMs and ISMs is given in

Definition 1.

Definition 1. Given a measurement yτ , if there exists another

measurement yk with tak < taτ and tk > tτ , then yτ is an

OOSM. Otherwise, yτ is an ISM.

To distuingish between different OOSM scenarios the notion

of most recent time is defined next:

Definition 2. Given an OOSM yτ , if

tm(τ) = max{tk; ∀tk, tak < taτ},

then tm(τ) is the most recent time (MRT) corresponding to

yτ .

As mentioned in Section I, for linear systems it is only

under special circumstances that it is enough to update the

most recent mean and covariance and still have optimality.

The case for when this approach is optimal is when the OOSM

scenario is of type I, see [2]. The type I scenario is explained

in Definition 3.

Definition 3. If for any two OOSMs yτ1 and yτ2 , where yτ1

arrives before yτ2 (i.e., taτ1
< taτ2

), we have that the most recent

time corresponding to yτ1 is before the timestamp of yτ2 (i.e.,

tm(τ1) < tτ2), then the OOSM scenario is of type I.

An example of a type I OOSM scenario is shown in Fig.

1, and a scenario that does not fulfill the assumptions in

Definition 3 is shown in Fig. 2. Only the CISI approach

tτ1 tτ2

taτ1
taτ2

ISM

OOSM

Measurement Time

Arrival Time

Fig. 1. An example of the type I OOSM scenario when, for linear systems,
it is optimal to use the OOSMs for updating the most recent estimate only.
For an explanation of OOSMs and ISMs, see Definition 1.

472

tτ1 tτ2

taτ1
taτ2

ISM

OOSM

Measurement Time

Arrival Time

Fig. 2. An example of an OOSM scenario which is not of type I, when one
must update all states between the OOSM measurement time and the current
time to guarantee optimality.

guarantees optimality when the OOSM scenario is not of type

I, which is often the case when having more than one sensor

producing out-of-sequence measurements.

Suppose that we have processed measurements up to time

index k and that one or several delayed measurements arrive.

The problem discussed in the sequel is that of using yτ

to approximate the posterior distribution p(xk|y0:k,τ). When

an approximation of the distribution is formed, the position

estimates and associated covariances can be generated.

III. PARTICLE FILTERS WITH OOSM

The particle filter that the OOSM algorithm is based on is

stated next, which is followed by a summary of the storage

efficient particle filter algorithm. This is the starting point of

the algorithm developed in Section IV.

A. Particle Filters

Particle methods, or sequential Monte Carlo methods, see

[17] for a detailed introduction, are methods that try to

represent the probability density function by a set of particles.

This is done by approximating the density function as

p(x0:k|y1:k) ≈
N
∑

i=1

w
(i)
0:kδ(x0:k − x̂

(i)
t|0:k), (3)

where δ(.) is the delta function, x̂
(i)
t|0:k is the ith particle at time

index t given measurements from time index 0 to k, and w
(i)
t

is the normalized (scalar) weight of particle i. The Bayesian

recursion formula

p(x0:k|y1:k) =
p(yk|x0:k, y1:k−1)p(x0:k|y1:k−1)

p(yk|y1:k−1)

×p(x0:k−1|y1:k−1)

(4)

is used to get a sequential relationship. The complexity of the

distribution (3) increases with time. Therefore the sampling is

performed by using the proposal density q(x0:k|y1:k), which

has the property

q(x0:k|y1:k) = q(xk|x0:k−1, y1:k)q(x0:k−1|y1:k−1). (5)

Because of (5), it is enough to sample the last state components

from the distribution x̂
(i)
k ∼ q(xk|x0:k−1, y1:k). A simplifica-

tion of (5) by assuming q(xk|x0:k−1, y1:k) = p(xk|xk−1) and

using (4) leads to that the weights are updated as

w
(i)
k ∝ p(yk|x̂

(i)
k)w

(i)
k−1. (6)

The position and covariance estimates at time index k can now

be formed as

x̂k|k =

N
∑

i=1

w
(i)
k x̂

(i)
k , (7)

Pk|k =

N
∑

i=1

w
(i)
k (x̂

(i)
k − x̂k|k)(x̂

(i)
k − x̂k|k)T, (8)

where x̂
(i)
k is the ith sample from p(xk|xk−1). Since all

particles but a few typically will have negligible weights after

a while, it is common that new particles are drawn with

replacement according to

Pr(x
(i)
k = x̂

(j)
k) = wj

k, j = 1, . . . , N. (9)

This is one form of the well known sampling importance

resampling (SIR) particle filter. The algorithm, as used in this

work, is outlined in Algorithm 1.

Algorithm 1. SIR Particle Filter Algorithm

1: Initialize particles {x̂
(i)
0|0}

N
i=1 ∼ px0(x0) and weights

w
(i)
0 = 1/N, i = 1, . . . , N

2: Time Update: Generate new particles from the importance

density

x̂
(i)
t ∼ p(xt|x̂

(i)
t−1), i = 1, . . . , N

3: Measurement Update: Calculate weights as in (6)

and normalize them. Form the estimates from (7) and (8).
4: Resample according to (9). Go back to step 2.

B. Storage Efficient Particle Filters

The starting point for the storage efficient particle filters

(SEPFs) developed in [1] is that measurements until time

tk have been processed using a particle filter. After the kth

measurement the (k + 1)th measurement arrives delayed,

with timestamp tτ , bounded as tτ ∈ [tk−l, tk−l+1) for a

positive integer l. To avoid saving the particles while enabling

nonlinear state-space models, the storage efficient particle filter

in [1] utilizes Bayes’ rule as

p(xk|y0:k,τ) =
p(yτ |xk, y0:k)

p(yτ |y0:k)
p(xk|y0:k), (10)

a marginalization of (4). Substitution of (3) into (10) leads to

p(xk|y0:k,τ) =
N
∑

i=1

p(yτ |x̂
(i)
k , y0:k)

p(yτ |y0:k)
w

(i)
0:kδ(xk − x̂

(i)
k)

=
N
∑

i=1

w
(i)
0:k,τ δ(xk − x̂

(i)
k), (11)

where the weights are generated by

w
(i)
0:k,τ ∝ p(yτ |x̂

(i)
k , y0:k)w

(i)
0:k. (12)

473

Now, by using Bayes’ rule, the total probability theorem, and

considering the particle state x̂
(i)
k as a measurement of the

state xk−1 using (1) as the measurement relation, [1] ends up

with the Gaussian approximation

p(yτ |x
(i)
k , y0:k) ≈ N (yτ |ŷτ |0:k−1,k(i) , P

y

τ |0:k−1,k(i)), (13)

where

ŷτ |0:k−1,k(i) = hτ (x̂τ |0:k−1,k(i)), (14)

P y

τ |0:k−1,k(i) = HτP y

τ |0:k−1,k(i)H
T
τ + Rτ . (15)

In these equations, P y

τ |0:k−1,k(i) is the covariance matrix

at time τ conditioned on measurements up to time index

k − 1 and the particle estimates at time index k, Hτ =
∂hτ (x)

∂x

∣

∣

∣

x=x̂
τ|0:k−1,k(i)

, and Rτ is the covariance of eτ . To

find x̂τ |0:k−1,k(i) is a fixed-point smoothing problem, and

according to the evaluation performed in [1] the best smoother

is the state-augmented extended Kalman smoother. It was

pointed out in [1] that sometimes the OOSMs can lead to

severe mismatch between earlier particle weights and the

updated weights, which may result in poor performance. The

remedy for this was to calculate the approximate effective

sample number, 1P
i
w2

i

, before and after the OOSM update,

Npri
eff and Npost

eff , respectively. If Npost
eff /Npri

eff < γ2, where

γ2 ≪ 1, the OOSM is simply discarded.

Remark 1. Since it is difficult to write an efficient batch-form

solution, the smoothing and corresponding weight update is

applied sequentially when several OOSMs arrive simultane-

ously.

1) Selective Processing: Another approach to handle mis-

match between OOSMs and the particles was derived in [4]

and [16]. The core of that approach is to use the mutual

information metric or the Kullback-Leibler divergence metric

to find out how informative the delayed measurement is in

relation to the state. The mutual information between the

measurement yτ and the state xk is

I(yτ , xk|W
1:k
k , Zk,τ̄)

=

∫

log

(

p(yτ , xk|W 1:k
k , Zk,τ̄)

p(yτ |W 1:k
k , Zk,τ̄)p(xk|W 1:k

k , Zk,τ̄)

)

× p(yτ , xk|W
1:k
k , Zk,τ̄)dyτdxk.

Because of this it is enough to find the joint distribution

p(yτ , xk|W 1:k
k , Zk,τ̄), which is done by the Gaussian approx-

imation

p(yτ , xk|W
1:k
k , Zk,τ̄)

≈ N

((

xk

yτ

)

;

(

µxk

µyτ

)

,

(

Rxk
Rxkyτ

Ryτ xk
Ryτ

))

,

where µxk
is the saved state estimate at time index k, and

µyτ
= h(µxτ

) The resulting mutual information can according

to [4] be calculated as

I(yτ , xk|W
1:k
k , Zk,τ̄) =

1

2
log

(

‖Rxk
‖

‖Rxk
− Rxkyτ

R−1
yτ Ryτ xk

‖

)

.

(16)

The involved covariance matrices and means are found through

repeated EKF recursion on a system formed by augmenting the

state xk with the measurement yτ . The filter runs from time tτ
to the current time, and is initialized with the estimated mean

and covariance at time tτ ; that is, µxτ
= x̂τ |τ , µyτ

= h(µxτ
),

Rxτ
= Pτ |τ , Ryτ

= HτPτ |τHT
τ +Qτ , and Ryτ xτ

= RT
xτ yτ

=
HτRxτ

.

If the resulting mutual information approximation is above

some threshold γ1 the SEPF from Section III-B is run. In

the SEPF, if Npost
eff /Npri

eff < γ2 the SEPF is terminated and

a particle filter running from time index τ − 1 to the current

time is activated, involving all (ordered) measurements from

time index τ to time index k. This rerun particle filter, denoted

Gaussian approximation rerun particle filter (OOSM-GARP),

is initialized with the estimated mean and covariance at time

index τ − 1. On the other hand, if the mutual information

is below γ1 the OOSM is discarded. The thresholds γ1

and γ2 should be seen as governing the trade off between

complexity and accuracy. The rerun particle filter is typically

more computationally demanding than the SEPF. However,

since SEPF is applied sequentially when several OOSMs arrive

in a given time step, SEPF can actually become more time

consuming than the rerun filter.

Remark 2. One drawback with the selective processing ex-

tension is that all measurements are assumed to occur at

the sampling instants. This may be a severe restriction for

large sampling times and/or fast motions. It is possible to

remove the assumption but it will typically give rise to

large computation times when the OOSM-GARP is invoked,

prohibiting the algorithm from many applications where real-

time performance is critical. Note that neither the SEPF in

Section III-B nor our proposed algorithm in Section IV have

this restriction.

IV. STORAGE EFFICIENT PARTICLE FILTER WITH

CISI-FPS

In [2] the fixed-point smoother was found to be the most

computationally efficient; this is also the smoother used here.

The goal with fixed-point smoothing is to estimate the state

at time tj given data up to time tk > tj— that is, to estimate

x̂j|k .

Assume that estimates x̂j|j , j = k − lmax, . . . , k and their

associated covariances Pj|j are available. In addition, assume

that the N particles x̂
(i)
k together with their weights, w

(i)
k ,

from the last measurement exist. Then the extension of the

CISI-FPS algorithm works as follows: For each OOSM that

arrives, start with the one with largest delay. The timestamp

tτ is bounded as tk−l ≤ tτ < tk−l+1 for a positive integer l,
where 1 ≤ l ≤ lmax. Iterating the dynamics forward by using

(1) gives

x̂τ |k−l = fτ,k−l(x̂k−l|k−l). (17)

Furthermore, by calculating Fτ,k−l =
∂fτ,k−l(x)

∂x

∣

∣

∣

x=x̂k−l|k−l

,

474

the covariance matrix can be forward propagated as

Pτ |k−l = Fτ,k−lPk−l|k−lF
T
τ,k−l + Qτ,k−l. (18)

For j = k − l + 1, . . . , k − 1, the mean and covariances are

updated as

x̂j|j,τ = x̂j|j + Kj(yτ − hτ (x̂τ |j)), (19)

Pj|j,τ = Pj|j − KjSτKT
j , (20)

where Hτ = ∂hτ (x)
∂x

∣

∣

∣

x=x̂τ|j

, Sτ = HτPτ |jH
T
τ +Rτ , and Kj =

Pj,τ |jH
T
τ S−1

τ . Pj,τ |j is the crosscovariance between the states

at time index j and τ . To calculate (19) and (20), the smoothed

estimates and covariances as well as the crosscovariances are

needed. If j = k − l + 1 the quantities are given by

x̂τ |j = x̂τ |j−1 + VjP
−1
j|j−1(x̂j|j − x̂j|j−1), (21)

Pτ |j = Pτ |j−1 − VjP
−1
j|j−1(Pj|j−1 − Pj|j)P

−1
j|j−1V

T
j , (22)

Pj,τ |j = Pj|jP
−1
j|j−1V

T
j , (23)

Vj = Pτ |j−1F
T
j,τ . (24)

For j = k − l + 2, . . . , k − 1, the quantities are instead given

by

x̂τ |j = x̂τ |j−1 + VjP
−1
j|j−1(x̂j|j − x̂j|j−1), (25)

Pτ |j = Pτ |j−1 − VjP
−1
j|j−1(Pj|j−1 − Pj|j)P

−1
j|j−1V

T
j , (26)

Pj,τ |j = Pj|jP
−1
j|j−1V

T
j , (27)

Vj = Pj−1,τ |j−1F
T
j,j−1. (28)

The approach of using the particles x̂
(i)
k as measurements is

adopted. This means that at the last step, j = k, x̂τ |j is updated

using Kalman smoother formulae, see [3], according to

x̂
(i)

τ |k(i) = x̂τ |k−1 + Kk

(

x̂
(i)
k − fk,k−1(x̂k−1|k−1)

)

,

(29)

Pτ |j−1,k(i) = Pτ |j−1 − Pj−1,τ |j−1H
T
j KT

j , (30)

for i = 1, . . . , N .

For each j, linearization of (2) at the estimate x̂τ |j for (19)

and (20) has to be performed. Furthermore, for j = k − l + 1
linearization of (1) at x̂τ |j for use in (21)–(24) is necessary,

and for j = k − l + 2, . . . , k − 1 linearization of (1) at

x̂j−1|j−1 (for (25)–(28)) has to be performed to propagate

the covariances. In addition, for each step the inverses of Sτ

and Pj|j−1 are needed, whereas the standard state-augmented

Kalman smoother only needs the inverse of Sj . Also, a couple

of extra matrix multiplications and additions are performed

in each step, since the mean and associated covariances are

also updated. For small state-space models an inversion is

inexpensive to perform. Additionally, for small delays and/or

large sample times the extra inversion is only done a few times

at each time step. Hence the difference in computational speed

should be small, for reasonable state-space models and time

delays.

A summary of the resulting algorithm, denoted OOSM

CISI-FPS, is found in Algorithm 2. Note that the difference

when comparing with the method in Section III-B is in the

implementation of the EKS, where now all estimates between

the OOSM time and the current time are updated.

Algorithm 2. OOSM CISI-FPS

1: At time k, process in-sequence measurements according

to Algorithm 1.

2: When n OOSMs arrive, sort them with longest delay first.

3: for m = 1, . . . , n do

4: Calculate x̂τ |k−l and Pτ |k−l using (17) and (18).

5: for j = k − l + 1, . . . , k − 1 do

6: if j = k − l + 1 then

7: calculate x̂τ |j , Pτ |j , and Pj,τ |j using (21)–(24).

8: else

9: calculate x̂τ |j , Pτ |j , and Pj,τ |j using (25)–(28).

10: end if

11: Calculate x̂j|j,τ and Pj|j,τ using (19) and (20).

12: end for

13: for i = 1, . . . , N do

14: Calculate x̂
(i)

τ |k(i) and Pτ |k(i) by applying (29)–(30).

15: Apply (13)–(15) and update weights using (12).

16: end for

17: Calculate Npost
eff = 1P

i w2 .

18: if Npost
eff < γNpri

eff then

19: discard OOSM.

20: end if

21: end for

22: Form the new estimates from (7) and (8).

23: Resample according to (9).

V. NUMERICAL RESULTS

We validate Algorithm 2 using root-mean-squared position

and velocity errors, and compare it against a number of dif-

ferent particle filters. First, the simulation model is presented.

A. Simulation Model

The simulation model is similar to the ones used in [1] and

[4]: A target moves in a plane, the motion being a turn of

radius 500 m with constant velocity 200 km/h. The initial

position is p0 = (−500 500)T, and the motion lasts for

40 seconds. By introducing position, velocity, and turn rate

as states, xk = (px
k py

k vx
k vy

k ωk)T, the discrete-time

model for the coordinated turn is

xk+1 =

1 0 sin (ωkT)
ωk

−

1−cos (ωkT)
ωk

0

0 1 1−cos (ωkT)
ωk

sin (ωkT)
ωk

0

0 0 cos (ωkT) − sin (ωkT) 0
0 0 sin (ωkT) cos (ωkT) 0
0 0 0 0 1

xk + vk+1,k,

(31)

which in short is written as xk+1 = fk+1,k(xk) + vk+1,k.

The process noise is independent Gaussian, with zero mean

and covariance Q = diag(302, 302, 102, 102, 0.12). To track

the target three bearings-only sensors, common in military

applications, send measurements to the fusion centre, with the

sample time being T = 1 s. They are placed according to

475

S1 = (−200, 0), S2 = (200, 0), and S3 = (−750, 750). The

measurement model for the bearings-only measurements is

hk = arctan

(

py
k − Sy

j

px
k − Sx

j

)

+ ek, j = 1, 2, 3.

The noise ek is assumed independent Gaussian with zero mean

and covariance R = 0.05. Sensors 2 and 3 are assumed to

have serious communication issues, yielding OOSMs. For each

of the two sensors, a measurement arrives with probability

poosm = 0.7. To be able to compare the proposed Algorithm

2 with the selective processing algorithm in Section III-B1

the delay is modeled as a discrete uniform distribution in

the interval [0, 5]. This should be interpreted as that each of

the two sensors lose 30 % of the packages on the way to

the communication centre, and those who arrive are delayed

between zero and five seconds. Note that this scenario is of

the type depicted in Fig. 2. The trajectory together with the

sensors are shown in Fig. 3.

B. Results

Seven different particle filters were implemented in Matlab,

all based on a standard SIR filter, see [17] and Section III-A.

The code was highly optimized for all seven filters. The filters

are:

• PFideal: An idealized particle filter assuming zero delay.

Better results than with this filter should not be achiev-

able.

• PFdisc: A particle filter implementation that discards all

the OOSMs. Thus, it only uses the measurements that

are not delayed. This means that it processes sensor S1

every sample, but only S2 and S3 when they arrive with

zero delay. This filter is used to show the performance

decrease when discarding the delayed measurements.

• SEPF: The storage efficient particle filter used in [1], see

Section III-B. The Kalman smoother was implemented

efficiently, using the formulas found in [3].

• SEPF-GARP: An implementation of the storage efficient

particle filter with selective processing derived in [4], see

Section III-B1.

• OOSM-GARP: The Gaussian approximation rerun parti-

cle filter described in [4] and in Section III-B1.

• CISI-FPSMI: The particle filter outlined in Algorithm 2

but with selective processing, similar to SEPF-GARP.

• CISI-FPS: The particle filter outlined in Algorithm 2, see

Section IV.

An idea was to include EKF-OOSM algorithms for com-

parison; for example the one in [18], but since these al-

gorithms only sporadically converged they are left out. A

similar conclusion was made in [1]. The initial estimate for all

filters was x0 = (0 0 0 0 0)T, with initial covariance

set to P0 = diag(2502, 2502, 302, 302, 0.12). The measure

used to compare the filters is the root-mean squared (RMS)

error, which is defined as follows: Assume M Monte Carlo

simulations, and denote the position error at time step k of the

S3

S2S1

x [m]

y
[m

]

800

800-800

600

600

200

200

0

0-600 -300

-200

-200

300

300

1000

Fig. 3. The trajectory and the sensors used in the simulation example. The
arrow indicates movement direction.

jth of M runs as errk,j . Then the RMS position error at time

index k is

RMS =

√

√

√

√

1

M

M
∑

j=1

‖errk,j‖2.

RMS position and velocity errors are shown in Figs. 4a-5b

for 2000 Monte Carlo simulations. The threshold for when

to discard the OOSM and when to run the GARP in SEPF-

GARP, respectively, was set to γ1 = 0.05 and γ2 = 0.025.

Filters SEPF and CISI-FPS used γ2 = 0.025 for choosing

when to discard the OOSMs. The number of particles was

N = 2000 for Figs. 4a–4b, and N = 20000 for Figs. 5a–

5b. Unsurprisingly PFideal performs best, with RMS errors

decaying much faster than for the other filters except for

some transient behavior in the velocity estimation. As ex-

pected PFdisc performs worst, with both position and velocity

errors being large at all times. This serves as a reminder

of the amount of information needed to perform satisfactory

estimation. OOSM-GARP performs second best, using the

ordered measurement data to improve performance. Also, the

performance difference between SEPF and SEPF-GARP is

significant, showing the benefits with selective processing.

CISI-FPS and CISI-FPSMI, however, have approximately

the same performance. The reason for this can be found in Ta-

ble I. As seen SEPF-GARP discards about 21 % of the OOSMs

and runs approximately 0.4 % of the OOSMs through GARP.

On the contrary, CISI-FPSMI discards almost the same number

of OOSMs, but it only processes 0.06 % through GARP. We

believe that the reason for this is that the CISI based Kalman

smoother used in CISI-FPSMI and CISI-FPS is more robust

than the Kalman smoother employed in SEPF-GARP and

SEPF. The robustness is also seen when comparing CISI-FPS

and SEPF: CISI-FPS only rejects approximately 0.1 % of the

OOSMs, but SEPF rejects almost 1 %. These numbers indicate

that the CISI based smoother creates more robust estimates,

476

P

o
si

ti
o

n
R

M
S

E
rr

o
r

[m
]

Time [s]

0
0

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40

(a)

OOSM-GARP

SEPF

SEPF-GARP CISI-FPS

CISI-FPSMI

PFideal

PFdisc

V
el

o
ci

ty
R

M
S

E
rr

o
r

[m
]

Time [s]
0 5

10
10

15

15

20

20

25

25

45

50

55

60

40

40

35

35

30

30

(b)

Fig. 4. Position (a), and velocity (b) tracking performance of the different
particle filters, measured as the RMS error. The curves show the results after
2000 Monte Carlo simulations. The number of particles is 2000.

correlating better with the delayed measurements. CISI-FPS

performs almost as well as the more complex OOSM-GARP,

SEPF-GARP, and CISI-FPSMI despite not having to store the

measurements. When increasing the number of particles, as

done in Fig. 5, CISI-FPS even performs better than SEPF-

GARP in some cases. Also, the performance compared to

SEPF is usually significantly better. In this example the

only increase in storage requirements for SEPF, SEPF-GARP

and CISI-FPSMI compared to CISI-FPS is a vector of five

measurements, but it is easy to imagine setups where the

increase is much larger.

As mentioned the Matlab code was highly optimized. Still,

for several reasons a comparison between computation times

P
o

si
ti

o
n

R
M

S
E

rr
o

r
[m

]

Time [s]

0
0

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40

(a)

OOSM-GARP

SEPF

SEPF-GARP CISI-FPS

CISI-FPSMI

PFideal

PFdisc

V
el

o
ci

ty
R

M
S

E
rr

o
r

[m
]

Time [s]
0

50

45

55

5
5

10

10

15

15

20

20

25

25

30

30

35

35

40

40

(b)

Fig. 5. Position (a) and velocity (b) tracking performance of the different
particle filters, measured as the RMS error. The curves show the results after
2000 Monte Carlo simulations. The number of particles is 20000. Note that
CISI-FPS and CISI-FPSMI have almost identical performance in (a), despite
CISI-FPSMI being more complex.

should be interpreted with care. Mean computation times of

the seven algorithms for a full run were measured using

Matlab’s built in functionality and are shown in Table II, in

increasing order. As expected the algorithm that only processes

the in-sequence measurements is the fastest, followed by

PFideal. OOSM-GARP is the slowest algorithm, caused by

that it runs a particle filter for several time steps as soon as an

OOSM arrives. CISI-FPS is about 15 % slower than SEPF

and SEPF-GARP. Note that CISI-FPSMI, which combines

the CISI fixed-point smoother with the selective processing

algorithm, is as fast as SEPF while maintaining the accuracy

477

TABLE I
THE PERCENTAGE OF THE OOSMS DISCARDED BY THE SELECTIVE

PROCESSING LOGIC (γ1), SEE SECTION III-B1, AND THE PERCENTAGE OF

THE OOSMS EITHER DISCARDED (FOR CISI-FPS AND SEPF) OR RUN

THROUGH THE RERUN PARTICLE FILTER (FOR SEPF-GARP AND

CISI-FPSMI), RESPECTIVELY.

Algorithm γ1 [%] γ2 [%]

SEPF - 0.9
SEPF-GARP 21.26 0.4

CISI-FPS - 0.07
CISI-FPSMI 22.41 0.06

TABLE II
COMPARISON OF MEAN EXECUTION TIMES, MEASURED IN

MILLISECONDS, FOR 2000 MONTE CARLO SIMULATIONS USING 2000
PARTICLES. THE TIME IS FOR RUNNING THE ALGORITHM ONCE.

MATLAB’S TIC AND TOC FUNCTIONALITY WAS USED. THE SIMULATIONS

WERE RUN ON A LENOVO LAPTOP WITH INTEL I5 M480 CPU 2.67 GHZ,
4 GB RAM AND LINUX FEDORA 15.

Algorithm Time [ms]

PFdisc 2.3
PFideal 2.7
SEPF 5.3

CISI-FPSMI 5.5
SEPF-GARP 5.6

CISI-FPS 6
OOSM-GARP 7.3

of SEPF-GARP and CISI-FPS. In reality, however, the delay is

typically not restricted to be a multiple of the sampling time;

in that case SEPF-GARP and CISI-FPSMI will be slower.

Finally, inspecting the mean computation times clarifies that

the number of particles used, N = 2000, is not unrealistic

for real-time applications using any of the four smoothing

based particle filters. However, if high sampling rate real-time

applications are desired, SEPF or CISI-FPS should be chosen

because of the large maximum computation time of SEPF-

GARP and CISI-FPSMI, caused by the rerun filter.

VI. CONCLUSIONS AND FUTURE WORK

We presented an alternative to the storage efficient particle

filter in [1] where not only the estimate at the last time step

is updated, but also all estimates and covariances between the

timestamp of the OOSM and the current time. The proposed

CISI based smoother in combination with selective processing,

CISI-FPSMI, proved to be the most viable algorithm in terms

of mean computation time and estimation accuracy. However,

if storage efficiency, estimation accuracy, and hard real-time

constraints are critical the solution in Algorithm 2, CISI-

FPS, is recommended. Even though the proposed Algorithm 2

performs as good as, or sometimes even better, than both SEPF

and SEPF-GARP it is more storage efficient. It was shown

that the computational load is only moderately larger, despite

a clear performance gain.

Future works include implementing the algorithm in a real-

world mobile robotics setting, where vision algorithms, wheel

encoders, and an inertial measurement unit should be fused

for localization of a mobile manipulator. Moreover, a rigorous

complexity analysis would be beneficial.

ACKNOWLEDGMENTS

This work was supported by the Swedish Foundation for

Strategic Research through the project ENGROSS, by the

Swedish Research Council through the LCCC Linnaeus Cen-

ter, and by the ELLIIT Excellence Center.

REFERENCES

[1] U. Orguner and F. Gustafsson, “Storage efficient particle filters for
the out of sequence measurement problem,” in 11th International

Conference on Information Fusion, 2008, June 30-July 3 2008, pp. 1–8.
[2] S. Zhang and Y. Bar-Shalom, “Optimal update with multiple out-

of-sequence measurements,” IEEE Transactions on Signal Processing,
April 2011.

[3] K. Biswas and A. Mahalanabis, “Suboptimal algorithms for nonlinear
smoothing,” IEEE Transactions on Aerospace and Electronic Systems,
vol. AES-9, no. 4, pp. 529–534, July 1973.

[4] X. Liu, B. Oreshkin, and M. Coates, “Efficient delay-tolerant particle
filtering through selective processing of out-of-sequence measurements,”
in 13th International Conference on Information Fusion, 2010, July
2010, pp. 1–8.

[5] S. Blackman and R. Popoli, Design and analysis of modern tracking
systems, ser. Artech House radar library. Artech House, 1999.

[6] Y. Bar-Shalom, “Update with out-of-sequence measurements in track-
ing: exact solution,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 38, no. 3, pp. 769 – 777, July 2002.

[7] Y. Bar-Shalom, H. Chen, and M. Mallick, “One-step solution for
the multistep out-of-sequence-measurement problem in tracking,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 40, no. 1, pp.
27–37, Jan. 2004.

[8] S. Zhang, Y. Bar-Shalom, and G. Watson, “Tracking with multisensor
out-of-sequence measurements with residual biases,” in 13th Interna-
tional Conference on Information Fusion, 2010, July 2010, pp. 1–8.

[9] K. Zhang, X. Li, and Y. Zhu, “Optimal update with out-of-sequence
measurements,” IEEE Transactions on Signal Processing, vol. 53, no. 6,
pp. 1992 – 2004, June 2005.

[10] X. Shen, Y. Zhu, E. Song, and Y. Luo, “Optimal centralized update
with multiple local out-of-sequence measurements,” IEEE Transactions

on Signal Processing, vol. 57, no. 4, pp. 1551 –1562, April 2009.
[11] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Prentice Hall,

1979.
[12] M. Orton and A. Marrs, “A Bayesian approach to multi-target tracking

and data fusion with out-of-sequence measurements,” IEE Seminar
Digests, vol. 2001, no. 174, 2001.

[13] ——, “Particle filters for tracking with out-of-sequence measurements,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 2,
pp. 693 – 702, April 2005.

[14] M. Mallick, T. Kirubarajan, and S. Arulampalam, “Out-of-sequence
measurement processing for tracking ground target using particle filters,”
in Aerospace Conference Proceedings, 2002. IEEE, vol. 4, 2002, pp. 4–
1809 – 4–1818 vol.4.

[15] M. Mallick and A. Marrs, “Comparison of the KF and particle filter
based out-of-sequence measurement filtering algorithms,” in Proceed-

ings of the Sixth International Conference of Information Fusion, 2003,
vol. 1, 2003, pp. 422 – 429.

[16] B. Oreshkin, X. Liu, and M. Coates, “Efficient delay-tolerant particle
filtering,” IEEE Transactions on Signal Processing, vol. 59, no. 7, pp.
3369–3381, July 2011.

[17] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
Feb 2002.

[18] K. Berntorp, K.-E. Årzén, and A. Robertsson, “Sensor Fusion for Motion
Estimation of Mobile Robots with Compensation for Out-of-Sequence
Measurements,” 11th International Conference on Control, Automation,

and Systems, October 2011.

478

