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Abstract—Spatially coupled low-density parity-check (SC-

LDPC) codes are considered for transmission over the block-

fading channel. The diversity order of the SC-LDPC codes

is studied using density evolution and simulation results. We

demonstrate that the diversity order of the code can be increased,

without lowering the code rate, by simply increasing the coupling

parameter (memory) of a SC-LDPC code. For a (3,6)-regular

SC-LDPC code with rate R = 1/2 and memory mcc = 4 a

remarkable diversity of d = 10 is achieved without the need

for any specific code structure. The memory of the SC-LDPC

codes makes them robust against a non-stationary mobile-radio

environment. The decoding of SC-LDPC codes using a latency

constrained sliding window decoder is also considered.

I. INTRODUCTION

The mobile-radio channel can be modelled as a slow, flat
fading together with additive noise. In many cases, the channel
coherence time is much longer than one symbol duration. Thus
several symbols are affected by the same fading coefficient. An
example of such a channel model is the block-fading channel
introduced in [1]. In block-fading channel, coded information
is transmitted over a finite number of fading blocks to provide
diversity. The diversity order of the code is an important
parameter that gives the slope of the word error rate (WER)
of the decoder. Codes achieving diversity equal to the number
of fading blocks in a codeword are said to be full diversity
codes. In [2], a family of LDPC block codes, called root-LDPC
codes, are proposed that provide full diversity over a block-
fading channel. The root-LDPC codes have a special check
node structure called rootcheck. Full diversity is provided
to the systematic information bits by connecting only one
information bit to every rootcheck.

In this paper, we consider spatially coupled low-density
parity-check (SC-LDPC) codes for block-fading channels
based on the following two observations,

• Convolutional codes, in general, are known to be suit-
able for transmission over block-fading channels and the
diversity can be increased by increasing the constraint
length of the code [3].

This work was supported in part by the DFG in the CRC 912 HAEC,
European Social Fund in the framework of the Young Investigators Group
3DCSI, and by the European Commission in the framework of the FP7
Network of Excellence in Wireless COMmunications NEWCOM# (Grant
agreement no. 318306).

• Root-LDPC codes provide full diversity for the infor-
mation bits. However, designing root-LDPC codes with
diversity order greater than 2 requires codes with rate less
than 1/2. The special structure of the codes makes it a
complicated task to generate good root-LDPC codes with
high diversity (and thus low rate).

Since SC-LDPC codes have a convolutional structure, they
are expected to have a good performance over block-fading
channels. In this paper, we present density evolution outage
probabilities [2] for random LDPC block and SC-LDPC codes
in Section III and IV, respectively. The results suggest that
increasing the coupling parameter (constraint length) of the
SC-LDPC code improves the diversity order of the code.
A similar observation is made in [4] for the block erasure
channel, which is a special case of block-fading channel.

Furthermore, we show that a higher diversity order can
be achieved without decreasing the code rate R and that
SC-LDPC codes are robust against the variations in the
channel, e.g. a mobile-radio channel is not stationary over
time and it fluctuates between the extremes of Rayleigh and
AWGN channel. We support the density evolution results with
simulation results for finite length codes. In Section V, a
latency constrained sliding window decoder [5] for the SC-
LDPC code is considered. It has been shown in [6] for an
AWGN channel, that even for a small structural delay (< 500

bits), the windowed decoding of SC-LDPC codes outperform
both conventional convolutional codes with Viterbi decoding
and LDPC block codes. We consider (3,6)-regular codes as
an example, which already exhibit remarkable diversity im-
provement. A general analytical bound on achievable diversity
is hard to obtain but our experimental results indicate that
better diversity can be achieved by further increasing the node
degrees.

II. NON-ERGODIC BLOCK-FADING CHANNEL

We consider transmission of a codeword of length N . The
slowly varying nature of the channel allows us to divide the
codeword into F subblocks, of length Nf = N/F each.
These F subblocks are affected by different independent
fading realizations ↵j , j = 1, . . . , F . The received symbols,
yi, i = 1, . . . , N , have the following form,

yi = ↵jxi + ni , (1)
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Fig. 1. Illustration of block-fading channel for a codeword of length N and
F = 2.

where j = 1 + b(i� 1)/Nfc and b·c represents the floor op-
erator. The input symbols xi are chosen from BPSK alphabet
and ni are Gaussian random variables with zero mean and
variance �

2
n. The symbols are normalized to xi = ±1 and the

fading coefficients ↵j are Rayleigh distributed with E[↵2
j ] = 1.

Hence, the signal-to-noise ratio (SNR= �) of the received
symbols is characterized only by the variance of the Gaussian
noise. Figure 1 gives an example of a codeword transmitted
over two fading channels (F = 2). The fading values ↵1

and ↵2 are constant throughout the first and second half of
the codeword, respectively. We further assume perfect channel
information only at the receiver side1. The log-likelihood ratio
(LLR) of the received symbols yi is given as,

Li =
2↵j

�

2
n

yi . (2)

The capacity of a non-ergodic channel depends on the
channel realization (here fading coefficients ↵j) and hence is
not information stable [7]. Therefore, the Shannon capacity of
a block-fading channel is zero. In order to characterize such a
channel, the outage probability Pout serves as a lower bound
on the word error probability for any coding scheme. The
outage probability is defined as follows [1],

Pout = P(I(x;y|↵) < R) (3)

where I(·) denotes the instantaneous mutual information be-
tween the input and the output of the channel, R is the
transmission rate and ↵ = {↵1, . . .↵F }. Hence, an outage
occurs when the fading values in ↵ are such that the mutual
information between the input and the output of the channel
is below the code rate. Assuming the input symbols xi to be
binary (BPSK), the outage probability is given as, [8],

Pout = P

0

@
FX

j=1

EX [log2(1 + e

�4R↵2
jX

)] > F (1�R)

1

A

(4)
with X ⇠ N (�, �). The Pout in (4) is an outage boundary for
a random code and can be approximated to 2/�

2 for R = 1/2

code and F = 2 under high SNR(�) [8]. However, in general
Pout has no close form expression.

A. Coding for Block-Fading Channels

A code design for a block-fading channel must exploit the
distinct characteristics of the channel. An important feature is
that each subblock is faded by an independent fading value,
providing some diversity. The F subblocks in a codeword are

1If channel-state information is available at the transmitter side, fading can
be compensated by controlling the transmit power accordingly.

coded together to reduce the probability of all the code sym-
bols being faded simultaneously. At high SNR, the diversity
order of the code defines the slope of the error rate curve on
a log-log scale and is given as,

d = � lim

�!1

log(Pwe)

log(�)

(5)

where Pwe is the word error probability. A code with rate
R = 1/F is said to have full diversity if d = F . Next, we
consider an LDPC block code and a spatially coupled LDPC
code for block-fading channel.

III. LDPC CODES FOR BLOCK-FADING CHANNELS

A (J,K)-regular LDPC code is characterized by a sparse
parity-check matrix H containing exactly J and K ones
in each column and row, respectively. Here, we consider
protograph based LDPC codes described by a bi-adjacency
matrix B, called base matrix. A protograph is a small bipartite
graph consisting of nc check and nv variable nodes. The
parity-check matrix H of an LDPC code can be obtained
by applying a lifting procedure that replaces each 1 in B by
an Z ⇥ Z permutation matrix and each 0 by an Z ⇥ Z all-
zero matrix. Integer entries larger than 1 represent multiple
edges between a pair of nodes and are replaced by a sum
of permutation matrices. The resultant parity-check matrix H
defines a codeword v = {v1, . . . , vN} of length N = Znv .

A. Density Evolution Outage

We use density evolution to analyze the exact performance
of a random LDPC block code for a block-fading channel.
Density evolution tracks the probability density function of the
messages exchanged between the check and variable nodes in
the bipartite graph. The worst channel parameter for which the
bit error probability converges to zero is called the threshold
of an ensemble. Here, as discussed before, the threshold of an
ensemble for the block-fading channel depends on the channel
realization and hence does not exist.

Considering (3), an outage occurs when instantaneous input-
output mutual information is less than the transmission rate
R. In terms of density evolution, we define density evolution
outage (DEO) as an event when the bit error probability does
not converge to zero for a fixed value of SNR after finite
or infinite number of decoding iterations are performed [2].
The probability of density evolution outage, PDEO, for a fixed
value of SNR can then be calculated using a Monte Carlo
method considering significant number of fading coefficients.
The lower bound on the word error probability Pwe is given
as [2],

Pwe � PDEO. (6)

Consider, without loss of generality, transmission of all-zero
codeword and perfect channel information at the receiver side.
The mean and variance of the received LLR from (2) can then
be calculated as 2↵2

j/�
2
n and 4↵

2
j/�

2
n, respectively. Hence, the

block-fading channel can be modeled as an AWGN channel
with gain ↵j for each subblock of length Nf symbols and the
initial distribution of the received symbols is generated using
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Fig. 2. Density evolution outage probability for a random (3,6)-regular LDPC
block code (LDPC-BC) and for a (3,6) root-LDPC block code with F = 2.
The outage bound calculated using (4) is also plotted.

the mean and variance of the LLR value in (2). The fading
coefficient ↵j can be interpreted as a known gain.

Figure 2 shows the outage probability bound for random
block codes and PDEO for a random (3,6)-regular LDPC
codes calculated using (4) and (6), respectively. It can be
observed that the LDPC block code does not achieve the
outage bound and its diversity order is d ⇡ 1.3. In order to
achieve full diversity d = F = 2, which is the maximum
achievable diversity order for an R = 1/F code, root-
LDPC codes are introduced in [2]. The simulation result for
a randomly generated (3,6)-regular root-LDPC code in Fig. 2
shows that the WER closely matches with the outage bound,
corresponding to a diversity d = 2.

IV. SC-LDPC CODES FOR BLOCK-FADING CHANNELS

Now consider the transmission of a sequence of codewords
vt, t = 1, . . . , L each of length N , using a protograph based
LDPC code. Instead of encoding the sequence of codewords
independently, the blocks vt are coupled by the encoder
over various other time instants [9]. The maximal distance
between a pair of coupled blocks defines the memory mcc of
the convolutional code. The coupling of consecutive blocks
can be achieved by an edge spreading procedure [10] that
distributes the edges from variable nodes at time t among
equivalent check nodes at times t + i, i = 0, . . . ,mcc. This
procedure is illustrated in Fig. 3 for a (3,6)-regular protograph
with base matrix B = [3, 3]. In order to maintain the degree
distribution and structure of the original ensemble, a valid edge
spreading should satisfy the condition

Pmcc

i=0 Bi = B. The
resulting ensemble can be described by means of a terminated
convolutional protograph with base matrix

B[1,L] =

2

6666664

B0

...
. . .

Bmcc B0

. . .
...

Bmcc

3

7777775

(L+mcc)nc⇥Lnv

. (7)

The corresponding sequence of coupled code blocks forms a
codeword v[1,L] = [v1,v2, . . . ,vt, . . . ,vL] of a terminated

B = [3, 3]

B0 = B1 = B2 = [1, 1]

v1 v2 v3 v4 v5 v6

mcc = 2

B B0 B1 B2

=)

Fig. 3. Illustration of edge spreading: the protograph of a (3,6)-regular
block code with base matrix B is repeated L = 6 times and the edges are
spread over time according to the component base matrices B0, B1, and B2,
resulting in a terminated SC-LDPC codeword v[1,6] = [v1, . . . ,v6].
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Fig. 4. Illustration of block-fading channel with F = 2 for a SC-LDPC
codeword v[1,L] with termination length L. The length of each coupled
codeword vt is N .

SC-LDPC code. Note that the mccnc additional check nodes
result in a rate loss due to termination. The block code
ensemble with disconnected protographs corresponds to the
special case mcc = 0 with B0 = B.

A. Density Evolution Outage for SC-LDPC Codes

Similar to LDPC block codes in Section III, DEO can be
calculated for a SC-LDPC code represented by a coupled
bipartite graph in Fig. 3. An illustration of a terminated SC-
LDPC codeword v[1,L] = [v1, . . . ,vt, . . . ,vL] with termina-
tion length L and F = 2 is given in Fig. 4. Each individual
codeword vt is divided into F equal subblocks. For F = 2, the
two fading coefficients for the first and second half (Nf bits)
of the codeword vt are represented as ↵t

1 and ↵

t
2, respectively.

Since a Monte Carlo method to calculate PDEO with exact
density evolution for a SC-LDPC is far too complex, we
use a reciprocal channel approximation (RCA) technique [11]
to calculate the PDEO for a fixed SNR value. In case of
the BEC, density evolution can be represented by a one-
dimensional parameter, i.e., erasure probability. RCA uses
a one-dimensional representation per variable node for the
block-fading channel. The one-dimensional parameter within
the RCA method is the mean of the received LLR symbol
given by (2) and depends on the particular fading realization.

A check node at time t in a SC-LDPC code is connected to
mcc + 1 codewords vt�i, i = 0, . . . ,mcc as shown in Fig. 3.
Considering the block-fading model in Fig. 4, a codeword vt

has F independent fading values. Hence, each check node
in the coupled graph is connected to at most F (mcc + 1)

independent fading coefficients. Therefore, for a fixed channel
parameter F , the diversity order can be increased by increasing
mcc of the coupled code, while keeping R and F same.

The component matrices for a (3,6)-regular SC-LDPC code
with an increasing memory mcc = 1, . . . , 4 are considered in
Table I. Figure 5 shows the corresponding DEO probabilities
determined using (6) and RCA approximation. The diversity



TABLE I
THE COMPONENT MATRICES FOR THE EDGE SPREADING PROCEDURE

USED FOR (3,6)-REGULAR SC-LDPC CODE. THE DIVERSITY ORDER IS
CALCULATED FOR F = 2.

Ensemble mcc Bi, i = 0, . . . ,mcc d

LDPC-BC 0 B = B0 = [3, 3] 1.3

EnsA1 1 B0 = [2, 2],B1 = [1, 1] 3

EnsA2 2 B0,1,2 = [1, 1] 6

EnsA3 3 B0,3 = [1, 1], B1 = [1, 0], B2 = [0, 1] 10

EnsA4 4 B0 = [1, 1], B1,3 = [1, 0], B2,4 = [0, 1] 10
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Fig. 5. DEO probability for ensembles defined in Table I.

order for the ensembles in Table I is numerically computed
from Fig. 5. The diversity order of the code increases with the
coupling parameter mcc. We observe that even a coupling to
one neighboring block (mcc = 1) gives a diversity order of
3, which is more than twice as compared to the LDPC block
code (see Fig. 2). Furthermore, increasing the memory of the
code from 3 to 4 does not give any significant improvement in
the diversity order. This is due to the fact that the maximum
number of codewords connected to a check node is limited by
the memory and the node degree. Hence, only simultaneously
increasing node degree and memory would result in increase
in the diversity order of the ensemble.

Considering EnsA2 as an example, the diversity order of
the code is d = 6 with R = 1/2. As shown in Fig. 6, the
same diversity can be achieved with a block code in case of
F = 10 according to the outage bound, as calculated using
(4). The results suggest that in order to achieve the same
performance with a random block code of R = 1/2 and
optimal maximum likelihood decoding, a codeword of length
N = 10Nf (F = 10) must be considered. Note that from
Fig. 2, we can conclude that a random LDPC block code with
N = 10Nf will not reach this outage bound. However, a full-
diversity root-LDPC code with d = 6 is possible to design
but only with a rate R = 1/d = 1/6. In contrast to this, at
the expense of slight rate loss due to termination, a randomly
generated (3,6)-regular SC-LDPC code with mcc = 2 is
sufficient to achieve the diversity order of d = 6. Likewise,
in order to achieve the diversity order of d = 10, similar to
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Fig. 6. DEO probability for EnsA2 for F = 1 and 2. The outage bound for
block code (4) is also plotted for F = 10.

EnsA3 and EnsA4 (see Table I), a rate R = 1/2 random block
code with F = 16 is required (curve not shown here).

Figure 6 also shows the DEO probability for F = 1, where
N = Nf . The diversity order of EnsA2 reduces to 3. Whereas,
a block code with R = 1/2 or a root-LDPC code designed
for F = 2 would have a maximum diversity of d = 1

2. This
suggests that the SC-LDPC codes are more robust against
the variation in the channel parameter F compared to root-
LDPC codes, i.e., designing a code for a specific value of F

is not required and the diversity order strongly depends on
the memory of the code. We observed that as long as the
constraint length of the code N(mcc + 1) contains more than
one subblock of length Nf , the SC-LDPC code can provide
a diversity order greater than 1. However, so far we have not
been able to give any bound on the diversity of a SC-LDPC
code with respect to the coupling parameter and more analysis
is required.

B. Simulation Results

We demonstrate the results of WER for finite length codes
generated randomly while avoiding the cycles of length 4. The
block length of each individual coupled code vt is N = 200

and F = 2. A maximum number of 50 iterations are performed
and the iterations stop once the check nodes are fulfilled.
Figure 7 shows the simulated WER for EnsA1, EnsA2 and
EnsA4 together with the DEO probabilities from Fig. 5. We
observe that there is no significant difference between the DEO
probability and the simulated WER for a finite block length N .
Note that, density evolution assumes an infinite block length.

V. LATENCY CONSTRAINED DECODING
OF SC-LDPC CODES

So far, we presented the results when standard belief prop-
agation decoding is applied across the codeword v[1,L]. This
induces a large structural decoding delay of LN code bits.
The structural delay is defined as the number of code bits, the
decoder has to wait before starting the decoding process. In
order to limit the decoding latency, we use a sliding windowed
decoder of size W introduced in [5].

2using Singleton-like bound [12] on diversity order d  1 + bF (1�R)c
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Fig. 7. Simulated WER and DEO probabilities for EnsA1, EnsA2 and EnsA4,
N = 200, L = 100, F = 2.

A window at time t operates on W received words,
yt,yt+1, . . .yt+W�1, corresponding to a section of Wnc rows
and Wnv columns of the matrix in (7). The size of the window
decoder is limited by at least mcc+1 codewords, which is the
maximal distance between two coupled codewords. At window
position t, only symbols in yt are decoded and hence termed
as target symbols. After the received word yt is decoded or
the maximum number of iterations are performed, the window
slides nc rows down and nv columns right in B[1,L]. By using
a window decoder, the structural latency is reduced to WN ,
where in general W << L.

The window decoder of size W is applied to the same
codes used in Fig. 7. A maximum number of 50 iterations
are performed at each window position. We compare the
results for EnsA1 and EnsA2 for different window sizes. The
edge spreading in EnsA1 containing multiple edges in B0 is
considered as this achieves the target BER with smaller W

[5] for an AWGN and BEC channel. Note that the structural
latency is proportional to W and hence a small value of W is
desirable for latency constrained applications.

Figure 8 shows the WER when a window decoder is
used to decode a SC-LDPC code. The corresponding DEO
probabilities from Fig. 5 are also plotted as reference. We
define Wmin as the minimum window size required to obtain
the performance of a belief propagation decoder that is applied
across the entire coupled codewords v[1,L] (this corresponds to
results presented in Section IV). A window size of Wmin = 5

is sufficient for EnsA1 (double edges in B0) whereas, a
Wmin = 10 is required for EnsA2 to achieve the respective
DEO probability. This can be explained due to the degree-
one variable nodes at the right end of window in EnsA2.
However, our results show that the window decoder with size
W < Wmin for EnsA2 performs better than EnsA1 with
W = Wmin, although the latter contains double edges in B0.
This can be explained by the difference in memory of the two
ensembles, since the number of different (independent) fading
values connected to any check node in a graph is proportional
to the memory of the code (see Fig. 3). Hence, we can
conclude that the word error performance of a window decoder
depends strongly on the coupling parameter mcc rather than
the edge spreading used.
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Fig. 8. Simulated WER and DEO for EnsA1 and EnsA2 using window
decoder of size W , N = 200, L = 100, F = 2.

VI. CONCLUSION

We present DEO probabilities and simulation results on
finite length SC-LDPC codes for the block-fading channel. A
simple (3,6)-regular SC-LDPC codes have been demonstrated
to achieve a diversity order of d = 10. We demonstrate that
SC-LDPC codes do not require channel specific design and the
increase in diversity order depends on the coupling parameter
mcc of the code. While root-LDPC codes have to be designed
specifically for a given F , the SC-LDPC codes are more robust
against variation in the fading channel. Furthermore, a latency
constrained decoding of SC-LDPC codes using a window
decoder gives no significant loss in word error performance
compared to a block decoder.
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