
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Eclipse Plugin for Bluespec System Verilog

Zipfel, Tobias

2008

Link to publication

Citation for published version (APA):
Zipfel, T. (2008). Eclipse Plugin for Bluespec System Verilog. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/36ae2487-23f1-43cc-9d76-74894eb05685


Lund University

Department of Computer Science

– Project Report –

Bluespec SystemVerilog Eclipse

Environment

Tobias Zipfel

VT 08

No.: ES-St-0034



Bluespec SystemVerilog (BSV) is a declarative hardware description language based

on a synthesizable subset of SystemVerilog. Developing with BSV means so far to use

scripts for existing editors, which enable highlighting and seldom support of the BSV

compiler. The absence of a real IDE for BSV makes writing programs an inconvenient

task.

This project tries to improve this by providing an BSV Eclipse plugin. Besides code

highlighting, it includes project management, and the error feedback from the BSV

compiler. To avoid unnecessary and time consuming compiler runs, an BSV parser,

which is generated with JastAdd, is also provided. By this means, it is possible to parse

source files while editing. The parser supports the user immediately with error feedback,

before the compiler is started, and with a concrete syntax tree, which is displayed in

the Eclipse outline view. Additionally, the whole build process can be automated with

eclipse. In this way, the compiler run time is reduced significantly, which enables the

developer to spend more time on programming.



Contents

1 Introduction 5

1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Bluespec SystemVerilog . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Project build-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8

2.1 Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 CAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 RAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 ReRAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Tools 12

3.1 JastAdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 JFlex - a Java Scanner Generator . . . . . . . . . . . . . . . . . . 12

3.1.2 Beaver - a Java Parser Generator . . . . . . . . . . . . . . . . . . 13

3.1.3 JastAdd builds AST Java classes . . . . . . . . . . . . . . . . . . 14

3.2 AstViewer - a Python script . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Command line options . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Project configuration with Eclipse . . . . . . . . . . . . . . . . . . . . . . 19

4 A Parser for BSV 22

4.1 AST and grammar definition . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 A goal for the parser . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.2 Common nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.3 Package definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.4 Conditional statements . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.5 System call tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3



Contents

4.1.6 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.7 Type synonym definitions . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Attribute definitions and rewriting rules . . . . . . . . . . . . . . . . . . 31

4.2.1 Collection of imports and exports . . . . . . . . . . . . . . . . . . 31

4.2.2 Replacing missing package names . . . . . . . . . . . . . . . . . . 32

4.2.3 Unbound type variable check . . . . . . . . . . . . . . . . . . . . 32

4.3 Error collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 BlueSVEP 35

5.1 Existing sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Features provided by interfaces and abstract classes . . . . . . . . 35

5.1.2 Features provided by attributes . . . . . . . . . . . . . . . . . . . 37

5.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Editor features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.2 Workbench features . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Installation instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion and outlook 47

Bibliography 52

4



1 Introduction

This chapter gives a short introduction to the project, as well as to the hardware de-

scription language Bluespec SystemVerilog (BSV) from Bluespec Inc. [1].

1.1 Purpose

The aim of this project is to ease writing code in BSV and managing BSV projects with

a BlueSpec SystemVerilog Eclipse Plugin (BlueSVEP).

So far in writing BSV programs one depends on editors like Emacs, Vim or Jedit. All

support syntax highlighting and Emacs has even a few more options. These features are

based on configuration files, which are available from Bluespec.

A feature in Emacs is for example the linking of compiler errors to the source code

after a compilation was started. Consider the case that the first error is in the upper-

most package, which is compiled as a last step. With this long running compilation the

error search will be slowed up. Even if nothing else has changed and only the upper-

most package has to be recompiled, running the compiler takes time. Additionally the

compiler stops at the first error, which requires one run for each error. To prevent these

unnecessary compiler runs, the source code has to be parsed before or even while typing.

Using Eclipse as a tool framework, makes other valuable plugins such as Subclipse, a

SVN plugin, or CDT, a C++ IDE, available in just one software. Other benefits are the

many ways to enhance the plugin using the existing extensions points from Eclipse or

to extend the basic functionality from the JastAdd core plugin (see sec. 5.1). Possible

enhancements are, just to name a few, to display the syntax tree of the current program

in the outline view, to search object references in the source code, to fold certain source

code parts, or to refactor the source code.

Furthermore, the plugin can act as a precompiler for the BSV compiler to introduce

own language constructs or to alter the source code before compiling in a desired way. It

is also feasible to integrate the different command line tools, which come from Bluespec,

into the Eclipse workbench, so they can be easily accessed. The auto-build functionality

of Eclipse has also to be mentioned, which can start time consuming builds in the back-

5



1 Introduction

ground. This leads to a more controlled build environment and prevent the programmer

searching for error resulting from inconsistent build states.

1.2 Bluespec SystemVerilog

BSV is a declarative hardware description language based on a synthesizable subset of

SystemVerilog [2]. It extends SystemVerilog by rules for state transitions, which can

express concurrency easier. BSV also supports polymorphism and first-class objects,

constructs that are usable without restrictions in the program, whereby code reusability

is increased.

1.3 Project build-up

The project requires carrying out several steps. First, extracting the grammar for BSV,

generate a parser for it and writing a plugin to use this parser. There are two steps

necessary before the plugin implementation can begin. Both steps are made clearer in

fig. 1.1.

As a first step, the BSV language description [2] was used to extract the BSV syntax

words and literal definitions. With this information one can create an input file for

JFlex (see sec. 3.1.1) to generate a scanner. The scanner reads a source file and replaces

matched strings with special marks (tokens), which are further analyzed by a parser.

This parser is generated with JastAdd (see sec. 3.1) in a second step. For this purpose

two things have to be done in parallel. Modeling an abstract syntax tree (AST) is one

part(see sec. 2.1) and the other one is building-up a grammar description. The grammar

uses the nodes specified in the AST to create an concrete syntax tree (CST) object for the

BSV program. The necessary information is also taken from [2]. Additional attributes,

defining equations and methods are described in the .jrag and .jadd files. These files

are the input for JastAdd, which generates the parser and all Java classes corresponding

to the AST nodes. JastAdd can in principle work with any Java parser generator. For

this project Beaver is chosen (see 3.1.2) to deal with this task. See chapter 3 for more

detailed description on this steps and the tools used.

The generated Java classes, the scanner and the parser can now be used in BlueSVEP

to parse BSV programs. Besides parsing while typing, BlueSVEP provides syntax high-

lighting, project management and an explorer view. The plugin itself is based on a core

plugin from JastAdd, which provides a general basis to build on (see sec. 5.1).

6



1 Introduction

edited
files

generated
files

BSV
reference

Token
Info

AST
*.jrag
*.jadd

Grammar

Scanner
.java

Parser
.java

AST
Nodes
.java

AST
Nodes
.java

AST
Nodes
.java

extract
symbols

JFlex

JastAdd

Beaver

(JastAdd)

extract
grammar

Figure 1.1: Project build-up

The report is organized as follows:

The next chapter gives a rough overview about rewritable attribute grammars. These

are used for error checking, for type analysis, or to easily add functionality to the plugin

provided by the core plugin.

Chapter 3 describes some of the tools used for code generation (JFlex, Beaver, and

JastAdd), the software development environment Eclipse and the AstViewer.py Python

script, that was created during the project. This script reads a AST file and generates

a graphical representation of the tree structure.

The subject of chapter 4 is the generated parser and the AST model. The model is

presented in sections corresponding to the chapters in [2]. In order to use the parser to-

gether with the plugin, the errors have to be collected and returned. The error collection

method is therefore presented to make clear how the interaction between the parser and

the plugin is built up.

Chapter 5 describes the plugin itself. The parts used from the JastAdd core plugin and

the implemented features are described here in detail. A short installation instruction is

given as well.

Finally, chapter 6 presents our conclusions and an outlook.

7



2 Background

This chapter introduces basic knowledge about how to represent a program in a tree

structure with nodes and edges. The tree structure can be improved by adding node

attributes, which save values or reference information to other nodes, or transformed by

applying specific node re-writing rules to reorganize the tree.

2.1 Abstract Syntax Tree

In general an abstract syntax tree (AST) is a directed tree with finite set of labeled

nodes. ASTs are used to express programs of a language in a structured way. Each

language construct is presented as one of these nodes, called operators, which can have

several children, called operands [3]. Building up an AST requires a grammar providing

rules to produce the non-terminals, which are the root and the inner nodes. The leaf

nodes, called terminals, correspond to variables and constants.

2.2 Grammars

To show the differences between various grammars, we use a small subset of the BSV

language. This sub-language allows a root package node to have multiple type definitions,

variable declarations and variable assignments. Type definitions consist just of a name,

declarations have a type and a name, and assignments have a name and a value. The

following grammar description is given in Backus-Naur form:

Listing 2.1: Grammar for a subset of the BSV language

1 Package ::= package string ; {BlockStmt} endpackage
BlockStmt ::= <TypeDef> | <VarDecl> | <VarAssign>

3 TypeDef ::= typedef string string;

VarDecl ::= string string ;

5 VarAssign ::= string = string ;

8



2 Background

2.2.1 Canonical Attribute Grammars

A grammar is considered context-free if the left side of each production rules consists of

only one non-terminal symbol and if these rules can be applied in any context. Canonical

attribute grammars (CAGs) were first presented in [4] and are in general a composition

of context-free grammars with attribute definitions for non-terminals. Attributes can

either be synthesized or inherited. Synthesized attributes provide information up to the

parent nodes and inherited attributes are used to push information down to child nodes.

An AST generated using the CAG given in listing 2.1 looks like fig. 2.1.

VarDecl

<Name>
<Type>

Package

<Name>

VarAssign

<Name>
<Value>

0..* 0..* 0..*

TypeDef

<Name>
<Type>

Figure 2.1: The AST for the BSV sub-language.

Listing 2.2 is used to generate an example of a CST. The code represents a correct

program based on the sub-language from listing 2.1. The CST therefore looks very

similar to fig. 2.1, except from the multiplicities and attribute values (see fig. 2.2).

After parsing, every textual information provided is stored as values in node attributes.

Listing 2.2: Example program based on the sub-language

1 package Foo;

typedef int MyInt;

3 MyInt number;

number = 11;

5 endpackage

Storing only values and no references leads to multiple tree accesses if further informa-

tion about the program is desired. This is an obvious drawback of CAGs. For example,

starting with the variable assignment in line 4, it would take two more tree accesses

every time to get the type definition node. This is not a problem for this short example

9



2 Background

VarDecl

“number”
“MyInt”

Package

Foo

VarAssign

“number”
“11”

TypeDef

“MyInt”
“int”

Figure 2.2: concrete syntax tree for the example program in listing 2.2

program, but it would become a time consuming task for a large and complex program

with many nodes. As mentioned in [5] another uninspired solution to this would be

to replicate the all necessary information where it is needed. This would lead to very

complex attributes and complicate possible extensions to the grammar.

2.2.2 Reference Attribute Grammars

Reference attribute grammars (RAGs) are presented in [5] and address the drawbacks of

CAGs. The introduced references (a special kind of attributes) allow a straightforward

information retrieval from arbitrarily far away nodes. The concrete syntax tree (CST)

for the example Program is shown in fig. 2.3 with dashed arrows as references.

VarDecl

“number”
refTypeDef

Package

“Foo”

VarAssign

refVarDecl
“11”

TypeDef

“MyInt”
“int”

Figure 2.3: CST produced by a RAG.

10



2 Background

This extension facilitate immensely type analysis and name analysis. A type analysis

of the variable assignment in line 4 leads directly to the VarDecl node and from here to

the TypeDef node.

2.2.3 Rewritable Reference Attribute Grammars

As described in [6], rewritable reference attribute grammars (ReRAGs) are an enhance-

ment of RAGs. They add the ability to rewrite the AST nodes under condition de-

pendend rules. Rewrites are triggered as soon as the nodes are accessed. This helps

preventing a time consuming task and separates the workload into smaller pieces. To

demonstrate a simple rewrite we use the following rule:

Listing 2.3: Rewrite rule with condition

1 rewrite VarAssign {
when (getType().equals(Type.NUMBER))

3 to IntAssing new IntAssign(getValue().toInteger());

}

After applying this to the AST in fig. 1.1 the right VarAssign node is replaced by

a new IntAssign node. An another rule could instead replace it by an UndeclaredVar

node, if the variable in line 4 was not declared before. Rewrites could also be used for

refactoring when, for instance, inner members are extracted to a upper level. For more

concrete examples refer to [6].

11



3 Tools

This chapter presents the tools involved in the creation process of the scanner, parser and

plugin. The general project build-up was already mentioned in chapter 1.3. Therefore

the following sections provide just a detailed description of the respective steps.

3.1 JastAdd

JastAdd is an Java-based open source compiler compiler (see [7]). It is capable of gen-

erating a scanner, parser and compiler. Additionally it generates Java classes for all

defined AST nodes. For this project a compiler is not of interest, as the BSV compiler

from Bluespec is used. However, all other features are needed. As a first step, one can

separate the writing of an input file from the scanner generation.

3.1.1 JFlex - a Java Scanner Generator

JastAdd uses JFlex (see [8]) to generate the scanner, which later provides the parser

with the necessary token information. Tokens are in general syntax constructs, which

match a specified string. The following listing (3.1) gives therefore an idea.

Listing 3.1: Section from the JFlex input file

...

2 "package" { return sym(Terminals.PACKAGE); }
"endpackage" { return sym(Terminals.ENDPACKAGE); }

4 "(" { return sym(Terminals.LPAREN); }
...

The method call sym(Terminals.PACKAGE) in line 2 will create a new symbol object.

This object holds information about the line, the column and the type of syntax word,

which is a start of a package in this case. With this information the parser can distinguish

between syntax words and identifiers or comments.

12



3 Tools

3.1.2 Beaver - a Java Parser Generator

Beaver needs an input file with a grammar description (see [9] for details) to generate a

the Java parser class. The grammar has to be expressed in the Extended Backus-Naur

form, as presented in the following example, in listing 3.2.

Listing 3.2: Section from the Beaver input file

...

2 PackageDef packageDef =

PACKAGE identifier SEMICOLON packageblock ENDPACKAGE endName

4 {:
checkEndName(identifier, endName, PACKAGE);

6 return new PackageDef(identifier.getName(), packageblock);

:};
8 ...

The first expression in line 2 represents the Java class PackageDef and the second the

symbol packageDef used in the grammar. After the equal sign follows the production

rule for this symbol.

The rule consists of terminal and non-terminal symbols. Terminals are given in cap-

itals, like PACKAGE or SEMICOLON, are placed by the scanner (see line 2 and 3 in listing

3.1). Non-terminal symbols, like identifier or packageblock, lead to other production

rules also defined in the grammar.

The lines between the {: ... :} are Java code, that is executed when the rule is applied.

In the case of line 5, the method call checkEndName() compares the endName symbol with

the identifier symbol to guaranty equal strings. Finally, a new PackageDef object is

returned in the next line.

In addition to the grammar description, more information is necessary. Beaver has

to know the tokens, otherwise produced by the scanner. Also the relations between

grammar symbols and Java classes have to be set. JastAdd takes care of these last two

tasks, which leaves nearly only the grammar design to deal with.

To choose more exactly between the rules while parsing, it is essential to fix the

precedence of operators. This is done by listing them in the right order in the input file,

otherwise Beaver would choose an order of rules by itself. This produces normally very

many warnings and possibly does not lead to the desired behavior.

Another important task is error handling and gathering. This can be accomplished by

overloading some methods inherited from Beaver classes or adding new ones. For this

13



3 Tools

purpose one can use the predefined syntax word %embed {: ... :} wherein all extra Java

code have to be placed. This code and the grammar form the input file for JastAdd,

which adds type and terminal symbol information. The outcome of this together with

the precedence of operators build up the input file required by Beaver.

3.1.3 JastAdd builds AST Java classes

JastAdd generates Java classes from an AST definition. It also adds equations, attributes,

rewrites, methods and fields to this classes defined in aspects. This information should

be separate in two general file-types, to keep a certain clarity. The first type has the

extension ’.ast’ for the AST definitions and the latter contains the aspect definitions

and ends with ’.jrag’ or ’.jadd’.

The following sections briefly describe the syntax for these files. Further information

can be found in the reference manual [7].

The AST definition file

The AST definition file describes for each node, its base class, its children and attributes.

An section of such a file is shown in listing 3.3.

Listing 3.3: Section from the AST definition file

...

2 abstract BlockStmt;

abstract Def: BlockStmt ::= <DefIDe:String>;

4 PackageDef: Def ::= Body:PackageBlock;

PackageBlock: Block ::= Exports Imports BlockStmt∗;
6 ...

IfStmt: CondStmt ::= CondPredicate TrueStmt:BlockStmt [FalseStmt:BlockStmt];

8 ...

It is possible to declare abstract classes, like in line 2, which unify common behavior.

The syntax at line 4 is used to inherit from such and other classes. In general, it starts

with the new class name, followed by a colon and the base class. In this case, the class

PackageDef inherits the attribute <DefIDe:String> from Def and defines the child node

of type PackageBlock by itself.

The generated Java classes provide methods to access these defined child nodes and

attributes. In line 4, for the child node named Body, the corresponding get method is

14



3 Tools

named getBody(). If no name is denoted, the method is named by get plus the type-

name. The get method name of the inherited attribute <DefIDe:String> is therefore

getDefIDe().

In line 5, the character ∗ is used after the child node BlockStmt. This means that a

PackageBlock object can contain zero or more children of type BlockStmt. Internally this

is stored with the List class, which handles the objects of this type like a vector.

Optional child nodes can be expressed with surrounding braces. The nodes are then

encapsulated by an object of type Opt and the generated class has a method to check for

existence. For instance, the class IfStmt in line 7 has a method named hasFalseStmt(),

which returns the Boolean value true if the object has such a child.

Another node type is declared between slashes ( / NodeName /). These nodes are not

generated by a parser. Instead, they are treated like attributes, which have to be de-

fined by an equation. Therefore they are called non-terminal attributes (NTAs). How

attributes and their equations are defined is shown in the following section.

The aspect definition file

This file type can contain attributes, equations and rewrites belonging to a certain

aspect. In this case it should be saved with the extension ’.jrag’. For instance, an aspect

addressing type analysis and containing respective attributes and equations would be

stored with such an extension.

Attributes are differentiated into two kinds. Synthesized attributes propagate infor-

mation upwards to parent nodes while inherited attributes enable leaf nodes to access

information from a parent node.

Synthesized attributes are used for example to extract type information or a printable

name from certain child nodes. They are defined with the following syntax:

syn AttributeType ClassName.attributeName();

All synthesized attributes have to be defined by this class and by all its subclasses,

if the class is abstract. Subclasses can also overwrite the definition from super classes.

The syntax for the defining equation follows this pattern:

eq ClassName.attributeName() = Java−expression;
The use of inherited attributes is not as intuitive as the use of synthesized attributes. In

this case attribute inheritance has nothing to do with class inheritance. The inheritance

relates here to the AST structure. An inherited attribute declaration in a child node

must be defined by an equation in all nodes that can contain children of this node type.

15



3 Tools

This is used for example in sec. 4.2.3 to provide information only accessible from the

parent node. The syntax therefore is shown in the following:

inh ChildClassName.attributeName();

eq ParentClassName.getChildClassName().attributeName() = Java−expression;
A convenient feature of JastAdd is the automated copying of inherited attribute equa-

tions. An equation defined in a parent node is valid for all nodes between this parent

and the child that declares the inherited attribute. To make this attribute visible in any

other child node it has to be declared as inherited attribute.

All Java expressions can also be replaced by method bodies. Instead of:

... = Java−expression;
one can write:

{ ...; return Java−expression; }.
If an aspect simply consists of class fields or methods, the file should end with ’.jadd’.

An aspect covering all toString() methods, which are used to print out the actual AST

structure, is an example for this case.

The general syntax for this looks as follows:

AccessType ReturnType ClassName.methodName(parameter list){ ... }
for methods and

AccessType Type ClassName.fieldName = InitialValue;

for fields.

3.2 AstViewer - a Python script

While constructing the AST definition file, one can get easily lost in the textual descrip-

tion of big amounts of nodes with all their inheritances and parent-child relations. It is

much more convenient to have a visual representation of the AST definition.

A Python script was therefore written to reveal a possible reuse of existing nodes and

to get a better overview. It needs an .ast file as input. The output is a dot file [10] and

an image displaying the relations between the nodes with regard to the used command

line options.

Two programs are used to generate the images. The first one is dot, which is used

in most cases, and the second one is neato. The latter is invoked if dot fails or if the

option ’-oC’ is used. The difference between dot and neato is that dot tries to generate

hierarchical tree structures while neato tries to place the nodes corresponding to the

lowest energy configuration concerning the system of nodes and their relations. The

16



3 Tools

relations between the nodes are treated here as springs. The length of these springs can

be adjusted with the ’-SL=X.X,X.X’ option.

To present these different command line options, the following AST definition is used:

Listing 3.4: Example AST definition file

Program ::= Class;

2 Class ::= BlockStmt∗;
abstract BlockStmt;

4 abstract Decl: BlockStmt ::= <DeclID:String>;

TypeDecl: Decl;

6 VarDecl: Decl ::= <varName:String>;

VarAssign: BlockStmt ::= <VarName:String> <Value:String>;

Similar to an UML class diagram, the nodes are displayed as boxes with arrows to

superclasses and children. Abstract classes have a gray shape and an italic font.

The output image format depends on the −T option, which corresponds to the same

option for dot. Without this options the standard is png. All images for this report used

the −Tps2 option to generate postscript files. These are converted to pdf in a next step.

Without any options figure 3.1 shows the image for listing 3.4.

Decl

< DeclID:String >

BlockStmt

TypeDecl

AstNode

VarDecl

< varName:String >

VarAssign

< Value:String >

< VarName:String >

Program Class
1 0..*

Figure 3.1: Output without options.

17



3 Tools

3.2.1 Command line options

The general invoke command has this form:

pyhton AstViewer.py [options] fileName.ast

In the following each option is presented with a short description and, if necessary, a

resulting image.

-oI only inheritance dependencies are generated. See fig. 3.2.

-oC only child dependencies are generated. Instead of generating images with dot

neato is used. This will result in smaller images. See fig. 3.3.

-iC children are included into the node shape. See fig. 3.4.

-iCI children from superclasses are included into the node shape. See fig. 3.5.

-S generates a dot file and an image for each section. To create a section one has

to use the following pattern:

// [number|number.number] SectionName
followed by the nodes belonging to this section.

-SL=X.X,X.X set the spring length for neato. The first value is for inheritanc

relations, second for child relations. This will affect how close the nodes are

placed.

-Tformat sets the output image format. Corresponds to the same dot option.

Examples for format are: png, gif, ps2, ...

Refere to the dot manual for a complete list [10].

-noImpL disables the imprint of generation options on the image.

Multiple options can be used at the same time. Exceptions from this are:

• Only one of ’-oI’ or ’-oC’ can be used in the same invocation.

• If only ’-iCI’ is used, ’-iC’ is set automatically.

In most cases, the best results are produced if the ’-oI’ option is used. Otherwise a

large amount of parent-child relations will degrade the overview and dot will produce

larger images to place the nodes correctly.

18



3 Tools

Decl

< DeclID:String >

BlockStmt

TypeDecl

AstNode

VarDecl

< varName:String >

VarAssign

< Value:String >

< VarName:String >

Program Class

Figure 3.2: Output with -oI.

3.2.2 Known limitations

It is not always possible to generate images for long AST definition files with many

nodes, inheritance and child relations with dot. In this case, AstViewer tries to generate

the image with neato instead. If a hierarchical node placement is nevertheless desired,

using the ’-oI’ option together with ’-iC’ or ’iCI’ is recommended. Another solution could

also be the use of the ’-S’ option to generate smaller images.

3.3 Project configuration with Eclipse

Eclipse is a well known integrated development environment (IDE) (see [11]). It is highly

adaptable through the plugin interface and supports mainly the Java language. However,

other languages are supported by plugins. The CDT plugin for C/C++ is just one

example. Besides language specific plugins, there are several plugins heading towards a

more general functionality, such as the Subclipse plugin for SVN integration.

Eclipse provides a project management especially suited for plugin development. For

clarity, the project is organized in two of these plugin projects. The basic scanner and

parser files form one project, called BSVFrontend. BlueSVEP is configured in a sep-

arated project. In this way, it is possible to develop and test the scanner and parser

independently from BlueSVEP. Another reason is to use the bare parser on single input

files or strings without the need of BlueSVEP.

19



3 Tools

Decl

< DeclID:String >

TypeDecl

BlockStmt

VarDecl

< varName:String >

VarAssign

< Value:String >

< VarName:String >

Program

Class 1
0..*

Figure 3.3: Output with -oC.

Decl

< DeclID:String >

BlockStmt

TypeDecl

AstNode

VarDecl

< varName:String >

VarAssign

< Value:String >

< VarName:String >

Program

Class

Class

BlockStmt*

1 0..*

Figure 3.4: Output with -iC.

Within the BSVFrontend plugin, the input files for the parser generation are separated

corresponding to the chapters in [2]. This is easier than to orient oneself in just one long

file. These files are concatenated in the generation process to a single input file. The

concatenation and other steps are run by an Ant XML build file in both projects. This

guarantees the generation process to go on in a controlled and repeatable manner.

The BlueSVEP plugin has no runtime dependency to BSVFrontend, but it needs the

basic files for scanner and parser for its own generation process. In this process a special

preamble section is added to these files, which reflect project specific package structure

and includes. To enable the JastAdd core plugin functionality, specific ’.jrag’ files are

also added for the AST node generation.

20



3 Tools

Decl

< DeclID:String >

BlockStmt

TypeDecl

--inh from-- 
 Decl

< DeclID:String >

AstNode

VarDecl

< varName:String >

--inh from-- 
 Decl

< DeclID:String >

VarAssign

< Value:String >

< VarName:String >

Program

Class

Class

BlockStmt*

1 0..*

Figure 3.5: Output with -iCI.

Debugging is a very essential part of implementation. Therefore the log4j logger [12]

is used to have more control over system printouts. For backup reasons and to provide

version control, all projects are organized in a Subversion repository.

21



4 A Parser for Bluespec SystemVerilog

This chapter concerns the implementation aspects of the BSV Parser, which are pre-

sented in excerpts in the following sections.

Generating the parser for BSV requires an AST and grammar definition. As described

in the former chapter, the generated parser uses the Java classes from the AST definition.

The outcome of the parser is the concrete syntax tree (CST) for the parsed source

file. Feedback is given in form of errors deriving from different parsing steps.

4.1 AST and grammar definition

In the following, the AST and the corresponding grammar description are presented

for several sections. The AST images are sometimes reduced to the essential nodes

or separated into several parts to keep a certain clarity. Consider that the nodes in

the AST represent Java classes. The terms ’node’ and ’class’ are therefore used in an

interchangeable manner.

4.1.1 A goal for the parser

The parser generated by Beaver returns a root node, when calling the parse method.

This node contains the whole CST for the parsed source file. A single BSV file can

contain several package definitions. Figure 4.1 presents the AST for Program.

Program

PackageDef*

AstNode

Figure 4.1: Parser goal: Program

22



4 A Parser for BSV

4.1.2 Common nodes

These nodes are used in several other sections. The first part is shown in figure 4.2

includes Identifier, Blocks and BlockStmt.

Block

AstNode

BlockStmt

UnknownBlockStmt Decl

< DeclIDe:String >

Def

< DefIDe:String >

UnknownDecl

Exp

Access

IdUse

< Name:String >

Identifier

IdentifierLC IdentifierUC

Figure 4.2: Common nodes, 1st part

• The abstract class Identifier has two sub classes IdentifierLC, for lower case

identifiers, and IdentifierUC, for upper case identifiers. These are needed, as BSV

requires to differentiate upper and lower case in some language constructs.

• The abstract class Block is the base class for several other classes such as

PackageBlock or FunctionBlock.

• The abstract class BlockStmt is the base class for all kind of statements, that can

occur inside a block.

23



4 A Parser for BSV

The second part (see fig. 4.3) shows the abstract class Member with its subclasses.

These are used for example by parts of a module or interface definition, which inherit

from a suitable subclass of Member.

Member

AstNode

MemberDecl

Access

Type: GeneralType

MemberDef

< Name:String >

MemberExp

Value: Exp

MemberDefType

Type: GeneralType

MemberDefExp

Value: Exp

SubMember

Member*

EntityAttributes

AttributeLine*

AttributeLine

AttributeSpec*

AttributeSpec

Figure 4.3: Common nodes, 2nd part

For instance, the classes EntityAttributes, AttributeLine and AttributeSpec are

used before several language constructs in the following way:

(∗ AttributeA=20, AttributeB=true ∗)
(∗ AttributeC ∗)
module/interface/...

The grammar for AttributeLine (see listing 4.1) is taken as an example of how multiple

children are implemented in the grammar. In line 3 the actual attribute is parsed. The

assignValue_opt symbol is either nothing or a equal sign followed by an expression.

The attributeSpec symbol can be written as comma separated list, according to line 8.

To solve the repetition problem, the symbol definition for attributeSpec_list contains

itself. Notice, that this list only contains the attribute for one line. Multiple lines require

an additional production for another list, which is not shown here. This list is saved in

objects of type EntityAttributes.

24



4 A Parser for BSV

Listing 4.1: Grammar for AttributeLine

AttributeSpec attributeSpec =

2 identifier assignValue_opt

{: return new AttributeSpec(identifier.getName(), assignValue_opt); :} ;

4

List attributeSpec_list =

6 attributeSpec

{: return new List().add(attributeSpec); :}
8 | attributeSpec_list COMMA attributeSpec

{: return attributeSpec_list.add(attributeSpec); :} ;

4.1.3 Package definition

A package definition is the uppermost language construct inside a BSV file. It consists

of a block containing imports and exports and several block statements (see fig. 4.4).

PackageDef

< DefIDe:String >

Body: PackageBlock

AstNode

PackageBlock

Imports

Exports

BlockStmt*

Block

Figure 4.4: Package definition, 1st part

Listing 4.2 presents the possible subclasses/productions, that are allowed inside a

package. In this manner, the AST needs only to handle abstract superclasses such as

BlockStmt. The grammar description defines then a more detailed set of subclasses.

Listing 4.2: Grammar for package statements

BlockStmt packageStmt =

2 attrModuleDef | attrIFDecl
| typeDef

25



4 A Parser for BSV

4 | varDecl | scalarAssign
| functionDef;

Imports and exports are not treated like normal block statements as they can only

appear at the beginning of a package definition. Figure 4.5 shows that all classes related

to imports and exports inherited from Member, either directly or through the abstract

class MemberDef.

Exports

ExportLine*

Member

ExportLine

ExportDecl*

ExportDecl

MemberDef

< Name:String >

Imports

ImportLine*

ImportLine

ImportDecl*

ImportDecl

AstNode

Figure 4.5: Package definition, 2nd part

The question arises why a package definition has extra classes to handle multiple im-

port and exports lines. It would also be possible to have list of ImportsLine/ExportLine

directly in PackageDef, such as for BlockStmt.

The reason therefore is founded in the ’content outline view’ feature from the core

plugin, which is presented in sec. 5.1. Every element, that should have a outline node

with a name and icon, have to be a single node and not a list of nodes.

4.1.4 Conditional statements

Conditional statements can contain optional parts. In figure 4.6, the class CaseStmt has

an optional child of type DefaultItem and the class IfStmt has the optional BlockStmt

with the name FalseStmt.

For the latter, listing 4.3 shows how an optional child is implemented in the grammar.

An if statement can be placed in different contexts. To be able to allow only proper

statements, there has to be a specific IfStmt production rule for every context.

26



4 A Parser for BSV

CondStmt

BlockStmt

IfStmt

TrueStmt: BlockStmt

[FalseStmt: BlockStmt]

CondPredicate

CaseStmt

CaseItem*

Value: Exp

[DefaultItem]

DefaultItem

BlockStmt

Member

CaseItem

Exp*

AstNode

Figure 4.6: Conditional statements

Listing 4.3: Grammar for IfStmt

IfStmt functionIf =

2 IF LPAREN condPredicate RPAREN functionBlockStmt functionElse

{: return new IfStmt(condPredicate, functionBlockStmt, functionElse); :};
4

Opt functionElse =

6 {: return new Opt(); :}
| ELSE functionBlockStmt {: return new Opt(functionBlockStmt); :};

Optional children lead to a generated boolean method, that can be used to check if the

parent has a certain child node. For IfStmt this method is called with

hasFalseStmt().

4.1.5 System call tasks

System calls in BSV are used, for example, to write and read files or to display variable

values. Every call starts with a $ followed directly by a name.

A context sensitive scanning is applied for system call tasks. After recognizing the

initial dollar sign, the scanner switches to another context. In this SYSTEMCALL context,

27



4 A Parser for BSV

only the predefined system calls are accepted. Listing 4.4 shows the relevant sections

from the scanner file.

Listing 4.4: Scanner rules for system tasks.

SystemCallStart = "$"

2 ...

{SystemCallStart} { yybegin(SYSTEMCALL); }
4 ...

<SYSTEMCALL> {
6 "fopen" { yybegin(YYINITIAL); return sym(Terminals.SC_FOPEN); }
"fclose" { yybegin(YYINITIAL); return sym(Terminals.SC_FCLOSE); }

8 ...

}

After a system call was identified, the scanner switches back to the initial state.

4.1.6 Types

Many constructs require type information. Variable declarations, methods or functions

are just a few examples. The following grammar (listing 4.5) in the Backus-Naur form

describes how a type can be build up. The resulting AST is shown in figure 4.7. The

original grammar for types in [2] could not be used, as it parses more than the BSV

compiler accepts.

Listing 4.5: Type grammar

1 type ::= typePrimary

3 typePrimary ::= typeIde [ # ( innerType {, innerType } ) ]

| bit [typeNat : typeNat]

5 | int

7 innerType ::= typePrimary

| typeNat
9 | typeVar

11 typeIde ::= Identifier

typeVar ::= identifier

13 typeNat ::= decDigits

28



4 A Parser for BSV

GeneralType

AstNode

ComplexType

< TypeConstructor:String >

Parameters: GeneralType*

TypeVar

< Name:String >

SizeType

NaturalNum: DecDigits

UnboundTypeVar

< Name:String >

UnknownType

Figure 4.7: Types

In BSV it is possible to use type variables to increase the code reusability. E.g. a type

can be expressed as List#(a), which is a list of variables of type a . A type synonym

definition, which is presented in the following section, is an example how type variables

are used.

4.1.7 Type synonym definitions

A convenient method to define own types is the type synonym language construct. The

corresponding grammar is presented in listing 4.6 and the AST in figure 4.8.

Type synonyms allow definitions such as typedef bit [7:0] Byte; or

typedef Tuple3#(a, a, b) Triple#(type a, type b);.

The first part after typedef is a type and the next part is the new type name, optionally

followed by a list of type formals.

Listing 4.6: Type synonym grammar

TypeDefSynonym typeDefSynonym =

2 TYPEDEF complexType identifierUC typeFormals SEMICOLON

{: return new TypeDefSynonym(identifierUC.getName(),

4 typeFormals, complexType); :};

6 List typeFormals = ...

...

29



4 A Parser for BSV

8 TypeFormal typeFormal =

TYPE identifierLC {: return new TypeFormal(identifierLC.getName()); :}
10 | NUMERIC TYPE identifierLC {: return new TypeFormal(identifierLC.getName()); :};

The class TypeDefSynonym has a ComplexType and a list of TypeFormal children. Each

type variable used inside ComplexType has to be specified by a type formal form this list.

Otherwise the BSV compiler will return with an error.

TypeDef

Def

< DefIDe:String >

TypeFormal

MemberDef

< Name:String >

TypeDefType

TypeFormal*

TypeDefSynonym

Type: ComplexType

BlockStmtMember

AstNode

Figure 4.8: Type synonym definitions

This kind of errors have to be checked before time consuming compiler runs are started.

The attributes and rewrite rule presented in section 4.2.3 cover this task.

30



4 A Parser for BSV

4.2 Attribute definitions and rewriting rules

Possible uses of attributes and rewrites are nearly endless. To give an impression how

they can be applied, the following sub-section present examples implemented in the BSV

parser and BlueSVEP files.

4.2.1 Collection of imports and exports

For further type and name analysis it is useful to have access to imports and exports as

lists. Corresponding to figure 4.5, e.g. imports can be distributed into several lists. One

list for each line and one list containing all ’single’ line lists. To prevent to go through

this structure every time, the import and export declarations should be stored in a new

list.

A convenient feature of JastAdd is the definitions of ’self-filling’ collections. Listing

4.7 presents therefore the attribute definitions for imports.

Listing 4.7: Collection of imports

inh PackageDef ImportDecl.currentPackage();

2

eq PackageDef.getBody().currentPackage() = this;

4

syn lazy HashSet PackageDef.getAllImports() = allImports();

6 coll HashSet PackageDef.allImports() [new HashSet()] with add;

ImportDecl contributes this to PackageDef.allImports() for currentPackage();

The inherited attribute in line 1 and its defining equation in line 3 is used to have a

reference to the surrounding package.

The JastAdd syntax word lazy in line 5 sets the synthesized attribute

getAllImports() to be calculated once when it is accessed the first time. The result

is then cached for following accesses. Its definition returns the collection from line 6.

This collection attribute is defined starting with coll, followed by the type, the owning

class and a name. The value between [] is the initialization data and the name after

with defines the method, that is used to add items to the collection.

In line 7 finally, the objects of class ImportDecl contribute themselves to the HashSet

from line 6 for the package reference defined in line 3.

31



4 A Parser for BSV

4.2.2 Replacing missing package names

The package name is normally given in the surrounding ’package-endpackage’ construct.

Nevertheless the BSV compiler also accepts files with missing package definitions, that

start directly with imports and exports. This would result in packages nodes titled with

$NO_PACKAGE_NAME in the eclipse outline view.

To set the package name, a rewrite rule is used. In the condition of this rule, a simple

equality test identifies those packages and resets the name. As no new object has to be

created, the updated object is returned. The rewrite rule is shown in listing 4.8.

Listing 4.8: Rewrite PackageDef

rewrite PackageDef {
2 when (getDefIDe().equals(BSVParser.Constants.NO_PACKAGE_NAME))

to PackageDef{
4 setDefIDe(getProgram().getSrcPath().removeFileExtension().lastSegment());

return this;

6 }
}

The rewriting is triggered once, when the PackageDef object is accessed through a

get () method the first time and a second time after the modified object was returned.

The second rewrite attempt fails, as the name changed to the last segment of the source

path. Then the object is returned to the caller of the get () method.

4.2.3 Unbound type variable check

Some BSV constructs allow the definition of type variables (e.g. interface declarations,

structs, tagged unions and type synonyms. The latter is used as an example to present

the unbound type variable check). Listing 4.9 presents the required attribute definitions.

Listing 4.9: Attributes for unbound type var check

inh boolean TypeVar.checkUnbound(TypeVar typeVar);

2

eq TypeDefSynonym.getType().checkUnbound(TypeVar typeVar) =

4 findTypeFormal(typeVar.getName());

6 syn boolean TypeDefType.findTypeFormal(String name) {
for(int i = 0; i < getNumTypeFormal(); i++){

32



4 A Parser for BSV

8 if (getTypeFormal(i).getName().equals(name)){
return true;

10 }
}

12 return false;

}

The inherited attribute in line 1 have to be defined by every possible parent of TypeVar.

This has to be done even for classes that will never have a child of that concrete type,

according to their productions rules. For example, every subclass of MemberDefType (see

fig. 4.3) or their parent nodes have to define this inherited attribute as MemberDefType

has a GeneralType child. For nodes where a check for unbound type variable makes no

sense, the equation returns true.

The class TypeDefSynonym has a ComplexType child, that can contain type variables

(see fig. 4.7). The equation in line 3 sets the attribute to the return value from the

synthesized attribute findTypeFormal(String).

This attribute is defined in line 6 for TypeDefType. This is a superclass of

TypeDefSynonym (see fig. 4.8). If the argument is found in the type formals, it returns

true, otherwise false.

The checkUnbound(TypeVar) attribute is used in the following rule (listing 4.10). It

rewrites a TypeVar to an UnboundTypeVar if the attribute value equals false.

Listing 4.10: Rewrite TypeVar

rewrite TypeVar {
2 when (checkUnbound(this) == false)

to UnboundTypeVar{
4 UnboundTypeVar newNode = new UnboundTypeVar(getName());

newNode.setLocation(this);

6 return newNode;

}
8 }

An error has to be generated, after this rewrite were successfully applied. The next

section presents how the error generation and collection works and answers why line 5

is necessary.

33



4 A Parser for BSV

4.3 Error collection

As described in the introduction to this chapter, the errors derive from different parsing

steps. Each step produces specific kind of errors, which are linked with the causing

symbol:

1. The scanner tries to insert symbol tokens for the parser, which can produce lexical

errors.

2. The parser builds a CST of the code, which can contain syntactic errors.

3. The type, name and other code analysis possibly leads to semantic errors.

Calling the parse method from the BSV parser adds lexical and syntactic errors to the

returned Program object. The collection of semantic errors has to be started by calling

the method collectErrors() on this object. Listing 4.11 presents the implementation.

Listing 4.11: Collect errors method from ErrorCheck.jadd

public void ASTNode.collectErrors() {
2 typeAnalysis();

for(int i = 0; i < getNumChild(); i++) {
4 getChild(i).collectErrors();

}
6 }

The getChild(i) method call in line 4 triggers all rewrites before collectErrors()

is called on that object. According to listing 4.12 the type analysis method of class

UnboundTypeVar calls the error method. This method uses the objects location within

the source file to generate an error with all necessary information to place an error

marker.

Listing 4.12: Type analysis method from TypeAnalysis.jadd

public void ASTNode.typeAnalysis() {}
2

public void UnboundTypeVar.typeAnalysis(){
4 error("Unbound type variable: " + getName());

}

This is the reason for the method call setLocation(this) in line 5 in listing 4.10.

Otherwise this information would be lost and the error marker could not be placed at

the right position.

34



5 BlueSVEP - A BSV Eclipse plugin

This chapter introduces the relevant sources from the JastAdd core plugin and how

they are used in the BlueSpec SystemVerilog Eclipse Plugin (BlueSVEP). The result-

ing inherited features from the core plugin and the additional features implemented in

BlueSVEP are shown in the next section. The chapter concludes with short installation

instructions for BlueSVEP.

During the implementation process, the book “Eclipse - Building Commercial-Quality

Plug-ins” [13] is used as reference as well as many Eclipse corner articles from [11] and

the Eclipse Wiki [14].

5.1 Existing sources - The JastAdd core plugin

The core plugin provides basic implementations for several Eclipse features. Adding im-

plementations of abstract methods or attribute equation definitions makes these features

available. The JastAdd Java plugin, which is also based on the core plugin, is used as a

reference project. Parts of the core plugin are presented in the following sub sections.

5.1.1 Features provided by interfaces and abstract classes

Besides inheriting from certain JastAdd core plugin classes and implementing abstract

methods, the plugin.xml file has to reflect the features provided by the plugin with the

corresponding extension points.

Model provider

BlueSVEP uses the org .jastadd.plugin.model.JastAddModelProvider extension point

from the core plugin, which requires a class to provide and build the model for a BSV

source file. This class, named BlueSVEPModel, has to be specified in the plugin.xml file

and inherits from the abstract JastAddModel class.

The BlueSVEPModel class updates the model, provides a file reference for each CST

node, and returns the CST node corresponding to a certain position in the editor.

35



5 BlueSVEP

Updating the model means to parse the BSV source file and build the CST. This CST

is then stored for each file in an array to save unnecessary recomputations, if a model

update is triggered and the content is unchanged. Parsing errors are tagged on the files

with markers, which are defined at the org .eclipse.core.resources.markers extension

point.

A file reference is necessary, for example, when the user selects a node in the outline

view and the editor jumps to the specific position in the text.

To provide hover information in the text editor, the position in the file has to be linked

with a certain node. This is done by the core plugin and requires only little adaption in

the BlueSVEPModel class.

Editor

The existing abstract JastAddEditor class provides already most of the functionality.

The BlueSVEPEditor class provides therefore only the editor id, which is also used in the

plugin.xml at the org .eclipse.ui.editors extension point. An additional class, named

BlueSVEPEditorConfiguration, enables access to the BlueSVEPScanner

class, which handles the syntax word highlighting.

Builder and nature

For this part, the Java Java plugin cannot be used as a reference. It applies the

JastAddBuilder class from the core plugin, which complicates a direct control over the

build process.

Therefore the class BlueSVEPBuilder is implemented for a better integration of the

BSV compiler. The builder has a build method, which is called every time a full or

incremental build was triggered. By default the BSV compiler starts only when no parse

errors appear. The BlueSVEP builder requires also a nature, which connects it to a

project.

The builder is defined at the org .eclipse.core.resources.builders extension point

and the nature at org .eclipse.core.resources.natures.

Views and perspective

The core plugin provides already a extensively implemented basis for the explorer and

the navigator view. The explorer requires a bit more adjustment as it reflects the

source code errors on the corresponding CST nodes. Both views are defined at the

36



5 BlueSVEP

org .eclipse.ui.views extension point. The explorer is the standard view in the

BlueSVEP perspective, which takes the most configuration from the

JastAddPerspectiveFactory super-class. The BlueSVEP perspective adds only a new

wizard shortcut for BlueSVEP projects and it is defined at the

org .eclipse.ui.perspectives extension point.

5.1.2 Features provided by attributes

Some features depend on AST node attributes and are defined in .jrag files. The pre-

sented features adjust the behavior in the editor and the content outline view.

Folding in the editor

Folding markers can only be placed at specified nodes and they are set in the

BlueSVEPFolding file. If a node should have a fold marker the following equation, in

this case for PackageDef, has to return true.

eq PackageDef.hasFolding() = true;

To achieve the desired folding markers placement it is sometimes necessary to change

the grammar a bit. For example, List objects have to be encapsulated into another

node to provide the proper folding of all list items as shown in the following code line

for Exports.

Exports exports = exports_list_opt {: return new Exports(exports_list_opt); :};
It is also important not to place a foldable AST node as a first node in a rule, if the

rule is for a foldable AST node itself. This leads to misplaced folding markers. E.g. the

definition for a moduleDef has to be separated in the following rules (listing 5.1). The

hasFolding() equations for entityAttributes and moduleDef both return true.

Listing 5.1: Grammar for ModuleDef

ModuleDefWithAttributes attrModuleDef =

2 entityAttributes moduleDef

{: return new ModuleDefWithAttributes(entityAttributes, moduleDef); :};
4

ModuleDef moduleDef =

6 MODULE identifierLC ...

If the moduleDef rule would also include entityAttributes, the folding marker for

moduleDef would be placed at the same position as the folding marker for

entityAttributes.

37



5 BlueSVEP

Hover comments in the editor

Hover comments are used in the standard Eclipse Java editor to display Javadoc for the

element selected. In BlueSVEP, the comment text is specified in the

BlueSVEPHoverComments file. It only includes a general comment style.

Content outline view

Eclipse provides a content outline view, which presents the CST for Java classes. The core

plugin already provides the necessary base structure to populate the content outline view

with a CST for the used model. Three equations have to be defined for each node, which

should appear in the view. These equations are defined in the BlueSVEPContentOutline

file. Listing 5.2 presents the three equations for ModuleDef. The first equation in line 1

sets the visibility in the view. The default value is false. The two next equations set

the display name and image.

Listing 5.2: Equations for content outline view elements

... eq ModuleDef.showInContentOutline() = true;

2 eq ModuleDef.contentOutlineLabel() = getDefIDe();

eq ModuleDef.contentOutlineImage() =

4 Activator.getImage("icons/outline/Module.gif"); ...

The core plugin implementation iterates through all children and displays only visible

nodes. It displays thereby also visible child nodes of a non-visible child.

5.2 Features

In the following, editor and workbench features are described and presented with screen

shots.

5.2.1 Editor features

These features add new functionality to the editor.

Syntax highlighting

Syntax highlighting significantly improves the code readability. Additionally it is an

easy method to check for misspelled syntax words, which prevents the programmer from

38



5 BlueSVEP

finding these errors one after another with several compiler runs. Besides the BSV syntax

words, some predefined types, such as Bit or Action, are also highlighted. Figure 5.1

presents some example code lines.

Figure 5.1: Syntax highlighting for syntax words, strings, comments and normal text.

The highlighting colors can be set via the BlueSVEP preferences. The corresponding

preference page is shown in figure 5.2. The changed colors will be displayed after the

editor was reopened.

Figure 5.2: Preferences for syntax highlighting

39



5 BlueSVEP

Folding

A foldable element is marked with a minus sign to fold it and with a plus sign to unfold

it. Figure 5.3 presents some folded elements.

Figure 5.3: Folding markers

Folding is enabled for the following nodes:

• Package, module, method, and function definitions

• Interface declarations

• Multiple export and import lines

• Multiple attribute lines

• Type definitions, structs, tagged unions and enumerations

• Begin-end, action, action value blocks

• Rules

Hover comments

Presenting further information about the element under the cursor can be very helpful.

The BlueSVEP plugin displays the start/end line and column of the node, followed by

the its type, which is presented in figure 5.4. The yellow hover comment states the node

type as InterfaceDecl.

40



5 BlueSVEP

Figure 5.4: Hover comment for an InterfaceDecl object

It is also possible to display other information. For example the doc attribute described

in chapter 13.6 in [2] could be used for this purpose.

Source code errors

While typing source code, the programmer is nearly immediately informed about errors

through the parser feedback. After the code changed, the parsing is started again. Figure

5.5 presents an error resulting from a misplaced white-space character.

Figure 5.5: Syntactic error from parsing.

The parser will treat every unrecognized token as an error. In the case that the parser

is not able to recover from an error, the parsing will stop at that line until the programmer

corrects it. To improve the parser error recovery, the file

errorProductions.parser adds some production rules, which are included in the gen-

erated parser. The rule for ImportLine is exemplified presented in the following:

ImportLine importLine = IMPORT error SEMICOLON {: return new ImportLine(); :};
The syntax word error is predefined in the Beaver specification and used as “fallback

position”.

Even if the parser returns without an error, there could still be some semantic errors,

which can only be found through code analysis. Such errors are presented in figure 5.6.

41



5 BlueSVEP

Figure 5.6: Semantic error from unbound type variable analysis.

The faulty code line has two errors, as the type variables a and c are not specified

by the new type synonym. The correct line should end as follows:

MyType#(type a, type b, type c).

5.2.2 Workbench features

This section presents all features, which are not mainly focused on the editor.

Project management

BlueSVEP provides a BSV specific project type. When a new project wizard is started,

it is possible to choose the project name and the source and output folder. The wizard

page is shown in figure 5.7.

Figure 5.7: New Project wizard.

42



5 BlueSVEP

The source and output folder are changeable after the project creation. To do this,

select the “Properties” item from the project’s context menu and choose the “Project

Settings” tab (fig. 5.8).

Figure 5.8: Project specific settings.

It is possible to change the wizard default source and output folder in the BlueSVEP

preferences as well.

Build process

The Eclipse build process is triggered automatically or manually.

Automatic means that shortly after the programmer stopped typing, Eclipse runs the

project’s builders. As a result, the build method from the BlueSVEPBuilder class is

invoked, which starts the parsing and places the respective markers. In case there are no

parser errors in any file, or if parser errors are ignored, the BSC compiler is started. If

more than one file is changed, the BSC compiler is started as soon as all files are saved.

Manually triggered builds give the programmer more control over the time, when the

BSC compiler should be started. Before parsing and compiling is started, the programmer

is asked to save any unsaved resources.

In both cases, a main BSV file has to be set before the BSC compiler can be started.

The context menu of BSV files provides the item “Set as main BSV file”. After a

main file is selected, it is presented with a different icon ( ) in the explorer view (see

ObjectAccess.bsv in fig. 5.12).

To provide access to all BSC compiler features, it is possible to set further command

line options through preference pages. These options can be set globally and/or project

specific, whereas project specific options override global ones. Figure 5.9 presents the

preference page for global compiler options.

43



5 BlueSVEP

Figure 5.9: Global compiler settings.

In the case that the BSV compiler was successfully started, the feedback is displayed

in a console view, which is presented in figure 5.10.

Figure 5.10: BSC compiler feedback.

Content outline view

Going through the source code is much more easier with an outline of syntax elements.

Therefore BlueSVEP provides a content outline view for several types. An example is

shown in figure 5.11.

The CST is the result from parsing and includes every node, which is set to be visible

in the view. To navigate between these elements, it is possible to select an element of

interest to reset the editor’s focus to the respective line and column of that element. The

supported types and the used icons are presented in table 5.1.

44



5 BlueSVEP

Figure 5.11: Content outline view.

Table 5.1: Outline types
Type Icon Type Icon

Package Module definition
Exports Export declaration
Imports Import declaration
Interface declaration Sub-interface declaration
Method definition Function definition
Rule definition Type synonym
Enumeration Enumeration element
Struct Struct member
Tagged union Tagged union member

Explorer and navigator view

These two views provide a convenient access to BSV projects. The explorer view (fig.

5.12) tags error markers to source files and displays the main BSV file, while the navigator

view presents the CST for each file (fig. 5.13). Both views have preset filters to hide the

compiler output files.

Perspective

The BlueSVEP perspective places the explorer and other views in a predefined arrange-

ment. The navigator view is not displayed by default and has to be enabled manually.

45



5 BlueSVEP

Figure 5.12: Explorer view. Figure 5.13: Navigator view.

5.3 Installation instructions

To install BlueSVEP more easily, a remote update site is available. In this way, it is

possible to install and download the plugin directly in Eclipse. This requires to cre-

ate a feature project and an update site project, which gather information about the

comprising plugins and build them as jar files. To install BlueSVEP follow these steps:

1. Open in Eclipse the menu Help->Software Updates->Find and Install.

2. Select “Search for new features to install” and click on next.

3. Click on “New Remote Site”, choose a name (e.g. BlueSVEP update site) and set

the URL to “http://esd.cs.lth.se/sw/BlueSVEP/update/”.

4. Include the created remote site and click on next.

5. Follow the installation routine further.

46

http://esd.cs.lth.se/sw/BlueSVEP/update/


6 Conclusion and outlook

In this project, a Bluespec SystemVerilog Eclipse plugin was implemented. The plugin is

capable of project management, syntax highlighting and linking of compiler errors with

source code. Furthermore it provides a source file parser for error feedback while typing.

The created BSV grammar for this parser is well changeable, in case of future language

developments or further improvements of the parser.

One problem while building up the grammar was the slight differences between the

grammar description and the BSV compiler acceptance. The grammar described in the

reference manual is not always complete and correct as well. The language by itself also

offers sometimes more than one way to write certain parts (e.g. short forms), which

increases the required number of production rules.

For now, the parser is not capable of parsing the whole BSV grammar. For example,

the state machine sub-language is not supported. Based on these missing parts, the

parser cannot parse certain syntax constructs. The parser stops also in the case that too

many errors occur in one line and if there is no suitable error production rule.

Using the JastAdd core plugin was an convenient solution, compared to handwritten

code. The current lack of documentation was compensated by using the JastAdd Java

plugin as a reference project. Rewrites and attribute equations were also a gain for the

project. It requires indeed more effort while designing the AST, especially the inherited

attribute equations, but the advantages prevail.

There are many possible ways to improve the usability and extend the plugin’s feature

list. The most important task is definitely to be able to parse the whole BSV grammar

and to be as conform as possible to the BSV compiler. Workbench wide type analysis

and further error checks should spare further compiler time. The error tolerance and the

parser stability has to be improved as well to provide a good working plugin.

Another important feature is the integration of simulation data generation and pre-

sentation. The BSC compiler is able to generate Verilog output and simulation data

for Blueview. This is already done partially through the project preference pages and

47



6 Conclusion and outlook

through setting a project’s top module. To display the data it would be convenient to

be able to start the tools directly from Eclipse.

The present project management could be extended by an additional BSV file wiz-

ard. This wizard could already contain a code template for a basic package, which is

completed by the wizard.

The explorer view can be extended in several ways. E.g. it could display the model

elements so that an error is directly tagged to an element. The output folder could be

hidden, as it is not important for developing and the presentation of the source folder

could use own icon.

The JastAdd core plugin provides further useful features. Source code auto-completion,

for example, can ease programming and speed up development. Visualizing package and

module dependencies or searching for their uses provide a better overview. Changing

existing source code with automated refactoring is much more convenient and less error-

prone.

48



List of Figures

1.1 Project build-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The AST for the BSV sub-language. . . . . . . . . . . . . . . . . . . . . 9

2.2 concrete syntax tree for the example program in listing 2.2 . . . . . . . . 10

2.3 CST produced by a RAG. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Output without options. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Output with -oI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Output with -oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Output with -iC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Output with -iCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Parser goal: Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Common nodes, 1st part . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Common nodes, 2nd part . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Package definition, 1st part . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Package definition, 2nd part . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Conditional statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.8 Type synonym definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Syntax highlighting for syntax words, strings, comments and normal text. 39

5.2 Preferences for syntax highlighting . . . . . . . . . . . . . . . . . . . . . 39

5.3 Folding markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Hover comment for an InterfaceDecl object . . . . . . . . . . . . . . . . 41

5.5 Syntactic error from parsing. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Semantic error from unbound type variable analysis. . . . . . . . . . . . . 42

5.7 New Project wizard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.8 Project specific settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.9 Global compiler settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

49



List of Figures

5.10 BSC compiler feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.11 Content outline view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.12 Explorer view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.13 Navigator view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

50



Listings

2.1 Grammar for a subset of the BSV language . . . . . . . . . . . . . . . . . 8

2.2 Example program based on the sub-language . . . . . . . . . . . . . . . . 9

2.3 Rewrite rule with condition . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Section from the JFlex input file . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Section from the Beaver input file . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Section from the AST definition file . . . . . . . . . . . . . . . . . . . . . 14

3.4 Example AST definition file . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Grammar for AttributeLine . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Grammar for package statements . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Grammar for IfStmt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Scanner rules for system tasks. . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Type grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Type synonym grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 Collection of imports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.8 Rewrite PackageDef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.9 Attributes for unbound type var check . . . . . . . . . . . . . . . . . . . 32

4.10 Rewrite TypeVar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.11 Collect errors method from ErrorCheck.jadd . . . . . . . . . . . . . . . 34

4.12 Type analysis method from TypeAnalysis.jadd . . . . . . . . . . . . . . 34

5.1 Grammar for ModuleDef . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Equations for content outline view elements . . . . . . . . . . . . . . . . 38

51



Bibliography

[1] Inc. Bluespec. URL: http://www.bluespec.com, 2008. 5

[2] Bluespec, Inc. Bluespec SystemVerilog Reference Guide, revision: 31 august

2007 edition. URL: http://www.bluespec.com/wiki/index.php?title=BSV_

Documentation. 6, 7, 20, 28, 41

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers - Principles, Techniques and

Tools. Addison Wesley, 1986. 8

[4] D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,

2(2):127–145, June 1968. 9

[5] G. Hedin. Reference attribute grammars. Informatica (Slovenia), 24,

2000. URL: http://www.cs.lth.se/home/Gorel_Hedin/publications/

2000-RAGsInformatica-PreliminaryVersion.pdf. 10

[6] T. Ekman and G. Hedin. Rewritable reference attributed grammars. In Proceedings

of ECOOP 2004, volume 3086 of LNCS. Springer-Verlag, 2004. URL: http://www.

cs.lth.se/home/Gorel_Hedin/publications/2004-ReRAGs-LNCS.pdf. 11

[7] T. Ekman and G. Hedin. URL: http://jastadd.org, 2008. 12, 14

[8] JFlex. URL: http://www.jflex.de, 2008. 12

[9] Beaver. URL: http://beaver.sourceforge.net/index.html, 2008. 13

[10] Graphiz. URL: http://www.graphviz.org, 2008. 16, 18

[11] Eclipse. URL: http://www.eclipse.org, 2008. 19, 35

[12] log4j. URL: http://logging.apache.org/log4j, 2008. 21

[13] D. Rubel E. Clayberg. Eclipse - Building Commercial-Quality Plug-ins. Addison

Wesley, second edition, July 2006. 35

[14] Eclipse Wiki. URL: http://wiki.eclipse.org/, 2008. 35

52

http://www.bluespec.com
http://www.bluespec.com/wiki/index.php?title=BSV_Documentation
http://www.bluespec.com/wiki/index.php?title=BSV_Documentation
http://www.cs.lth.se/home/Gorel_Hedin/publications/2000-RAGsInformatica-PreliminaryVersion.pdf
http://www.cs.lth.se/home/Gorel_Hedin/publications/2000-RAGsInformatica-PreliminaryVersion.pdf
http://www.cs.lth.se/home/Gorel_Hedin/publications/2004-ReRAGs-LNCS.pdf
http://www.cs.lth.se/home/Gorel_Hedin/publications/2004-ReRAGs-LNCS.pdf
http://jastadd.org
http://www.jflex.de
http://beaver.sourceforge.net/index.html
http://www.graphviz.org
http://www.eclipse.org
http://logging.apache.org/log4j
http://wiki.eclipse.org/

	Introduction
	Purpose
	Bluespec SystemVerilog
	Project build-up

	Background
	Abstract Syntax Tree
	Grammars
	CAGs
	RAGs
	ReRAGs


	Tools
	JastAdd
	JFlex - a Java Scanner Generator
	Beaver - a Java Parser Generator
	JastAdd builds AST Java classes

	AstViewer - a Python script
	Command line options
	Known limitations

	Project configuration with Eclipse

	A Parser for BSV
	AST and grammar definition
	A goal for the parser
	Common nodes
	Package definition
	Conditional statements
	System call tasks
	Types
	Type synonym definitions

	Attribute definitions and rewriting rules
	Collection of imports and exports
	Replacing missing package names
	Unbound type variable check

	Error collection

	BlueSVEP
	Existing sources
	Features provided by interfaces and abstract classes
	Features provided by attributes

	Features
	Editor features
	Workbench features

	Installation instructions

	Conclusion and outlook
	Bibliography

