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Long term NOAA-AVHRR GIMMS-NDVI - rainfall relationships and 
trends 1981 to 2003 for entire DeSurvey area of interest 

 
Christian Töttrup & Ulf Helldén, Partner 7 (Lund University) 
 
Abstract 
 
The paper presents results of a study on the use of the NOAA AVHRR data for desertification monitoring on 
a regional-global level. It is based on processing of the GIMMS 8 km global NDVI data set. Time series of 
annual integrated NDVI and standardized annual NDVI anomalies from the 1981-2003 periodic means were 
compared with a corresponding rainfall data set (i.e. 1981-2003) as well as a historical rainfall set (1901-
2002). Both sets were derived from 2.5 degrees and 0.5 degrees global gridded climate data respectively. 
 
The areas studied include the Mediterranean basin (Southern Europe and Northern Africa), the Sahel from the 
Atlantic to the Red Sea, major parts of the drylands of Southern Africa, China and the drylands of  South 
America, i.e. important parts of the desertification prone areas of the world (Cf. fig. 1) 
 
It is concluded that the suggested methodology is a robust and reliable way to assess and monitor 
desertification on a global, national and regional scale. The results of the applied methodology indicate a 
strong general relationship between NDVI and rainfall over time. The results of performed trend analysis 
cannot be used to verify any systematic generic land degradation/desertification trend at the regional-global 
level in any of the regions studied. On the contrary, a “greening-up” seems to be evident over the past 20 
years in several of the regions when interpreting the NDVI as a proxy for biomass cover and seasonal 
vegetation growth.  
 
This is most obvious in the African Sahel region south of the Sahara. 
 
 
0. INTRODUCTION 
 
This report is a part of and a sub-deliverable to the DeSurvey ,WP 1.5.1 Deliverable 
1.5.1.17:  “Long term NOAA-AVHRR (MEDOKADS/Pathfinder/GIMMS) NDVI-rainfall 
relationships and trends 1989 to current for entire DeSurvey area of interest” under the 
leadership of partner 19 (EC JRC-IES). It covers the use of the GIMMS NDVI. 
 
1. DESERTIFICATION 
 
Desertification is land degradation in arid, semi-arid and dry sub-humid areas resulting 
from various factors, including climatic variations and human activities. Degradation 
implies the reduction of the resource potential of the landscape through different processes 
(UNCED 1992).  
 
Embedded in the term desertification is much controversy on the actual magnitude of the 
problem with published figures suggesting that anything between 17 to more than 70 per 
cent of the worlds drylands may be ‘desertified’ (Reynolds et al. 2003). Another crucial 
issue relates to the actual causes of desertification with much of the debate focusing on the 
extent to which it is mainly driven by climate or by human influences.  
 
In March 2006 we carried out a survey among the scientists of Desurvey (about 90 persons) 
to find out about their desertification/land degradation concepts. We offered everyone an 
opportunity to provide an anonymous opinion about what key indicator/ variable they 
would prefer as a proxy and most important “stock” for desertification if they were to 
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assess or simulate desertification through system dynamic modeling. Sixty five of them 
responded. A vast majority of the votes fell on the following two alternatives (Fig. 1): 
 
D) Green & woody biomass (natural & crops productivity)  
E) Vegetation fractional cover (canopy and field cover) 
 

Desertification Indicator(s) Desertification Indicator(s) 

A) Soil water storage 
B) Ground water storage
C) Soil (erosion modelling, e.g. soil depth &/or 

nutrient status )
D) Green & woody biomass (natural & crops 

productivity)
E) Vegetation fractional cover (canopy and field 

cover)
F) Human population
G) Household income
H) Rural/urban standard of living
I) Livestock density
J) I have no idea what you are talking about
K) Suggested alternatives...(desertification is a 

syndrome…

A) Soil water storage 
B) Ground water storage
C) Soil (erosion modelling, e.g. soil depth &/or 

nutrient status )
D) Green & woody biomass (natural & crops 

productivity)
E) Vegetation fractional cover (canopy and field 

cover)
F) Human population
G) Household income
H) Rural/urban standard of living
I) Livestock density
J) I have no idea what you are talking about
K) Suggested alternatives...(desertification is a 

syndrome…

N=65*2

 
Fig. 1.  The result of a survey of DeSurvey desertification concepts in March 2006. Each scientist 
supplied two votes. 65 out of 90 answered. A vast majority of the DeSurvey scientists preferred 
vegetation related indicators as proxies for desertification in a theoretical system dynamic 
modeling attempt. (Photo: U.Helldén, 1994, Korquin Sandy Lands, I. Mongolia, China) 
 

Desertification may express itself in many ways. Serious desertification ultimately results 
in long lasting and observable loss of vegetation cover and biomass productivity over time 
and in space.  
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Fig. 2. The LU system dynamic conceptual model simulating desertification 1900-2050 
over a 1 km2 Sahelian arid environment. The graph illustrates the development of 1: 
Biomass resources (tons), 2: Population 3: Smoothed random rainfall (100-1000 mm), 
assuming a population perturbation (new settlements, 80 people 1946-1950). Over 
consumption leads to a collapse of the resources mainly caused by a decreasing regrowth 
rate modelled as a function of the remaining biomass stock. The growth rate starts 
decreasing when the biomass stock goes below the 30% threshold (soil water decrease & 
erosion) and above the 60% level (competition for space and water) (from Thornes and 
Helldén 2006). 
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We assume the two main limiting and driving factors of vegetation growth and coverage in 
the drylands of the world are water availability on the one hand and the production/ 
management and removal/consumption of biomass through human induced activities (food, 
fodder and fuelwood/energy production and consumption) on the other hand as indicated by 
the LU-Conceptual Model of Desertification (Fig. 2). Rural population pressure and 
dynamics, expressed as population density variation, may be a proxy that can be related to 
the human impact on vegetation growth and removal (Cf. Fig. 5.1.21 & 5.2.22). 
 
Please refer to Desurvey deliverable 1.3.3.1 by Thornes and Helldén (2006) for a 
comprehensive summary of prevailing concepts of desertification and a discussion of its 
syndromes. 
 
2. OBJECTIVES 
 
Long-term trends and variability of vegetation conditions were studied using NDVI data 
from 1981 to 2003. The overall objective was to develop a simple, yet robust, standardized 
method for the identification of areas where vegetative production or cover is consistently 
declining possibly indicating desertification. Further analysis were undertaken to determine 
whether long-term trends in vegetation dynamics are mainly a function of existing rainfall 
variability or whether a possible anthropogenic factor exist. The approach was used to 
identify desertification ‘hot-spots’ i.e. areas with long-term strong negative (or positive) 
trends in vegetation productivity that cannot be explained by rainfall variability alone thus 
pointing towards another, possibly human, causative factor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3. This paper presents results of a study on the use of NOAA AVHRR data for 
desertification monitoring on a regional-global level. It is based on processing of the 
GIMMS 8 km global NDVI data set. Time series of annual integrated NDVI and 
standardized annual NDVI anomalies from the averages of the 1981-2003 period were 
compared with a corresponding rainfall data set (i.e. 1981-2003) as well as a historical 
rainfall set (1901-2002).  
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The areas studied include the Mediterranean basin (Southern Europe and Northern Africa), 
the Sahel from the Atlantic to the Red Sea, major parts of the drylands of Southern Africa, 
China and the drylands of  South America, i.e. important parts of the desertification prone 
areas of the world (Cf. fig. 3). However, it is only the Mediterranean basin, Inner Mongolia 
in China, Senegal in west Sahel and Chile that are of immediate interest for DeSurvey and 
listed as study objects in the official Description of Work of the consortium. 
 
 
3. DATA DESCRIPTION 
 
3.1. NDVI data 
 
Time series of the normalized difference vegetation index (NDVI) data were used to 
investigate long-term trends and variability in vegetation condition. The NDVI is computed 
as the difference between near infrared (NIR) and red (RED) reflectance divided by their 
sum: 
 
 

NDVI = (NIR − RED) / ( NIR + RED)   
  

 
The NDVI can be understood as a measure of photosynthetic activity, since chlorophyll 
will absorb red light and leaves will reflect near infrared light and it has been shown that 
NDVI is sensitive to the presence, density and condition of vegetation. When measured 
over time the annually integrated NDVI can be used as a proxy for the distribution of 
annual biom.ass NPP and fractional vegetation cover.  The NDVI and its relation to green 
biomass was first suggested and demonstrated by Rouse et al. (1973) and Tucker (1979). 
 
Landsat satellite based NDVI was early applied in the Sudan for drought impact monitoring 
and analysis of precipitation-biomass variations and relationships using time integrated 
NDVI as a proxy for biomass growth (Helldén 1984). NOAA AVHRR based NDVI was 
early used for assessing interannual vegetation dynamics in relation to precipitation 
variability in desertification related studies in the Sahel in Africa e.g. by Hielkema et al 
(1987), Dregne and Tucker (1988), Helldén and Eklundh (1988) and later on by e.g. 
Helldén (1991), Tucker et al (1991), Tappan et al (1992), Nicholson and Tucker (1998) and 
Eklundh (1996, 1998). A recent study based on 1 km NOAA AVHRR NDVI  data  
(MEDOKADS) covering Spain was presented by Udelhoven et al. (2007). 
 
NOAA GIMMS NDVI data from July 1981 to December 2003 were downloaded from the 
Global Land Cover Facility (GLCC) Distributed Active Archive Center at the Goddard 
Flight Center, Greenbelt USA (http://glcf.umiacs.umd.edu/index.shtml). The NOAA 
GIMMS NDVI data were generated from the original 1.1 km2 NOAA AVHRR data as bi-
weekly maximum value composites aggregated to an 8 ×8 km pixel resolution. For a full 
description of the data please refer to Pinzon et al. (2004), Pinzon (2002), Tucker et al. 
(2005). 
 
The quality and consistency of the GIMMS data were assured by the correction for [a] 
sensor degradation; [b] sensor inter-calibration differences; [c] solar zenith and viewing 
angles; [d] volcanic aerosols; [e] atmospheric water vapor and [f] cloud cover (Tucker et  
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al. 2005). The actual consistency of this correction procedure was tested by looking at the 
temporal variation in NDVI over presumably invariant desert targets. Figure 4 shows the 
NDVI time series from the two targets and though the slopes are very close to zero it is 
worth noting that while the Taklimakan Desert target (40N; 85E) is statistical insignificant 
the downwards slope for the Arabian Desert (25N; 40E) target is actually statistical 
significant (p<0.1). Still, these indeed small residual trends are assumed to be insignificant 
relative to NDVI changes caused by human and/or biophysical factors. 
 
 

 
Fig. 4. NDVI temporal development curves over two desert targets. Note: attempted 
replication of an evaluation documented by Tucker et al. (2005). 
 
 
In order to reduce the data material and to obtain an improved cloud screening the bi-
weekly GIMMS NDVI data were further decomposed into monthly values using a 
maximum value compositing routine as described by Holben (1986). For additional 
discussions of the GIMMS data correction please refer to UTRIER (2007). 
 
3.2 Precipitation data 
 
Three types of rainfall data were initially considered in the study. 
 
- [i] long-term historical rainfall station measurements from the Global Historical 
Climatology Network (GHCN) (1697-2004). 
- [ii] gridded 2.5 0 rainfall data from the Global Precipitation and Climatology Project 
(GPCP) derived by merging information from low-orbit-satellite microwave data, 
geosynchronous-orbit satellite infrared data, and rain gauge observations (1979-2005).  
- [iii] high resolution gridded 0.5 0 precipitation data  from the Climate Research Unit 
(CRU), University of East Anglia, constructed from meteorological stations (1901-2002). 
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All data sets have their strengths and weaknesses.  
 
 
3.2.1 GHCN climate data 
The Global Historical Climatology Network (GHCN) is a comprehensive global climate 
data set comprised of surface station observations of precipitation and temperature on a 
monthly basis. GHCN is produced jointly by the National Climatic Data Center, Arizona 
State University, and Carbon Dioxide Information Analysis Center at Oak Ridge National 
Laboratory. 
  
The current “GHCN version 2” data set was released in the late 1990s and continues to be 
updated. For this study the GHCN version 2 data set had station data from as early as 1697 
and up until 2004. Version 2 has significant improvements over the previous version 1 data 
set including more data (e.g., the precipitation data set has data from over 20,000 stations), 
better Quality Control, homogeneity adjustments, and a wider selection of metadata. 
Quality control included visual inspection of graphs of all station time series, tests for 
precipitation digitized 6 months out of phase, tests for different stations having identical 
data, and other tests. 
 
Despite the improvements though, the GHCN version 2 data set suffer from several 
problems and shortcomings in relation to the present study. First of all, it is all too evident 
that the station data are not continuous i.e. whole years as well as monthly values are 
missing for most stations. Actually out of approximately 1000 stations located in the 
Mediterranean only 5 stations had a complete precipitation record over the cause of the 
GIMMS data period (i.e. from July 1981 to December 2003), 49 stations had five or less 
missing months while 70 stations had 10 months or less without any data.  
 
3.2.2 Global Precipitation Climatology Project (GPCP, 2.50 spatial resolution) 
In light of the obvious problems with the GHCN data alternative indications of 
precipitation were required. To this end the usefulness of data from the Global Precipitation 
Climatology Project (GPCP) was investigated. GPCP is an element of the Global Energy 
and Water Cycle Experiment (GEWEX) established by the World Climate Research 
Program (WCRP) in 1986 with the initial goal of providing monthly mean precipitation 
data on a 2.5°× 2.5° latitude-longitude grid. Monthly mean precipitation estimates are being 
produced beginning in 1979 and going through 2005. The GPCP has accomplished this by 
merging infrared and microwave satellite estimates of precipitation with rain gauge data 
from more than 6,000 stations. Infrared precipitation estimates are obtained from GOES 
(United States), GMS (Japan) and Meteosat (European Community) geostationary satellites 
and National Oceanic and Atmospheric Administration (NOAA) operational polar orbiting 
satellites. Microwave estimates are obtained from the U.S. Defense Meteorological Satellite 
Program (DMSP) satellites using the Special Sensor Microwave Imager (SSM/I). 
 
The benefits of GPCP are their spatial nature and full correspondence to the GIMMS data 
time series but there are certainly also problems and shortcomings with this data source in 
relation to the present study. First, data are distributed in a 2.5°× 2.5° grid. This 
corresponds to approximately 275 km, which is a very coarse scale in relation to the 8 km 
grid provided by the GIMMS data. Moreover, local precipitation differences cannot be 
discerned in the GPCP data due to the coarse resolution. Irrespectively of these problems, 
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the GPCP data has found their usefulness in global climatic studies as well as in studies of 
regional vegetation dynamics (Herrmann et al. 2005). 
  
3.2.3 GHCN vs. GPCP 
Figure 5 illustrates the comparison of GHCN and GPCP data at four selected stations. The 
co-variation between the two data sets is quite good although there is a clear tendency of 
GPCP to over-estimate at lower amounts of rainfall. So despite the fact station data are 
naturally believed to be the most accurate source of rainfall data the similarities found 
between the two data sets here suggests that GPCP will provide a sufficient proxy for 
recent spatio-temporal trends in rainfall.  We decided not to use the GHCN station data in 
the following climate-NDVI study but to stick to the gridded precipitation data to simplify 
the spatial analysis. 
 
 

Fig 5. The relationship between GHCN and GPCP for selected stations. The Pearson correlation 
coefficients (r) for the entire time-series from 1979 to 2003 are as follows Lisboa (r=.95), Crete 
(r=.88), St. Polten (r=.77) and Thessaloniki (r=.72). 
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3.2.4 CRU gridded climate data [0.5o spatial resolution] . 
A high resolution gridded dataset from the Climate Research Unit (CRU), University of 
East Anglia, represented the third climate dataset considered for this study. CRU-TS 2.1 is 
a database of monthly climate observations constructed from meteorological stations. The 
database includes nine climate variables (daily mean, minimum and maximum temperature, 
diurnal temperature range, precipitation, wet day frequency, frost day frequency, vapor 
pressure and cloud cover) and extends over the global land surface. The database is 
checked for inhomogeneities in the station records using an automated method that refines 
previous methods by using incomplete and partially overlapping records and by detecting 
inhomogeneities with opposite signs in different seasons. The method includes the 
development of reference series using neighboring stations. Information from different 
sources about a single station may be combined, even without an overlapping period, using 
a reference series. Thus, a longer station record may be obtained and fragmentation of 
records reduced. The reference series also enables 1961–90 normals to be calculated for a 
larger proportion of stations. The climate variables and station anomalies are interpolated 
onto a 0.5° grid covering the global land surface (excluding Antarctica) for the period 
1901–2002. 

CRU-TS 2.1 and time-series analysis 
For this study both the precipitation and the surface temperature data was requested and 
obtained from CRU (http://www.cru.uea.ac.uk/). These data are referred to as CRUP 
(Climate Research Unit Precipitation) and CRUT (Climate Research Unit Temperature). 
There are two critical points as to the usefulness of CRU-TS data for time series analysis: 

1. The grids are based on raw station data. If in July 1907 there is a grid-point in central 
Africa that is greater than 1200 km from the nearest station with temperature measurements 
for July 1907, that grid-point for July 1907 will be given an imposed value. The imposed 
value will be the average of all July temperatures at that grid-point from 1961-90. This 
feature is called 'relaxation to the climatology', and the feature applies mostly early in the 
20th century, outside the 'developed world', and for less-well-reported variables; for these 
cases less raw station data are available. 'Relaxation to the climatology' was included to 
ensure that the data-set is complete in both space and time. The feature is based on the 
assumption that if there is no time-specific information available, the best estimate for that 
moment in time is a long-term average. The term 'best estimate' is important: CRU TS 2.1 
is the best estimate of the spatial pattern of climate at each moment in time. Although this is 
a valuable feature, it may be problematic when examining changes at a grid-box, or for a 
region. The effects of this feature can be found by inspecting the time-series at the level of 
the grid-box to see whether there are periods when each January (or each February, or ...) 
has the same value. Obviously, if a grid-box includes this feature, then calculating the least-
squares regression line for 1901-2002 is meaningless and misleading! 

2. Each monthly grid is an interpolation based on the set of stations available at that 
moment in time. From one month to the next, the network of available stations will change. 
This is because the availability of data from a particular station tends to fluctuate over time. 
Again, this interpolation method was adopted to give a best estimate of the spatial pattern 
of climate at each moment in time. However, it does mean that the changes over time at an 
individual grid-box will not be due solely to genuine changes in climate, but also to 
fluctuations in the network of stations. The effect of such fluctuations is minimized by 
interpolating station anomalies rather than station absolute values, but cannot be entirely 
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removed. Where the station network is dense, the effect of any individual station entering 
or leaving the network will be minimal. However, where the station network is sparse, the 
presence or absence of a single station may have a significant effect on the time-series at a 
nearby grid-box. The effect on a time-series analysis might be thought of in terms of the 
proportion of the variability and trend at a grid-box that is contributed by this feature. This 
effect can be reduced by increasing the scale of aggregation (i.e. the number of grid-boxes 
that are being averaged into a region). The reduction is achieved because the station 
network is being made denser relative to the number of regions. However, even increasing 
the scale of aggregation cannot entirely eliminate this effect.  

So the bottom line is that the CRU-TS 2.1 data is correct as it stands, in that it is the result 
of accurately carrying out the method adopted, and that it accurately reflects the real-world 
experience, as far as the methods and data can tell. A full documentation of the CRU-TS 
data was given by Mitchell and Jones (2005). 

3.2.5. CRUP vs. GPCP 
Figure 6 illustrates the comparisons between CRUP and GPCP. The comparison is based 
on  mean monthly rainfall in the dryland zone (0.1 < NDVI < 0.5) as estimated by CRUP 
and GPCP respectively.  
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Fig. 6. The relationship between CRUP and GPCP (mean monthly values for the area 
defined by 0.1<NDVI<0.5).  

The comparison between CRU-TS and GPCP do indeed demonstrate good correspondence 
on the regional level and as such they could be used in a complimentary way. For example, 
for the period 1981 to 2002 the parallel usage of the two datasets may be used to indicate 
areas where either [i] CRU-TS are problematic, [ii] GPCP are problematic or [iii] both 
datasets are problematic. For historical analysis drawing on the full length of the CRU-TS 
data set visually inspections of any grid boxes of particular interest (e.g. a Hot Spot region) 
is recommended in order to detect periods of prolonged 'relaxation'. 

 
4. METHODOLOGICAL REVIEW 
 
4.1 Data integration 
 
In order to reduce the amount of data to be processed long-term NDVI and rainfall 
climatologies were created by integrating monthly NDVI and rainfall values over time. 
Rather than using the calendar year as the integration period both NDVI and rainfall was 
integrated over their respective seasons as determined from monthly time series plots (Fig. 
7-8). 
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 Figure 7. Example of monthly development curves of NDVI and rainfall (Mediterranean 
basin). 
 
The time series plots (cf. figure 7) represent the temporal development curves of monthly 
NDVI and rainfall as averaged within the desertification prone areas being defined as those 
parts of the study regions that had a long-term (1981-2003) mean monthly NDVI value 
between 0.1 and 0.5.  
 
The seasons or integration periods were based on a full year of data (i.e. 12 months) and 
defined as the time period between the approximate locations of two local minimum values. 
It is worth having in mind that the integration periods for NDVI and rainfall may not 
necessarily be the same but depends on the time-lag between the response of vegetation to 
rainfall which vary by region as a function of both bio-physical and human factors. 
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Figure 8. Illustration of the per-pixel integration routine applied in this study. 

 
4.2 Vegetation trend analyses 
 
One of the advantages of NDVI is that it allows for reliable monitoring of variations in 
phenological and biophysical vegetation parameters. Several studies have focused on using 
the NDVI to monitor the biomass production of a given area. It is commonly agreed that 
the net primary production (NPP) of a given area, or pixel, can be estimated by using the 
annual temporally integrated vegetation index - iNDVI (e.g. Hielkema et al., 1987; Diallo, 
1991; Rasmussen, 1998a, 1998b; Ricotta et al., 1999; Maselli, 2000). It has not been the 
purpose of this study to attempt to calibrate the observed iNDVI measures into NPP, but 
rather to detect temporal trends and deviations (anomalies) in the evolution of vegetation 
productivity. As such, iNDVI expressed as the temporal integrated vegetation index is used 
as a proxy for vegetation productivity. A simple and efficient way to analyze change in 
temporal sequences of satellite data is using a per pixel linear least square regression 
techniques (Fuller 1998; Runnström 2000; Rigina and Rasmussen 2003). The linear trend 
curve of each pixel over time can be interpreted as a measure of declining or increasing 
vegetation productivity for that pixel. 
 

 
Fig. 9. Illustration of temporal trends in iNDVI. Pixel with negative trend in vegetation 
productivity (left) and pixel with positive trend in vegetation productivity. 
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Annual measures of vegetation productivity were computed by integrating NDVI over the 
phenological year for each year of available GIMMS data. Linear least square regression 
was used to compute the 22-year trend line for each single pixel. 
 
The simple linear regression given by:  
 

Y = a + β*X 
 
Where Y is the dependent variable (i.e. NDVI), X is the independent variable (i.e. time), a 
is the intercept i.e. it represent the value of Y when X = 0, the value of β represents the 
slope of the line that provides the best linear estimate of Y from X change or the change in 
Y associated with one unit increase in X. β is also referred to as the regression coefficient. 
The significance of β, i.e. the chance that the estimated β is actually different from 0, can 
be estimated using a t-test: 
 
 t = β - 0 / std. β 
 
The problem with this test, however, is that the t-value will get high if the standard error 
(std.) is low. Therefore the t-test will over-reject the null hypothesis in cases where the 
time-series is characterized by high standard deviations such as when abrupt changes occur 
during the time series. Similar you will come to put too strong emphasis on time-series 
where the slope is very small, yet significant due to only minor variations around the mean. 
 
Analogous to this is the coefficient of determination (r2), which provides a measure of the 
explanatory power of the linear model. Still, the r2 value is of little importance when 
looking at temporal trends because the mission is not to be able to predict a certain NDVI 
value on the basis of a given time period. In fact no one will expect a simple temporal 
linear function to be able to predict highly erratic inter-annual NDVI values. 
 
Others have suggested using non-parametric tests to determine whether a time-series is 
characterized by drastic disruption leading to higher standard deviations and lower r2 
values. Such tests can be justified by the wish to look for certain ‘chock’ events (e.g. fires). 
Yet, this type of tests will tend to overlook events characterized by more gradual changes 
(e.g. soil nutrients) and as such they do not conform to a more generic framework for 
assessing vegetation trends in desertification prone areas. 
 
Actually these considerations suggest an approach where the magnitude of the slope (i.e. the 
inclination of the slope expressed in either absolute or relative terms) rather than the 
significance of the slope (or the r2) is used as the preferred measure for the vegetation trends 
through the investigated time period. The problem with this approach is its sensitivity to 
outliers or extreme values, which can significantly alter the inclination of a slope line. 
However, the improved processing used to prepare the GIMMS data (Tucker et al. 2005) as 
well as the relatively long-time series (+20 years) is significantly going to depress those 
influences and one can expect that any larger area showing a considerable change in absolute 
magnitude is likely to reflect a real surface vegetation trend. The initial value, however will 
always exhibit strong control over the magnitude of β (and so may the end value) so any steep 
slopes should be carefully inspected with respect to start (and end) values.   
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Autocorrelation is a common problem in time-series analysis. Auto-correlation refers to the 
fact that observations in a time series are rarely independent. While this is very much the 
case for monthly values which have a strong seasonal cycle the problem is less apparent in 
an annually merged data set.  
 
4.3 Vegetation versus Rainfall analysis 
 
Since rainfall in drylands represents an important limiting factor for vegetation growth, 
analyses were undertaken in order to investigate to what extent rainfall variability can 
explain NDVI variability. 
 
The coefficient of determination (r2) and its associated Pearson correlation coefficient (r) 
are the single most important measures of the ability to predict NDVI as a function of 
rainfall. If rainfall lets you predict NDVI with a high degree of confidence we may argue 
that the human factor are of minor importance though it is recognized that both factors may 
interact in a complex feedback system. Nevertheless, we need to control trends in 
vegetation dynamics for the influence of rainfall before we can elucidate on the possible 
human influence.   
 
4.4 NDVI and Rainfall anomalies  
 
Measurements from different distributions, describing different variables and populations, 
can be standardized (normalized) in order to provide a way of comparing them that includes 
consideration of their respective distributions. This is carried out by transforming the 
original observations into z-scores which are expressed as standardized deviations from 
their mean. The z-core distributions always have a mean of 0 and a standard deviation equal 
to 1 (Abdi 2007). 
 
The z-score, also called the standard score, the normal score, the standard normal 
variate, the standard normal deviate or the standardized score is a dimensionless 
quantity. It is derived by subtracting the population mean from an individual raw score and 
then dividing the difference by the population standard deviation (Snedecore and Cochran 
1980, Hammond & McCullagh 1982). 
 
The z-score indicates how many standard deviations an observation is above or below the 
mean. In other words, it represents the distance between the raw score and the population 
mean in units of the standard deviation. Z is negative when the raw score is below the 
mean, positive when above. 
 

The standard score is:     
 

where: 
x is a raw score to be standardized 
σ is the standard deviation of the population
μ is the mean of the population. 

 
The annual variability of NDVI and rainfall as well as their spatio-temporal relationship 
was investigated by calculating yearly NDVI and rainfall anomalies to allow for 
comparative analysis expressing both variables in terms of data converted to z-scores. 
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The z-scores were calculated on a per pixel basis to assess each pixel´s annual deviation 
from its long term 1982-2003 period pixel mean. 
 
The z-score of a given observation also provides insight on how “typical” this observation 
is to the population. For example, by empirical rule, if data follow a bell-shaped curve (i.e. 
a normal distribution), then approximately 95% of the data should have the z-score between 
-2 and 2. Hayes (2000) has proposed a typology for interpreting rainfall z -scores (see Table 
1) 
 

Table 1. A nominal classification scheme of rainfall anomalies. 

Above 2.0 Extremely wet 
Above 1.5 Very wet 
Above 1.0 Moderately wet 
Between –1.0 and 1.0 Near normal 
Less than –1.0 Moderately dry 
Less than –1.5 Severely dry 
Less than –2.0 Extremely dry  

 
 
The anomalies (z-scores) have certain advantages over absolute values such as annual 
integrated NDVI and total annual rainfall. First of all and due to the standardization 
procedure the z-scores represent an efficient way to visually compare the spatial 
relationship between NDVI and rainfall. Further standard analysis of the relationship 
between NDVI and rainfall tend to be influenced by the presence of spatial auto-correlation 
(i.e. the phenomenon where locational similarity is matched by value similarity), which in 
essence means that they are merely expressing an underlying geographical relationship 
rather than a true relationship of dependence. The z-scores methodological approach 
provides a very robust and valid estimate of temporal (rather than spatial & geographical 
transect driven) NDVI and rainfall variability.  
 
The method was successfully demonstrated and proposed by Helldén and Eklundh (1988) 
in a desertification and drought impact study on Ethiopian precipitation and NDVI  time 
series relationships. 
 
4.5 Residual analysis 
 
The resulting regression equation represents the statistical association between the 
dependent variable (i.e. iNDVI) and the independent variable (i.e. annual Rainfall) and 
allow for the prediction of iNDVI as would be expected given the observed values for 
annual rainfall. The model residuals, (i.e. the difference between observed and expected 
iNDVI) was computed for each pixel and subsequently inspected for any systematic trends 
that could invalidate the initial model specification. Of particular concern when analyzing 
temporal data is the presence of any temporal trend in the residuals. If the residuals exhibit 
a significant temporal trend it indicates the presence of an unidentified and unmeasured 
temporal determinant. Alternatively if the residuals are free from any temporal trend it is 
likely that there are no other factors responsible for the residual trend, indicating that 
rainfall remain the major explanatory factor with respect to trends in vegetation dynamics. 
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Fig. 10. Illustration of residual plots. Pixels where residuals distribute evenly above and 
below zero (left) and pixels with a clear systematic pattern in the residuals suggesting that 
an additional important explanatory variable is missing (right).               

4.5.1. Hot Spot analysis.  Desertification hot spots were identified by manually identifying and 
delineating areas with the largest negative (and positive) residual trends. We extracted the area 
mean iNDVI  and anomalies from these areas for each year in the times series (1981-2003) and 
compared them to a historical climatology (1902 - 2002) in order to evaluate whether the deviating 
trend in vegetation productivity could have been inherited from the past climate or whether more 
recent and possible human factors could be the cause.  

The procedure can be carried out automatically by allowing the user of the system to define the 
NDVI residual threshold values of interest, followed by a threshold/density slicing based 
classification leading to the machine plotting of the anomaly areas to be further investigated. The 
corresponding rainfall anomalies can be identified in the data base and plotted together with the 
NDVI anomalies for further analysis and considerations on an annual basis for the period of interest. 

 

Fig. 11. A “Hot Spot” in the Sudan. (Photo: U. Helldén, 1976). 
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5.  RESULTS 
 
5.1. THE MEDITERRANEAN BASIN 
 
5.1.1. Mediterranean basin overview 
 
Maps of national borders, mean monthly NDVI and mean annual rainfall are illustrated 
below. From the maps it can be seen that the drylands (0.1 < NDVI < 0.5) within this 
region are mainly confined to the Iberian peninsular, the Middle East including Turkey and 
the Maghrebian countries1.  

 
 

 
Figure 5.1.1 Country overview (top) and the mean monthly NDVI based on data from 1982 
to 2003 (bottom). 

 

                                                 
1 The Maghrebian countries include Morocco, Algeria, Tunisia, Libya 
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Figure 5.1.2. Mean annual rainfall based on 2.5 degree (~ 275 km) gridded rainfall data 
from 1982 to 2003. 
 

 
Fig. 5.1.3. Mean annual rainfall based on 0.5 degree (~55 km) gridded rainfall data from 
1982 to 2002.  
 
 
Inspection of time-series plots of both rainfall and NDVI revealed that the appropriate 
seasons for the drylands (i.e. the area delineated by a minimum of 0.1 and a maximum of 
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0.5 NDVI based on the long-term monthly average) of the Mediterranean Sea was “August 
to July” and “January to December” for rainfall and NDVI respectively (Figure 5.1.4).  
 
 

Figure 5.1.4. Monthly time-series plots of rainfall (left) and NDVI (right). The displayed 
values are mean values as calculated from the area defined by 0.1 < NDVI < 0.5.  From the 
time-series plots it appears that rainfall tend to have a local minimum in August while 
NDVI has its minimum in January. 

 
Consequently total annual rainfall was calculated by summarizing rainfall received within 
the months from August and until July the following year.  Similar the annual vegetation 
productivity was estimated by integrating NDVI over the months from January to 
December as indicated in the chapter on methodology and data integration (Cf. Fig 7). 
 
 
5.1.2. Vegetation trend analysis 
 
The following figures summarize the results of the trend analysis approaches previously 
described under methods. 
 



 26

 

Figure 5.1.5. Linear trends in vegetation productivity based on linear least square regression 
(1982-2002) based on annual integrated NDVI values. The trend is expressed as iNDVI-units per 
year. 

 

Figure 5.1.6. Linear trends in vegetation productivity for the period 1982 to 2002 based on 
annual integrated NDVI values. The trend is expressed as percentages i.e. the relative 
difference between the start and the end value of the linear trend. 
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Fig. 5.1.7. Trend slope in NDVI based on linear least square regression (1982-2002).iNDVI 
trend slope (t-test). 

 

Figure 5.1.8. Standardized trend slope in NDVI based on linear least square regression and 
expressed as z-score units per year (1982-2002). 
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Figures 5.1.5-5.1.8 confirms the points raised in the method section regarding the relative 
merits of the different characteristics (inclination, relative change or statistical significance) 
of the trend line. Especially it is clear that the statistical test is putting too much emphasis 
on areas with rather small slope inclinations. There is equally a tendency for the relative 
change to put emphasis on areas where the intercept value i.e. the starting point is low. In 
that case a relative low absolute slope value may actually come out as a quite significant 
relative change.  

5.1.3. Vegetation versus rainfall analysis 

The next step was to investigate how rainfall variability has influenced the observed 
variability and trend in iNDVI. Figure 5.1.9 (left) indicates the relationship between mean  
NDVI and mean annual rainfall for the 1982-2003 period. The strong positive relationship 
(r2=0.8) confirms the fact that higher rainfalls normally yields higher vegetation 
productivity.  

Fig. 5.1.9. (LEFT) Mean NDVI plotted against total mean annual rainfall. The displayed 
values are mean values for the period 1982-2003. (RIGHT) Average area z-scores of NDVI 
and rainfall for west Sahel for each year 1982-2003. On display are mean z-scores as 
calculated from the area defined by 0.1 < NDVI < 0.5 where NDVI refers to the mean 
monthly NDVI for the period . 

 

Yet, the relationship illustrated in Figure 5.1.9 (left) is biased due to the presence of spatial 
auto-correlation i.e. the phenomenon where locational (geographic position) similarity is 
matched by value similarity. Consequently Fig. 5.1.9 (left) demonstrates the geographic 
relationship between long-term means of total annual rainfall and monthly NDVI. In order 
to avoid this bias the anomaly analysis was introduced (figure 5.1.9 [right], figure 5.1.10, 
5.1.11-5.1.15). 
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The results from the anomaly analysis illustrate a significant and valid relationship between 
rainfall variability and NDVI variability for large parts of the  
Mediterranean drylands.  Figure 5.1.9 underlines the importance that NDVI trends should 
be controlled for rainfall variability before elucidating on the possible anthropogenic 
causes.  
 

 
Fig. 5.1.10. Annual NDVI anomalies plotted against annual rainfall anomalies. Every pixel 
in the 2.5 degree rainfall data was selected and plotted against the average NDVI value for 
the corresponding NDVI 8 km pixels under each 2.50 cell. Only pixels inside the area 
defined by 0.1<NDVI<0.5 where NDVI denotes mean monthly NDVI for the 1982-2003 
period. All data for the 1982-2003 period were merged into one data set. 
 
 
However, it should be noted that it is only a fraction (4%) of the interannual NDVI 
anomaly variation that can be explained by corresponding interannual (seasonal) rainfall 
anomalies under the given circumstances (Fig 5.1.10).  It implies there are large areas 
(many pixels) where the strong NDVI-rainfall anomaly relationship is not valid. This is 
also illustrated in the figures below. 
  
The following maps summarize the results from the per pixel analysis of the temporal 
relationship between rainfall and NDVI. 
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Figure 5.1.11. NDVI (8 km) and rainfall (0.5 degree grid) anomalies for 5 random “non-
calendar” years during the 1982 to 2003 period. 
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Fig. 5.1.12. Total annual rainfall (2.5 degree) vs. annual integrated NDVI (1982-2003). 

 

Fig. 5.1.13. Rainfall anomaly (2.5 degree) vs. NDVI anomaly (1982-2003). 
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Fig. 5.1.14 Total annual rainfall (0.5 degree) vs. annual integrated NDVI (1982-2002)  

 

Fig. 5.1.15. Rainfall anomaly (0.5 degree) vs. NDVI anomaly (1982-2002). 
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As expected one can see a relatively good correlation between rainfall and NDVI for most 
of the dryland region. Areas of negative correlation are also found but they are to a large 
extent located in the very dry parts (mean NDVI < 0.1 and annual rainfall < 100 mm) 
where the validity of both rainfall data and NDVI can be questioned (e.g. fewer climate 
stations and soil background influence). It is interesting to note the strong agreement 
between the top maps (based on 2.5 degree gridded data) and the bottom maps (based on 
0.5 on degree gridded data) as well as the almost identical patterns observed between the 
use of integrated data  and standardized (z-scores) data. 

5.1.4. Residual analysis 

The model residuals (i.e. the difference between observed and expected iNDVI) was 
computed for each pixel and subsequently inspected for any systematic trends that could 
invalidate the initial model specification.  

 
Fig. 5.1.16. Linear trends in residual slope of iNDVI when controlled for annual rainfall 
(2.5 degree) for the period 1982 to 2003. The trend is expressed in absolute values i.e. 
change in iNDVI units per year. 
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Fig. 5.1.17. Linear trends in residual slope of iNDVI z-scores when controlled for annual 
rainfall (2.5 degree) for the period 1982 to 2003. The trend is expressed in absolute values 
i.e. change in z-score units per year. 
 

 
 
Fig. 5.1.18. Linear trends in residual slope of iNDVI when controlled for annual rainfall 
(0.5 degree) for the period 1982 to 2002. The trend is expressed in absolute values i.e. 
change in iNDVI units per year 
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Fig. 5.1.19. Linear trends in residual slope of iNDVI z-scores when controlled for annual 
rainfall (0.5 degree) for the period 1982 to 2002. The trend is expressed in absolute values 
i.e. change in z-score units per year. 

 
 
5.1.5. Hot Spot analysis 
 
Example areas with significant residual trends (negative as well as positive) were identified 
and the trends in vegetation productivity relative to the long-term precipitation anomaly 
trends in the area were studied. A population density map is also presented for comparison 
(Fig 5.1.20-5.1.26). 
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Fig. 5.1.20. Mediterranean basin negative (red) and positive (green) hot spots. 
 

 
 
Figure 5.1.21. A Population density map of the countries bordering the Mediterranean Sea. 
Data are from 2000 and produced by CIESIN (2005). 
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Fig 5.1.22. Algerian negative hot spot rainfall and NDVI anomalies. 
 

 
Fig. 5.1.23. Arabian Desert positive hot spot rainfall and NDVI anomalies 
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Fig. 5.1.24. Morocco negative hot spot rainfall and NDVI anomalies 
 

 
 
Fig. 5.1.25. Spain negative hot spot rainfall and NDVI anomalies 
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Fig. 5.1.26. Central Turkey positive hot spot rainfall and NDVI anomalies 
 
 
 
5.1.6. Desertification comments  
 
• Signs of desertification, as reflected by significant downward trends in the vegetation 

productivity, after it was controlled for rainfall variability, are found in the Southern 
Iberian Peninsular as well as in the northern parts of Morocco, Algeria and Tunisia. The 
fact that these areas are closely associated with the most densely populated areas of the 
Maghrebian countries further supports the hypothesis that these downwards trends may 
be caused by humans (Cf. fig. 5.1.21) 

 
• The trend maps reveal areas of strong positive trends in vegetation productivity 

including scattered areas in the Arabian and Mesopotamia2 drylands, central Turkey as 
well as the central parts of Morocco. The positive trends in the Arabian and 
Mesopotamia drylands can be explained by the development of large irrigations 
schemes (Weiss et al. 2001) whereas no immediate explanation, at present, is available 
for the positive trends in remaining Turkey and Morocco. 

 

                                                 
2 Mesopotamia refers to the region now occupied by modern Iraq, eastern Syria, southeastern Turkey, and 
Southwest Iran. 
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• The overall generic trend in the Mediterranean basin seems to be a general “greening 
up” over the 1982-2003 period rather than a systemic growth of land degradation/ 
desertification, expressed in terms of decreasing vegetation cover conditions, over large 
areas. This may, to some extent, be due to the “Green House” effects including 
increased CO2 concentrations in the atmosphere and increased temperatures possibly 
increasing the length of the growing season and causing its earlier start as indicated in a 
NOAA AVHRR study on global terrestrial NPP by Nemani et al. (2003). The result of 
growing pollution of the atmosphere by active nitrogen from industry, raining down as 
a fertilizer on the global terrestrial bio-production systems, may add to the increasing 
“greenness” over time. 

 
• An increasing abandonment of agriculture and marginal lands by farmers looking for an 

improved standard of living in the urban centers is also likely to result in re-vegetated 
farm-land and increased greenness in the Mediterranean drylands as suggested by 
Grove and Rackham (2003) and illustrated by Fig. 5.1.27. This is of course more true 
for the European part of the Mediterranean basin than for the non-European part, simply 
because Europe is in the forefront of the urbanization process so far.  

 
 
 

 
 

Fig 5.1.27. Deserted farm and agricultural land, Alentejo, Portugal (left) & growing demands for crop 
land and fuelwood, downstrem Oued oum Zessari, Tunisia (right). (Photos: U.Helldén, 2007).   
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5.2. WEST AFRICA 
  
5.2.1. West Africa overview 
 
The region extends from Senegal in the west to Niger in the east and between 7o to 17o 

Northern latitude. The northern limit of this region follows the southern border of the 
Saharan desert while the southern limit is demarcated by the sub-humid forest belt. 

 

 
Figure 5.2.1. Country overview (top) and the mean monthly NDVI based on data from 1982 
to 2003 (bottom). 
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Figure 5.2.2. Mean annual rainfall based on 2.5 degree (~ 275 km) gridded rainfall data 
from 1982 to 2003. 
 

 
Fig. 5.2.3. Mean annual rainfall based on 0.5 degree (~55 km) gridded rainfall data from 
1982 to 2002. 
 
 
Inspection of time-series plots of both rainfall and NDVI revealed that the appropriate 
seasons for the Sahel (i.e. here defined as the area delineated by a minimum of 0.1 and a 
maximum of 0.5 NDVI based on the long-term monthly average)  was “March to February” 
and “January to December” for NDVI and rainfall respectively (figure 6.4). 
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Figure 5.2.4. Monthly time-series plots of rainfall (left) and NDVI (right). The displayed 
values are mean values as calculated from the area defined by 0.1 < NDVI < 0.5.  From the 
time-series plots it appears that rainfall tend to have a local minimum in January while 
NDVI has its minimum in March. 

 

Consequently total annual rainfall was calculated by summarizing rainfall received within 
the months from January to December. Similar the annual vegetation productivity was 
estimated by integrating NDVI over the months from March and until February the 
following year 

 
 
5.2.2. Vegetation trend analysis 
 
The following figures summarize the results of the trend analysis approaches described 
under methods. 
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Figure 5.2.5. Linear trends in vegetation productivity for the period 1982 to 2002 based on 
annual integrated NDVI values. The trend is expressed in absolute values i.e. change in 
iNDVI units per year.  

 

Fig 5.2.6. Linear trends in vegetation productivity for the period 1982 to 2002 based on 
annual integrated NDVI values. The trend is expressed as percentages i.e. the relative 
difference between the start and the end value of the linear trend 
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Fig. 5.2.7. Trend slope in NDVI based on linear least square regression (1982-2002). 
iNDVI trend slope (t-test). 

 

Figure 5.2.8. Standardized trend slope in NDVI based on linear least square regression and 
expressed as z-score units per year (1982-2002). 
 
 
 
 
The figures 5.2.5-5.2.8 confirm the points raised in the method sections regarding the 
relative merits of the different characteristics (inclination, relative change or statistical 
significance) of the trend line. Especially it is clear that the statistical test is placing too 
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much emphasis on areas with rather small slope inclinations. There is equally a tendency 
for the relative change to put emphasis on areas where the intercept value i.e. the starting 
point is low. In that case a relative low absolute slope value may actually come out as a 
quite significant relative change.  

5.2.3. Vegetation versus rainfall analysis 

Figure 5.2.9 (left) indicates the relationship between mean NDVI and mean annual rainfall. 
The strong positive relationship (r2=0.9) confirms the fact that higher rainfalls normally 
yields higher vegetation productivity.  

Yet, the relationship illustrated in Figure 5.2.9 (left) is biased due to the presence of spatial 
auto-correlation i.e. the phenomenon where locational (geographic position) similarity is 
matched by value similarity. Consequently Fig. 5.2.9 (left) demonstrates the geographic 
relationship between long-term means of total annual rainfall and monthly NDVI .In order 
to avoid this bias the anomaly analysis was introduced (figure 5.2.9 [right], figure 5.2.10, 
5.2.11-5.2.15). 

The results from the anomaly analysis illustrate a significant and valid relationship between 
rainfall variability and NDVI variability for large parts of the West Sahelian drylands.  
Despite the generalization level of these figures it remains clear that rainfall and NDVI are 
indeed closely associated. Figure 5.2.9 thereby supports the idea that NDVI trends should 
be controlled for rainfall variability before elucidating on the possible anthropogenic 

causes.  
 

Fig. 5.2.9. (LEFT) Mean NDVI plotted against total mean annual rainfall. The displayed 
values are mean values for the period 1982-2003. (RIGHT) Average area z-scores of NDVI 
and rainfall for west Sahel for each year 1982-2003. On display are mean z-scores as 
calculated from the area defined by 0.1 < NDVI < 0.5 where NDVI refers to the mean 
monthly NDVI for the period. 
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Fig. 5.2.10. Annual NDVI anomalies plotted against annual rainfall anomalies. Every pixel 
in the 2.5 degree rainfall data was selected and plotted against the average NDVI value for 
the corresponding NDVI 8 km pixels under each 2.50 cell. Only pixels inside the area 
defined by 0.1<NDVI<0.5 where NDVI denotes mean monthly NDVI for the 1982-2003 
period. All data for the 1982-2003 period were merged into one data set. 
 
 
 
However, it should be noted that it is only a fraction (16%) of the interannual NDVI 
anomaly variation that can be explained by corresponding interannual (seasonal) rainfall 
anomalies under the given circumstances (Fig 5.2.10.).  It implies there are large areas 
(many pixels) where the strong NDVI-rainfall anomaly relationship is not valid. This is also 
illustrated in the figures below. 
 
 
The following maps summarize the results from the per pixel analysis of the temporal 
relationship between rainfall and NDVI. 
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Figure 5.2.11. NDVI (8 km) and rainfall (0.5 degree grid) anomalies for 5 random “non-
calendar” years during the 1982 to 2003 period. 
 
 



 49

 

Fig. 4.2.12. Total annual rainfall (2.5 degree) vs. annual integrated NDVI (1982-2003) 

 

Fig. 5.2.13. Rainfall anomaly (2.5 degree) vs. NDVI anomaly (1982-2003). 
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Fig. 5.2.14 Total annual rainfall (0.5 degree) vs. annual integrated NDVI (1982-2002) 

 

Fig. 5.2.15. Rainfall anomaly (0.5 degree) vs. NDVI anomaly (1982-2002) 
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5.2.4. Residual analysis 

The model residuals (i.e. the difference between observed and expected iNDVI) were 
computed for each pixel and subsequently inspected for any systematic trends that could 
invalidate the initial model specification. 

 

Fig. 5.2.16. Linear trends in residual slope of iNDVI when controlled for annual rainfall 
(2.5 degree) for the period 1982 to 2003. The trend is expressed in absolute values i.e. 
change in iNDVI units per year. 

 

Fig. 5.2.17. Linear trends in residual slope of iNDVI z-scores when controlled for annual 
rainfall (2.5 degree) for the period 1982 to 2003. The trend is expressed in absolute values 
i.e. change in z-score units per year. 
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Fig. 5.2.18. Linear trends in residual slope of iNDVI when controlled for annual rainfall 
(0.5 degree) for the period 1982 to 2002. The trend is expressed in absolute values i.e. 
change in iNDVI units per year. 

 

Fig. 5.2.19. Linear trends in residual slope of iNDVI z-scores when controlled for annual 
rainfall (0.5 degree) for the period 1982 to 2002. The trend is expressed in absolute values 
i.e. change in z-score units per year. 
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5.2.5. Hot Spot analysis 

Example areas with significant residual trends (negative as well as positive) were identified 
and the trends in vegetation productivity relative to the long-term precipitation anomaly 
trends in the area were studied. A population density map is also presented for comparison 
(Fig 5.2.20-5.2.26). 

 

           Fig. 5.2.20 West African negative (red vectors) and positive (green vectors) hot spots. 

 
Figure 5.2.22. A population density map of the West African countries. Data are from 2000 
and produced by CIESIN (2005). 
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Fig. 5.2.20. Central Chad positive (green) Hot Spot with rainfall and NDVI anomalies. 

 

Fig. 5.2.21. Senegal positive (green) Hot Spot with rainfall and NDVI anomalies 
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Fig. 5.2.22 Nigeria positive (green) Hot Spot with rainfall and NDVI anomalies 

 

Fig. 5.2.23 Lake Chad negative (red) Hot Spot with rainfall and NDVI anomalies. 
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5.2.6. Desertification comments 
 
• Signs of desertification, as reflected by significant downward trends in the vegetation 

productivity, after it was controlled for rainfall variability, are hardly found anywhere 
except in the surroundings of Lake Chad and in extreme desert conditions inside the 
Sahara, of no interest for this study.  

 
• The trend maps reveal very large areas of strong positive trends in vegetation 

productivity, very much as a result of increasing precipitation since  around 1982, the 
driest peak of the Sahelian drought (1964-2002). Similar results were presented by 
Eklundh and Olsson (2003) based on the analysis of 1982-1999 AVHRR NDVI 
Pathfinder data. 

 
• However, there is also an obvious positive trend in the integrated NDVI and its 

anomalies that cannot be explained by increased precipitation only. This may, to some 
extent, be due to the “Green House” effects including increased CO2 concentrations in 
the atmosphere and increased temperatures possibly increasing the length of the 
growing season and causing its earlier start as indicated in a NOAA AVHRR study on 
global terrestrial NPP by Nemani et al. (2003). Hickler et al. (2005) demonstrated that a 
process-based ecosystem model driven by climatic and atmospheric CO2 data alone 
closely reproduced the satellite observed greening trend of the Sahel vegetation and its 
interannual variation 1982-1998.  The satellite data used was the GIMMS NOAA-
AVHRR NDVI data set covering the period 1982-1998. Changes in precipitation were 
identified as the primary driver of the aggregated simulated vegetation changes with 
CO2 having a minor positive effect. 

 

 
 
 
Fig. 5.2.24. (LEFT) Mar 1983--a very dry year in the Sahel (Senegal) in the dry season. 
(RIGHT) Dec 1994--a wet year in the Sahel (Senegal) at the end of the rainy season (Photo: 
G.Tappan, USGS). 
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5.3. EAST  AFRICA 
  
5.3.1. East Africa overview 
 
This study region extends from Sudan in the west to Somalia in the east and between 5o to 
23o Northern latitude. 

 

 
Figure 5.3.1. Country overview (top) and the mean monthly NDVI based on data from 1982 
to 2003 (bottom). 
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Figure 5.3.2. Mean annual rainfall based on 2.5 degree (~ 275 km) gridded rainfall data 
from 1982 to 2003. 

 
Fig. 5.3.3. Mean annual rainfall based on 0.5 degree (~55 km) gridded rainfall data from 
1982 to 2002. 
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Inspection of time-series plots of both rainfall and NDVI revealed that the appropriate 
seasons for the drylands (i.e. the area delineated by a minimum of 0.1 and a maximum of 
0.5 NDVI based on the long-term monthly average) of the East African region was 
“January to December” and “March to February” for rainfall and NDVI respectively (figure 
5.3.4).  

  

Figure 5.3.4. Monthly time-series plots of rainfall (left) and NDVI (right). The displayed 
values are mean values as calculated from the area defined by 0.1 < NDVI < 0.5. 

Consequently total annual rainfall was calculated by summarizing rainfall received within 
the months from January to December. Similar the annual vegetation productivity was 
estimated by integrating NDVI over the months from March and until February the 
following year. 

5.3.2. Vegetation trend analysis 
 
The following figures summarize the results of the trend analysis approaches described 
under methods. 
 
Figure 5.3.5-5.3.8 confirm the points raised in the method sections regarding the relative 
merits of the different characteristics (inclination, relative change or statistical significance) 
of the trend line. Especially it is clear that the statistical test is placing too much emphasis 
on areas with rather small slope inclinations. There is equally a tendency for the relative 
change to put emphasis on areas where the intercept value i.e. the starting point is low. In 
that case a relative low absolute slope value may actually come out as a quite significant 
relative change. 



 60

 

Figure 5.3.5. Linear trends in vegetation productivity for the period 1982 to 2002 based on 
annual integrated NDVI values. The trend is expressed in absolute values i.e. change in 
iNDVI units per year. 

 

Fig 5.3.6. Linear trends in vegetation productivity for the period 1982 to 2002 based on 
annual integrated NDVI values. The trend is expressed as percentages i.e. the relative 
difference between the start and the end value of the linear trend 
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Fig. 5.3.7. Trend slope in NDVI based on linear least square regression (1982-2002). 
iNDVI trend slope (t-test) 

 

Figure 5.3.8. Standardized trend slope in NDVI based on linear least square regression and 
expressed as z-score units per year (1982-2002). 
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5.3.3. Vegetation versus rainfall analysis 

Figure 5.3.9 (left) indicates the relationship between mean NDVI and mean annual rainfall. 
The strong positive relationship (r2=0.9) confirms the fact that higher rainfalls normally 
yields higher vegetation productivity.  

Yet, the relationship illustrated in Figure 5.3.9 (left) is biased due to the presence of spatial 
auto-correlation i.e. the phenomenon where locational (geographic position) similarity is 
matched by value similarity. Consequently Fig. 5.3.9 (left) demonstrates the geographic 
relationship between long-term means of total annual rainfall and monthly NDVI .In order 
to avoid this bias the anomaly analysis was introduced (figure 5.3.9 [right], figure 5.3.10, 
5.3.11-5.3.15). 

The results from the anomaly analysis illustrate a significant and valid relationship between 
rainfall variability and NDVI variability for large parts of the East African drylands.  
Despite the generalization level of these figures it remains clear that rainfall and NDVI are 
indeed closely associated. Figure 5.3.9 thereby supports the idea that NDVI trends should 
be controlled for rainfall variability before elucidating on the possible anthropogenic 
causes. 

 

Fig. 5.3.9. ( LEFT) Mean NDVI plotted against total mean annual rainfall. The 
displayed values are mean values for the period 1982-2003. (RIGHT) Average area z-
scores of NDVI and rainfall for East Sahel for each year 1982-2003. On display are 
mean z-scores as calculated from the area defined by 0.1 < NDVI < 0.5 where NDVI 
refers to the mean monthly NDVI for the period. 

Despite the generalization level of these figures it remains clear that rainfall and NDVI 
are indeed closely associated in East African Sahel. Figure 5.3.9 thereby supports the 
idea that NDVI trends should be controlled for rainfall variability before elucidating on 
the possible anthropogenic causes.  
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Fig. 5.3.10. Annual NDVI anomalies plotted against annual rainfall anomalies. Every pixel 
in the 2.5 degree rainfall data was selected and plotted against the average NDVI value for 
the corresponding NDVI 8 km pixels under each 2.50 cell. Only pixels inside the area 
defined by 0.1<NDVI<0.5 where NDVI denotes mean monthly NDVI for the 1982-2003 
period. All data for the 1982-2003 period were merged into one data set. 
 
 
 
It should be noted that it is only a fraction (4%) of the interannual NDVI anomaly variation 
that can be explained by the corresponding interannual (seasonal) rainfall anomalies under 
the given circumstances (Fig 5.3.10.).  It implies there are large areas (many pixels) where 
the strong NDVI-rainfall anomaly relationship is not valid. This is also illustrated in the 
figures below. 
 

 

 

The following maps summarizes the results from the per pixel analysis of the temporal 
relationship between rainfall and NDVI. 
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Figure 5.3.11. NDVI (8 km) and rainfall (0.5 degree grid) anomalies for 5 random “non-calendar” 
years during the 1982 to 2003 period. 
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Fig. 5.3.12. Total annual rainfall (2.5 degree) vs. annual integrated NDVI (1982-2003) 

 
Fig. 5.3.13. Rainfall anomaly (2.5 degree) vs. NDVI anomaly (1982-2003). 
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Fig. 5.3.14. Total annual rainfall (0.5 degree) vs. annual integrated NDVI (1982-2002) 

 

Fig. 5.3.15. Rainfall anomaly (0.5 degree) vs. NDVI anomaly (1982-2002). 
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5.3.4. Residual analysis 

The model residuals (i.e. the difference between observed and expected iNDVI) were 
computed for each pixel and subsequently inspected for any systematic trends that could 
invalidate the initial model specification. 

 

Fig. 5.3.16. Linear trends in residual slope of iNDVI when controlled for annual rainfall 
(2.5 degree) for the period 1982 to 2003. The trend is expressed in absolute values i.e. 
change in iNDVI units per year. 

 

Fig. 5.3.17. Linear trends in residual slope of iNDVI z-scores when controlled for annual 
rainfall (2.5 degree) for the period 1982 to 2003. The trend is expressed in absolute values i.e. 
change in z-score units per year. 
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Fig. 5.3.18. Linear trends in residual slope of iNDVI when controlled for annual rainfall 
(0.5 degree) for the period 1982 to 2002. The trend is expressed in absolute values i.e. 
change in iNDVI units per year 

 

Fig. 5.3.19. Linear trends in residual slope of iNDVI z-scores when controlled for annual 
rainfall (0.5 degree) for the period 1982 to 2002. The trend is expressed in absolute values 
i.e. change in z-score units per year. 
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5.3.5. Hot Spot analysis 
 
Example areas with significant residual trends (negative as well as positive) were identified 
and the trend in vegetation productivity relative to the long-term precipitation anomaly 
trends in the area were studied (Fig 5.3.20-5.3.23). 

 

 
Fig. 5.3.20. East African negative (red vectors) and positive (green vectors) hot spots. 
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Fig. 5.3.21 Kordofan negative (red) Hot Spot with rainfall and NDVI anomalies 

 

 
 

Fig. 5.3.22 North Gondar positive (green) Hot Spot with rainfall and NDVI anomalies 
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Fig. 5.3.23. Darfur positive (green) Hot Spot with rainfall and NDVI anomalies 

 
5.3.6. Desertification comments. 
 
The development pattern and history is very similar to what has been said about west Sahel. 
It is repeated below for the sake of easy access: 
 
 
• Signs of desertification, as reflected by significant downward trends in the vegetation 

productivity, after it was controlled for rainfall variability, are hardly found anywhere 
except for scattered areas in south Ethiopia and a more significant area in Darfur, the 
Sudan.  

 
• The trend maps reveal very large areas of strong positive trends in vegetation 

productivity, very much as a result of increasing precipitation since  around 1982, the 
driest peak of the Sahelian drought (1964-2002). Similar results were presented by 
Eklundh and Olsson (2003) based on the analysis of 1982-1999 AVHRR NDVI 
Pathfinder data. 

 
• However, there is also an obvious positive trend in the integrated NDVI and its 

anomalies that cannot be explained by increased precipitation alone. This may, to some 
extent, be due to the “Green House” effects including increased CO2 concentrations in 
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the atmosphere and increased temperatures possibly increasing the length of the 
growing season and causing its earlier start as indicated in a NOAA AVHRR study on 
global terrestrial NPP by Nemani et al. (2003). Hickler et al. (2005) demonstrated that a 
process-based ecosystem model driven by climatic and atmospheric CO2 data alone 
closely reproduced the satellite observed greening trend of the Sahel vegetation and its 
interannual variation 1982-1998.  The satellite data used was the GIMMS NOAA-
AVHRR NDVI data set covering the period 1982-1998. Changes in precipitation were 
identified as the primary driver of the aggregated simulated vegetation changes with 
CO2 having a minor positive effect. 

 
 

 
Fig. 5.3.24. Rain fed millet cultivation in North Kordofan, the Sudan, grasslands just north 
of Kagmar a “normal” year (annual precipitation~200 mm) (Photo: U. Helldén, 1989) 
 

 
Fig. 5.3.25.  Rain fed millet cultivation in North Kordofan, the Sudan, grasslands in the 
extreme drought and Sahelian famine year 1983 (Photo: E. Ahlcrona). 
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5.4. SOUTH AFRICA 
  
5.4.1. South Africa overview  
 
This study region lies within the 10tho and 45tho eastern longitude and from Malawi in the 
North to Cape Agulhas in the South 

. 

 
Figure 5.4.1. Country overview (top) and the mean monthly NDVI based on data from 
1982 to 2003 (bottom). 
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Figure 5.4.2. Mean annual rainfall based on 2.5 degree (~ 275 km) gridded rainfall data 
from 1982 to 2003. 

 
Fig. 5.4.3. Mean annual rainfall based on 0.5 degree (~55 km) gridded rainfall data from 
1982 to 2002. 
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Inspection of time-series plots of both rainfall and NDVI revealed that the appropriate 
seasons for the drylands (i.e. the area delineated by a minimum of 0.1 and a maximum of 
0.5 NDVI based on the long-term monthly average) of the South African region was “July 
to June” and “September to August” for rainfall and NDVI respectively (figure 5.4.4). 

 

Figure 5.4.4. Monthly time-series plots of rainfall (left) and NDVI (right). The displayed 
values are mean values as calculated from the area defined by 0.1 < NDVI < 0.5. 

Consequently total annual rainfall was calculated by summarizing rainfall received within 
the months from July to June. Similar the annual vegetation productivity was estimated by 
integrating NDVI over the months from September and until August the following year. 

5.4.2. Vegetation trend analysis 
 
The following figures summarize the results of the trend analysis approaches described 
under methods. 
 
Figure 5.4.5-5.4.8 confirm the points raised in the method sections regarding the relative 
merits of the different characteristics (inclination, relative change or statistical significance) 
of the trend line. Especially it is clear that the statistical test is placing too much emphasis 
on areas with rather small slope inclinations. There is equally a tendency for the relative 
change to put emphasis on areas where the intercept value i.e. the starting point is low. In 
that case a relative low absolute slope value may actually come out as a quite significant 
relative change. 
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Figure 5.4.5. Linear trends in vegetation productivity for the period 1982 to 2002 based on 
annual integrated NDVI values. The trend is expressed in absolute values i.e. change in 
iNDVI units per year. 

 

Fig 5.4.6. Linear trends in vegetation productivity for the period 1982 to 2002 based on 
annual integrated NDVI values. The trend is expressed as percentages i.e. the relative 
difference between the start and the end value of the linear trend 
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Fig. 5.4.7. Trend slope in NDVI based on linear least square regression (1982-2002). 
iNDVI trend slope (t-test). 

 

Figure 5.4.8. Standardized trend slope in NDVI based on linear least square regression and 
expressed as z-score units per year (1982-2002). 
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5.4.3. Vegetation versus rainfall analysis 

Figure 5.4.9 (left) indicates the relationship between mean NDVI and mean annual rainfall. 
The strong positive relationship (r2=0.9) confirms the fact that higher rainfalls normally 
yields higher vegetation productivity.  

Yet, the relationship illustrated in Figure 5.4.9 (left) is biased due to the presence of spatial 
auto-correlation i.e. the phenomenon where locational (geographic position) similarity is 
matched by value similarity. Consequently Fig. 5.4.9 (left) demonstrates the geographic 
relationship between long-term means of total annual rainfall and monthly NDVI .In order 
to avoid this bias the anomaly analysis was introduced (figure 5.4.9 [right], figure 5.4.10, 
5.4.11-5.4.15). 

The results from the anomaly analysis illustrate a significant and valid relationship between 
rainfall variability and NDVI variability for large parts of the South African drylands. 
Despite the generalization level of these figures it remains clear that rainfall and NDVI are 
indeed closely associated in the South African region. Figure 5.4.9 thereby supports the 
idea that NDVI trends should be controlled for rainfall variability before elucidating on the 
possible anthropogenic causes.   

Fig. 5.4.9. ( LEFT)Annual rainfall plotted against mean NDVI. The displayed values are 
mean values for the period 1982 to 2003. (RIGHT) Average z-scores of NDVI and rainfall 
for West Sahel. On display are mean z-scores as calculated from the area defined by 0.1 < 
NDVI < 0.5.  
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Fig. 5.4.10. Annual NDVI anomalies plotted against annual rainfall anomalies. Every pixel 
in the 2.5 degree rainfall data was selected and plotted against the average NDVI value for 
the corresponding NDVI 8 km pixels under each 2.50 cell. Only pixels inside the area 
defined by 0.1<NDVI<0.5 where NDVI denotes mean monthly NDVI for the 1982-2003 
period. All data for the 1982-2003 period were merged into one data set. 
 
 
 
It should be noted that it is only a fraction (~12 %) of the interannual NDVI anomaly 
variation that can be explained by corresponding interannual (seasonal) rainfall anomalies 
under the given circumstances (Fig 5.4.10.).  It implies there are large areas (many pixels) 
where the strong NDVI-rainfall anomaly relationship is not valid. This is also illustrated in 
the figures below. 

 

The following maps summarizes the results from the per pixel analysis of the temporal 
relationship between rainfall and NDVI. 
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Figure 5.4.11. NDVI (8 km) and rainfall (0.5 degree grid) anomalies for 5 random “non-
calendar” years during the 1982 to 2003 period. 
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Fig. 5.4.12. Total annual rainfall (2.5 degree) vs. annual integrated NDVI (1982-2003) 

 

Fig. 5.4.13. Rainfall anomaly (2.5 degree) vs. NDVI anomaly (1982-2003). 
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Fig. 5.4.14. Total annual rainfall (0.5 degree) vs. annual integrated NDVI (1982-2002) 

 

Fig. 5.4.15. Rainfall anomaly (0.5 degree) vs. NDVI anomaly (1982-2002). 
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As expected one can see a relatively good correlation between rainfall and NDVI for most 
of the South African region. Few areas of negative correlation are also present but they are 
located outside the dry region (mean NDVI < 0.1 and annual rainfall < 100 mm) in areas 
where rainfall is not necessarily the limiting factor for vegetation growth. It is interesting to 
note the strong agreement between the maps based on 2.5 degree gridded data  and  the 
maps based on 0.5 on degree gridded data  as well the almost identical patterns observed 
between the use of integrated data  and standardized data (Fig 8.12 and 8.14). 

5.4.4. Residual analysis 

The model residuals (i.e. the difference between observed and expected iNDVI) were 
computed for each pixel and subsequently inspected for any systematic trends that could 
invalidate the initial model specification.  

 

Fig. 5.4.16. Linear trends in residual slope of iNDVI when controlled for annual rainfall 
(2.5 degree) for the period 1982 to 2003. The trend is expressed in absolute values i.e. 
change in iNDVI units per year. 
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Fig. 5.4.17. Linear trends in residual slope of iNDVI z-scores when controlled for annual 
rainfall (2.5 degree) for the period 1982 to 2003. The trend is expressed in absolute values 
i.e. change in z-score units per year. 

 
Fig. 5.4.18. Linear trends in residual slope of iNDVI when controlled for annual rainfall 
(0.5 degree) for the period 1982 to 2002. The trend is expressed in absolute values i.e. 
change in iNDVI units per year 
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Fig. 5.4.19. Linear trends in residual slope of iNDVI z-scores when controlled for annual 
rainfall (0.5 degree) for the period 1982 to 2002. The trend is expressed in absolute values 
i.e. change in z-score units per year. 

 
 
5.4.5. Hot Spot analysis 
 
Example areas with significant residual trends (negative as well as positive) were identified 
and the trend in vegetation productivity relative to the long-term precipitation anomaly 
trends in the area were studied (Fig 5.4.20-5.4.26). 
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Fig. 5.4.20. South African negative (red vectors) and positive (green vectors) hot spots. 
 

 
Fig 5.4.21.  Malawi deforestation due to expansion of cropland and at the same time facing 
afforestation/agroforestry introduction, everything inside the size of an 8 km NOAA pixel 
(Photo: U. Helldén, 1990) 
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Fig. 5.4.22 Namibia  negative (red) Hot Spot with rainfall and NDVI anomalies. 

 

Fig. 5.4.23 Namibia positive (green) Hot Spot with rainfall and NDVI anomalies. 
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Fig. 5.4.24 North Botswana positive (green) Hot Spot with rainfall and NDVI 
anomalies. 

 

Fig. 5.4.25 South Africa positive (green) Hot Spot with rainfall and NDVI anomalies. 
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Fig. 5.4.26. South Africa negative (green) Hot Spot with rainfall and NDVI anomalies. 

5.4.6. Desertification comments  
 
• Signs of desertification, as reflected by significant downward trends in the vegetation 

productivity, after it was controlled for rainfall variability, are not very common. 
Population dense and humid areas including SE Zimbabwe and NE South Africa as 
well as Swaziland are sticking out indicating more severe vegetation degradation over 
the 1982-2003 period.  

 
• However, both positive and negative trends are weak. When significant, they can often 

be explained by corresponding precipitation trends. It is difficult to pin point any 
regional trends (positive or negative) indicating any significant increase or decrease of 
vegetation cover conditions over larger areas during the 1982-2003 period, possibly 
with the exception for the areas mentioned above. 

 

 
Fig. 5.4.27.  Dune encroachment from the Namib Desert into Namibian rangeland. 
(Photo: U. Helldén, 1997). 
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5.5. EAST ASIA 
  
5.5.1. East Asia overview 
 
This study region extends from the western tip of Mongolia to the Eastern tip of China 
including all the major drylands of China (Fig. 5.5.1). 

 

 
Figure 5.5.1. Country overview (top) and the mean monthly NDVI based on data from 
1982 to 2003 (bottom). 
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Figure 5.5.2. Mean annual rainfall based on 2.5 degree (~ 275 km) gridded rainfall data 
from 1982 to 2003. 

 
Fig. 5.5.3. Mean annual rainfall based on 0.5 degree (~55 km) gridded rainfall data from 
1982 to 2002. 

 

Inspection of time-series plots of both rainfall and NDVI revealed that the appropriate 
seasons for the drylands (i.e. the area delineated by a minimum of 0.1 and a maximum of 
0.5 NDVI based on the long-term monthly average) of East Asia was “January to 
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December” and “February to January the following year” for rainfall and NDVI 
respectively (figure 5.5.4). 

 

 

Figure 5.5.4. Monthly time-series plots of rainfall (left) and NDVI (right). The displayed 
values are mean values as calculated from the area defined by 0.1 < NDVI < 0.5. 

 

Consequently total annual rainfall was calculated by summarizing rainfall received within 
the months from January to December. Similar the annual vegetation productivity was 
estimated by integrating NDVI over the months from February until January the following 
year. 

5.5.2. Vegetation trend analysis 
 
The following figures summarize the results of the trend analysis approaches described 
under methods. 
 
Figure 5.5.5-5.5.8 confirm the points raised in the method sections regarding the relative 
merits of the different characteristics (inclination, relative change or statistical significance) 
of the trend line. Especially it is clear that the statistical test is placing too much emphasis 
on areas with rather small slope inclinations. There is equally a tendency for the relative 
change to put emphasis on areas where the intercept value i.e. the starting point is low. In 
that case a relative low absolute slope value may actually come out as a quite significant 
relative change. 
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Figure 5.5.5. Linear trends in vegetation productivity for the period 1982 to 2002 based on 
annual integrated NDVI values. The trend is expressed in absolute values i.e. change in 
iNDVI units per year. 

 

Fig 5.5.6. Linear trends in vegetation productivity for the period 1982 to 2002 based on 
annual integrated NDVI values. The trend is expressed as percentages i.e. the relative 
difference between the start and the end value of the linear trend 
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Fig. 5.5.7. Trend slope in NDVI based on linear least square regression (1982-2002). 
iNDVI trend slope (t-test). 

 

Figure 5.5.8. Standardized trend slope in NDVI based on linear least square regression and 
expressed as z-score units per year (1982-2002). 
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5.5.3. Vegetation versus rainfall analysis 

Figure 5.5.9 (left) indicates the relationship between mean NDVI and mean annual rainfall. 
The strong positive relationship (r2=0.7) confirms the fact that higher rainfalls normally 
yields higher vegetation productivity.  

Yet, the relationship illustrated in Figure 5.5.9 (left) is biased due to the presence of spatial 
auto-correlation i.e. the phenomenon where locational (geographic position) similarity is 
matched by value similarity. Consequently Fig. 5.5.9 (left) demonstrates the geographic 
relationship between long-term means of total annual rainfall and monthly NDVI .In order 
to avoid this bias the anomaly analysis was introduced (figure 5.5.9 [right], figure 5.5.10, 
5.5.11-5.5.15). 

The results from the anomaly analysis illustrate a significant and valid relationship between 
rainfall variability and NDVI variability for large parts of the Chinese and Mongolian 
drylands.  Despite the generalization level of these figures it remains clear that rainfall and 
NDVI are indeed closely associated. Figure 5.5.9 thereby supports the idea that NDVI 
trends should be controlled for rainfall variability before elucidating on the possible 
anthropogenic causes. 

 
 

Fig. 5.5.9. (LEFT)Annual rainfall plotted against mean NDVI. The displayed values are 
mean values for the period 1982 to 2003. (RIGHT) Average z-scores of NDVI and rainfall 
for West Sahel. On display are mean z-scores as calculated from the area defined by 0.1 < 
NDVI < 0.5. 
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Fig. 5.5.10. Annual NDVI anomalies plotted against annual rainfall anomalies. Every pixel 
in the 2.5 degree rainfall data was selected and plotted against the average NDVI value for 
the corresponding NDVI 8 km pixels under each 2.50 cell. Only pixels inside the area 
defined by 0.1<NDVI<0.5 where NDVI denotes mean monthly NDVI for the 1982-2003 
period. All data for the 1982-2003 period were merged into one data set. 
 
 
 
It should be noted that it is only a very small fraction (~1 %) of the interannual NDVI 
anomaly variation that can be explained by corresponding interannual (seasonal) rainfall 
anomalies under the given circumstances (Fig 5.5.10.).  It implies there are large areas 
(many pixels) where the strong NDVI-rainfall anomaly relationship is not valid. This is 
also illustrated in the figures below. 

 

 

The following maps summarizes the results from the per pixel analysis of the temporal 
relationship between rainfall and NDVI. 
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Figure 5.5.11. NDVI (8 km) and rainfall (0.5 degree grid) anomalies for 5 random “non-
calendar” years during the 1982 to 2003 period. 
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Fig. 5.5.12. Total annual rainfall (2.5 degree) vs. annual integrated NDVI (1982-2003) 
 

 

Fig. 5.5.13. Rainfall anomaly (2.5 degree) vs. NDVI anomaly (1982-2003). 

 
 
 



 99

 

Fig. 5.5.14. Total annual rainfall (0.5 degree) vs. annual integrated NDVI (1982-2002) 

 

Fig. 5.5.15. Rainfall anomaly (0.5 degree) vs. NDVI anomaly (1982-2002). 



 100

As expected one can see a relatively good correlation between rainfall and NDVI for 
considerable areas of the East Asian dryland region. Areas of negative correlation are also 
present but they are mainly located outside the dry region (mean NDVI < 0.1 and annual 
rainfall < 100 mm) in areas where rainfall is not necessarily the limiting factor for 
vegetation growth. It is interesting to note the strong agreement between the maps based on 
2.5 degree gridded data  and  the maps based on 0.5 on degree gridded data  as well the 
almost identical patterns observed between the use of integrated data  and standardized data 
(Fig 8.12 and 8.14). 

5.5.4. Residual analysis 

The model residuals (i.e. the difference between observed and expected iNDVI) were 
computed for each pixel and subsequently inspected for any systematic trends that could 
invalidate the initial model specification.  

 

Fig. 5.5.16. Linear trends in residual slope of iNDVI when controlled for annual rainfall 
(2.5 degree) for the period 1982 to 2003. The trend is expressed in absolute values i.e. 
change in iNDVI units per year. 
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Fig. 5.5.17. Linear trends in residual slope of iNDVI z-scores when controlled for annual 
rainfall (2.5 degree) for the period 1982 to 2003. The trend is expressed in absolute values 
i.e. change in z-score units per year. 

 

 
Fig. 5.5.18. Linear trends in residual slope of iNDVI when controlled for annual rainfall 
(0.5 degree) for the period 1982 to 2002. The trend is expressed in absolute values i.e. 
change in iNDVI units per year 
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Fig. 5.5.19. Linear trends in residual slope of iNDVI z-scores when controlled for annual 
rainfall (0.5 degree) for the period 1982 to 2002. The trend is expressed in absolute values 
i.e. change in z-score units per year. 

 
 
5.5.5. Hot Spot analysis 
 
Example areas with significant residual trends (negative as well as positive) were identified 
and the trend in vegetation productivity relative to the long-term precipitation anomaly 
trends in the area were studied (Fig 5.5.20-5.5.24).  
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Fig. 5.5.20.  East Asian negative (red vectors) and positive (green vectors) hot spots. 

 
Fig. 5.5.21. East Asia population density for comparison. Data are from 2000 and produced 
by CIESIN (2005). 
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Fig. 5.5.22. Inner Mongolia negative (red) Hot Spot with rainfall and NDVI anomalies. 

 

 
Fig. 5.5.23.  Mongolia positive (green) Hot Spot with rainfall and NDVI anomalies. 
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Fig. 5.5.24.  Liaoning, Inner Mongolia, China positive (green) Hot Spot with rainfall and 
NDVI anomalies.  
 
5.5.6. Desertification comments. 
 

• Signs of desertification, as reflected by significant downward trends in the 
vegetation productivity, after it was controlled for rainfall variability, are hardly 
found anywhere inside the drylands. The residual trend analysis indicate a certain 
concentration of a few scattered negative trend areas mainly in NE China 

 
• However, both positive and negative trends are weak. When significant, they can be 

explained by corresponding precipitation trends. The “greening up” trend seems to 
dominate the area together with areas of no significant change at all.  It  confirms 
the conclusions presented by  recent studies on land degradation and desertification 
in China  based on both high resolution Landsat TM 1978-1996 data and NOAA 
AVHRR pathfinder NDVI data (1982-1993) focusing on the MU Us Sandy Lands 
in Inner Mongolia, China (Runnström 2000, 2003a). Runnström concluded that the 
trend of GPP was generally positive over the period 1982-1999 for the Inner 
Mongolian grasslands (Runnström 2003b).  The increased biomass production was 
explained by land management factors and governmental measures to halt 
desertification rather than by rainfall trends, although interannual biomass variations 
could be related to rainfall variations. The conclusions may contradict the results of 
a land use change study  of the  MU Us Sandy Lands based on manual 
interpretation of air photos from the 1958 and Landsat imagery from 1993 by Wu 
and Long (2001). They found that the shifting and semi fixed sandy lands had 
increased considerably between 1958 and 1993. However, we know that a lot of 
work has been invested in land management and anti-desertification measures in 
Mu Us Sandy lands and northern China since 1993 resulting in increased vegetation 
cover over large areas. 
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• A study on climate and human impacts on winter wheat production and land use 
1955-2004 in the Loess Plateau Region, Shaanxi (neighbor province to the 
Runnström study region) was recently presented by Simelton (2007).  It was 
concluded that wheat yields and vegetation production increased considerably over 
the period, not due to climate but mainly due to human land management related 
impact (Simelton et al. 2007, Ostwald et al. 2007). Increased crop yields but varying 
(positive as well as negative) development of vegetation cover was reported by 
Brogaard and Zhao (2002) in a case study on rural reforms and changes in land 
management from Keerquin Sandy Lands, Inner Mongolia. However, it was 
indicated by a NOAA AVHRR and precipitation based model that a large area in 
central Inner Mongolia showed a marked increase in biological production (GPP) 
for the period 1982-1999 while the western parts showed no change (Brogaard 
2003). 

 
Fig. 5.5.25.  Grasslands in Inner Mongolia, China. (Photo: U. Helldén, Sep. 1993) 

 
Fig. 5.5.26.  Expanded agriculture into former grasslands, Horquin Sandy Lands, Inner 
Mongolia, China. (Photo: U. Helldén, May 1994).
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5.6. SOUTH AMERICA 
  
5.6.1. South America overview 
 
This study region stretches from Peru in the north to Tierra del Fuego in the South and 
from Chile in west to Uruguay in east (Fig. 5.6.1).  
 
 

 

 
 
 
 

Figure 5.6.1. Country overview (left) and the mean monthly NDVI based on data from 
1982 to 2003 (right). 
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Figure 5.6.2.(Left) Mean annual rainfall based on 2.5 degree (~ 275 km) gridded rainfall 
data from 1982 to 2003. 

Fig. 5.6.3. (Right) Mean annual rainfall based on 0.5 degree (~55 km) gridded rainfall 
data from 1982 to 2002. 

 

Inspection of time-series plots of both rainfall and NDVI revealed that the appropriate 
seasons for the drylands (i.e. the area delineated by a minimum of 0.1 and a maximum 
of 0.5 NDVI based on the long-term monthly average) of the South American region 
was from “August to July” for both rainfall and NDVI (figure 5.6.4). 
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Figure 5.6.4. Monthly time-series plots of rainfall (left) and NDVI (right). The 
displayed values are mean values as calculated from the area defined by 0.1 < NDVI < 
0.5. 

 

Consequently total annual rainfall as well as annual vegetation productivity was 
calculated by summarizing rainfall and NDVI over the months from August to July  

5.6.2. Vegetation trend analysis 
 
The following figures summarize the results of the trend analysis approaches described 
under methods. 
 
Figure 5.6.5-5.6.8 confirm the points raised in the method sections regarding the relative 
merits of the different characteristics (inclination, relative change or statistical 
significance) of the trend line. Especially it is clear that the statistical test is placing too 
much emphasis on areas with rather small slope inclinations. There is equally a 
tendency for the relative change to put emphasis on areas where the intercept value i.e. 
the starting point is low. In that case a relative low absolute slope value may actually 
come out as a quite significant relative change. 
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Figure 5.6.5. (Left) Linear trends in vegetation productivity for the period 1982 to 2002 
based on annual integrated NDVI values. The trend is expressed in absolute values i.e. 
change in iNDVI units per year. 

Fig 5.6.6. (Right) Linear trends in vegetation productivity for the period 1982 to 2002 
based on annual integrated NDVI values. The trend is expressed as percentages i.e. the 
relative difference between the start and the end value of the linear trend 
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Fig. 5.6.7. (Left)Trend slope in NDVI based on linear least square regression (1982-
2002). iNDVI trend slope (t-test). 

Figure 5.6.8. (Right) Standardized trend slope in NDVI based on linear least square 
regression and expressed as z-score units per year (1982-2002). 
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5.6.3. Vegetation versus rainfall analysis 

Figure 5.6.9 (left) indicates the relationship between mean NDVI and mean annual 
rainfall. The strong positive relationship (r2=0.6) confirms the fact that higher rainfalls 
normally yields higher vegetation productivity.  

Yet, the relationship illustrated in Figure 5.6.9 (left) is biased due to the presence of 
spatial auto-correlation i.e. the phenomenon where locational (geographic position) 
similarity is matched by value similarity. Consequently Fig. 5.6.9 (left) demonstrates 
the geographic relationship between long-term means of total annual rainfall and 
monthly NDVI .In order to avoid this bias the anomaly analysis was introduced (figure 
5.6.9 [right], figure 5.6.10, 5.6.11-5.6.15). 

The results from the anomaly analysis illustrate a significant and valid relationship 
between rainfall variability and NDVI variability for large parts of the South American 
drylands.  Despite the generalization level of these figures it remains clear that rainfall 
and NDVI are indeed closely associated. Figure 5.6.9 thereby supports the idea that 
NDVI trends should be controlled for rainfall variability before elucidating on the 
possible anthropogenic causes. 

 

Fig. 5.6.9. (LEFT)Annual rainfall plotted against mean NDVI. The displayed values are 
mean values for the period 1982 to 2003. (RIGHT) Average z-scores of NDVI and 
rainfall. On display are mean z-scores as calculated from the area defined by 0.1 < 
NDVI < 0.5.  
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Fig. 5.6.10. Annual NDVI anomalies plotted against annual rainfall anomalies. Every 
pixel in the 2.5 degree rainfall data was selected and plotted against the average NDVI 
value for the corresponding NDVI 8 km pixels under each 2.50 cell. Only pixels inside 
the area defined by 0.1<NDVI<0.5 where NDVI denotes mean monthly NDVI for the 
1982-2003 period. All data for the 1982-2003 period were merged into one data set. 
 
 
 
It should be noted that it is only a very small fraction (~1 %) of the interannual NDVI 
anomaly variation that can be explained by corresponding interannual (seasonal) rainfall 
anomalies under the given circumstances (Fig 5.6.10).  It implies there are large areas 
(many pixels) where the strong NDVI-rainfall anomaly relationship is not valid. This is 
also illustrated in the figures below. 

 

 

The following maps summarizes the results from the per pixel analysis of the temporal 
relationship between rainfall and NDVI. 
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Figure 5.6.11. NDVI (8 km) and rainfall (0.5 degree grid) anomalies for 5 random “non-
calendar” years during the 1982 to 2003 period.
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Fig. 5.6.12. (Left) Total annual rainfall (2.5 degree) vs. annual integrated NDVI (1982-
2003) 

Fig. 5.6.13. (Right) Rainfall anomaly (2.5 degree) vs. NDVI anomaly (1982-2003). 
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Fig. 5.6.14. (Left) Total annual rainfall (0.5 degree) vs. annual integrated NDVI (1982-
2002) 

Fig. 5.6.15. (Right) Rainfall anomaly (0.5 degree) vs. NDVI anomaly (1982-2002). 

As expected one can see a relatively good correlation between rainfall and NDVI for 
large areas of the South America region. However, large areas of negative correlation 
are also present. They are often areas where rainfall is not necessarily the limiting factor 
for vegetation growth but rather temperature. Much of the negative correlation is 
located to the Andes Mountains, where this is suggested to be the case. It is interesting 
to note the strong agreement between the maps based on 2.5 degree gridded data and the 
maps based on 0.5 on degree gridded data as well the almost identical patterns observed 
between the use of integrated data and standardized data. 

5.6.4. Residual analysis 

The model residuals (i.e. the difference between observed and expected indri) were 
computed for each pixel and subsequently inspected for any systematic trends that could 
invalidate the initial model specification.  
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Fig. 5.6.16. (Left) Linear trends in residual slope of iNDVI when controlled for annual 
rainfall (2.5 degree) for the period 1982 to 2003. The trend is expressed in absolute 
values i.e. change in iNDVI units per year. 

Fig. 5.6.17. (Right) Linear trends in residual slope of iNDVI z-scores when controlled 
for annual rainfall (2.5 degree) for the period 1982 to 2003. The trend is expressed in 
absolute values i.e. change in z-score units per year. 
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Fig. 5.6.18. (Left) Linear trends in residual slope of iNDVI when controlled for annual 
rainfall (0.5 degree) for the period 1982 to 2002. The trend is expressed in absolute 
values i.e. change in iNDVI units per year 

Fig. 5.6.19. (Right) Linear trends in residual slope of iNDVI z-scores when controlled 
for annual rainfall (0.5 degree) for the period 1982 to 2002. The trend is expressed in 
absolute values i.e. change in z-score units per year. 

 
 
5.6.5. Hot Spot analysis 
 
Example areas with significant residual trends (negative as well as positive) were 
identified and the trend in vegetation productivity relative to the long-term precipitation 
anomaly trends in the area were studied (Fig 5.6.20-5.6.23). 
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Fig. 5.6.20.  East Asian negative (red vectors) and positive (green vectors) hot spots. 
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Fig. 5.6.20 Central Argentina positive (green) Hot Spot with rainfall and NDVI 
anomalies. 

 

Fig. 5.6.21 Northern Argentina negative (red) Hot Spot with rainfall and NDVI 
anomalies. 
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5.6.6. Desertification comments 
 
• Signs of desertification, as reflected by significant downward trends in the 

vegetation productivity, after it was controlled for rainfall variability, is hardly 
found anywhere inside the drylands. The residual trend analysis indicates a certain 
concentration of scattered negative trend areas mainly in NE Argentina. 

 
• However, both positive and negative trends are weak. When significant, they can 

often be explained by corresponding precipitation trends. The “greening up” trend 
seems to slightly dominate the area together with areas of no significant change at 
all. 

 
 
 
 
 

 
 
Fig. 5.6.22.  Marginal dryland farms in Chile are being abandoned and often replaced by large 
commercial irrigated wine yard and avocado schemes. (Photo U.Helldén, 2006). 
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6. CONCLUSIONS 

Trend analysis of time series of NOAA NDVI GIMMS data can be used to assess long-
term changes in vegetation production. The variations in integrated NDVI trends can be 
understood in relation to a complex interaction of climatic and human drivers. 
 
The methodological framework presented in this report can be used to investigate 
broad-scale environmental changes, and serve as a starting point for more detailed 
studies by pinpointing areas (regions & hot spots) of radical change and interest. In this 
respect, the method will complement studies on long-term change based on statistical 
records, indicators or in-depth local studies. More specifically, the proposed 
methodology will be an important tool for obtaining an overview of desertification—not 
only in terms of assessing the magnitude or importance of potential degradation, but 
also as a first global-regional-national-sub national  indicator on where to apply more 
expensive in depth studies and where to intervene with support and mitigation programs 
. The methods can also be used to identify areas with positive trends in vegetation 
development, where detailed studies may provide information and knowledge about 
factors enabling vegetation growth. 

However, it should be recognized that the data and methods applied in this study cannot 
be used to assess all important aspects of vegetation change as an indicator of 
desertification. Changes in vegetation quality e.g. positive or negative changes in 
species composition, diversity and palatability may not be possible to identify. A 
suggested trend of “greening- up” may e.g. include, or even be dominated by, a 
decreasing rangeland palatability and quality; i.e. increased degradation.  

In reference to the research objective some of the key findings of this study include: 

 

• A global NDVI and precipitation database has been compiled and a standard 
framework for handling and analyzing the data has been proposed (a 
temperature data base has been compiled as well but not yet integrated in the 
analysis). 
   

• The database has been used to search for indications of desertification within 
six of the world’s major dryland regions. A method has been developed that 
identify areas where observed trends and anomalies in NDVI (read - 
vegetation productivity) cannot be explained by rainfall variability alone. 
   

• Although scattered pockets of apparent desertification (i.e. downwards 
trends in NDVI) can be found in all six regions the results indicate that all 
six regions have an accent towards land improvement (i.e. increasing trends 
of “greenness”) and no region more so than the Sahel in Western Africa.  
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At this stage, it is too early to draw any firm conclusions on the basis of these results 
though it is worth mentioning that they do contest existing narratives about "marching 
deserts" or massive desertification as a global threat. Before proceeding with the 
recommendations for future work it is important to recall the limitations and scope of 
this work.  

First of all it should be noted that desertification is the result of complex processes that 
act over many scales and are linked together in hierarchies. Phenomena occurring at any 
scale are affected by phenomena occurring at scales below and above. The important 
lesson is that the choice of scale, extent and resolution critically affect statistical 
associations and identified patterns: patterns and associations that appear at one level of 
resolution may be lost at lower or higher levels; patterns and associations that occur 
over one extent of a dimension may disappear if the extent is increased or decreased 
(Verburg and Chen 2000). Multi-scale and multi-resolution analysis, preferably backed 
up and combined by field studies, is a must in order to fully understand the link between 
these different scales and resolutions.  

Secondly we need to underline that the strength of remote sensing lies in its synoptic 
coverage and its ability to map and monitor the state and change in land conditions, yet 
remote sensing do not necessarily answer what has caused this state and/or change. In 
other words remote sensing derivatives cannot tell us where desertification is taking 
place but rather it can be used to deliver a qualified guess i.e. point towards interesting 
patterns/trends in land conditions that may or may not be desertification. The final 
affirmation of where desertification is taking place and why it happens can only come 
from the integration of all the DeSurvey system components including the ultimate and 
very important local field studies. 

Mapping and monitoring of land degradation over large areas is a huge task and it is 
realized that the results presented are merely touching upon the surface of this subject. 
Needless to say, a number of tasks have been identified that could help to bring this 
work forward: 

- The per pixel based interannual anomaly analysis of NDVI versus annual precipitation  
suggests that we should try to limit the NDVI anomaly studies to 0.1<NDVI<0.4 rather 
than using 0.5 as the upper mean monthly limit to better explain NDVI anomalies as a 
function of rainfall anomalies. 

- An important next step will be to integrate the temperature dataset into the analysis: 
Preliminary tests indicate that using rainfall and temperature in a multi-variate model of 
NDVI trends add significantly to the explanatory power of the model. On the other 
hand, the contrary was found in a recent DeSurvey study on Spain based on 1 km 
NOAA AVHRR NDVI data by Udelhoven et al. (2007). 

-Another important step may be to further integrate population data into the analysis for 
in depth analysis of the role of rural population dynamics and pressure as drivers of 
vegetation conditions indicated by NDVI. 
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- Methods exist by which the appropriate season for a time-series can be estimated 
(Jönsson and Eklundh 2002). Using such methods it will be possible to optimise the 
integration period on a per pixel basis rather than using an integration period based on a 
regional average as in the current analysis.  

- In a similar way methods are available that can extract seasonal parameters from a 
data time-series (including maximum, minimum, amplitude and seasonal adjusted 
integrals). These parameters represent different aspects of the land surface than the 
annual integrals and should be tested in future work. Also the Coefficient of Variation 
(COV) is an important parameter to be used in future trend analysis.   
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