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Stability and Worst-Case Performance Analysis of Sampled-Data

Control Systems with Input and Output Jitter

Anton Cervin

Abstract—When a feedback controller is implemented in
a networked embedded system, the computations and com-
munications induce delays and jitter, which may destabilize
the control loop. The majority of previous work on analysis
of control loops with time-varying delays has focused on
output (actuation) jitter. In many embedded systems, input
(sampling) jitter is also an issue. In this paper, we analyze
the combined effect of input and output jitter on the stability
and performance of linear sampled-data control systems. The
analysis is performed via a loop transformation involving two
time-varying uncertainties. We show how the input-output gains
of the linear part of the transformed system can be computed
using a fast-sampling/fast-hold approximation. At the same
time, we reduce the conservativeness of a previous stability
theorem for pure output jitter.

I. INTRODUCTION

In modern applications, a feedback controller is often

implemented as a distributed task in a networked embedded

computer system, together with many other tasks. The real-

time scheduling of shared resources (CPUs and communi-

cation networks) introduces delay and jitter in the control

loop, which in turn may lead to performance degradation

and—in extreme cases—instability. Bounds on the delay and

jitter of a distributed task can be computed using scheduling

theory (e.g., [1]). Ideally, these results should be combined

with control theory to guarantee, at design time, that the

implemented controller will be stable (and well performing).

Stability analysis of control loops with time-varying delays

has been a very active research area since the late 1980s,

when the interest in networked control systems started to take

off, e.g., [2], [3], [4], [5]. Only a few works have however

considered the combined effect of input jitter (also known as

sampling jitter) and output jitter. Input jitter is common in

networked embedded systems, and may be the result of, e.g.,

poor time resolution, preemption from higher-priority tasks,

or remote, asynchronous sampling.

In a stochastic, networked control setting, both input and

output jitter was considered in [6]. Assuming independent

stochastic delays, known delay distributions and that all

delays could be measured on-line, an LQG-optimal, jitter-

compensating controller was derived. No method for an-

alyzing the resulting closed-loop performance was given,

however. Inspired by [4] and [6], the Jitterbug toolbox [7]

was developed to facilitate stochastic performance analysis

of sampled-data control loops with various types of random
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delays, including input and output jitter. Again, all time-

varying delays were modeled by independent stochastic vari-

ables with known probability distributions. Stability could be

guaranteed in the mean-square sense.

An approximate analysis for sampled-data control systems

with input and output jitter was developed in [8]. Invoking

the w-transform and making continuous-time approximations

of the jitter-induced errors, the author proposed a set of ap-

proximate stability tests and associated performance analysis

methods.

This paper extends the sufficient stability analysis devel-

oped by Kao and Lincoln [9], [10]. They studied continuous-

time, discrete-time, and sampled-data control systems with

a single time-varying delay element in the control loop, and

developed simple but powerful stability criteria based on the

small gain theorem. The only assumption about the time-

varying delay was knowledge of its minimum and maximum

values. The real delay could hence be constant or time-

varying, stochastic or deterministic. The current paper deals

exclusively with the sampled-data case and contains the

following contributions:

• Under subsample output jitter, we show how some of the

conservatism of Kao and Lincoln’s analysis for can be

reduced via an alternative loop transformation involving

a gate operator.

• We show how the combined effect of input and output

jitter can be analyzed via a novel loop transformation

that contains two error paths: one continuous-time path

for the input jitter and one sampled-data path for the

output jitter. Both stability and worst-case performance

(as measured by the L2-induced gain from a load

disturbance to the output) are analyzed.

• We detail how the input-output gains of the linear part

of the transformed system can be computed via a fast-

sampling/fast-hold approximation [11], as a side effect

allowing also unstable plants to be analyzed.

The rest of this paper is outlined as followed. The system

model is presented in Section II, followed by the stability

and performance analysis in Section III. Some numerical

results are given in Section IV, and the paper is concluded

in Section V.

Notation

The L2-norm of a signal f(t) is denoted by ||f ||. The
L2-induced gain of a continuous-time system G and the ℓ2-

induced gain of a discrete-time system G are both denoted

by ||G||.
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Fig. 1. Nominal system model with continuous-time plant P (s), periodic
sampler Sh, discrete-time controller K(z), and hold circuit Hh.
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Fig. 2. Controller timing model with input jitter Ji, output jitter Jo, and
nominal input-output delay L.

II. SYSTEM MODEL

A. Nominal System Model

The nominal system model is a standard linear sampled-

data control loop (see Fig. 1), consisting of a strictly proper,

single-input–single-output, continuous-time plant P (s), a

periodic sampler with interval h, a proper, discrete-time

controller K(z) (assuming positive feedback), and a zero-

order hold circuit. It is assumed that the nominal closed-

loop system is stable. The performance of the system is

measured by the L2-induced gain from the disturbance input

d to the plant output y. (Defining other performance inputs

and outputs would be a trivial extension.)

B. Timing Model

The time-varying delays introduced by the implementation

are characterized by three non-negative parameters: the input

jitter Ji, the output jitter Jo, and the nominal input-output

delay L (see Fig. 2). Ideally, the controller should execute at

periodic time instances tk = kh, k = {0, 1, 2, . . .}. With

jitter and delay, however, the controller input is sampled

somewhere in the interval [tk − Ji/2, tk + Ji/2], and the

output is updated somewhere in the interval [tk + L −
Jo/2, tk +L+Jo/2]. It is natural to assume that the earliest

possible output operation cannot take place before earliest

possible input operation, and that the latest possible input

operation cannot take place after the latest possible output

operation. It follows that any valid set of timing parameters

must respect

|Ji − Jo| ≤ 2L (1)

Note that no other restrictions than the one above applies.

The timing model hence allows both L > h and Ji, Jo >
h. Further note that the model does not care about how or

whether the actual controller timing varies from period to

period.
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Fig. 3. Sampled-data system with continuous-time plant P (s), time-
varying delay operator ∆i, periodic sampler Sh, discrete-time controller
K(z), zero-order hold Hh, time-varying delay operator ∆o, and nominal
input-output delay e

−sL.

C. System Model with Delay and Jitter

The sampled-data system with delay and jitter is modeled

as shown in Fig. 3. The nominal input-output delay is

modeled as a delay at the plant input, while the jitters are

modeled using a pair of time-varying delay operators:

∆i(v) = v(t − δi(t)), −Ji/2 ≤ δi(t) ≤ Ji/2 (2)

∆o(v) = v(t − δo(t)), −Jo/2 ≤ δo(t) ≤ Jo/2 (3)

Here, δi(t) and δo(t) may assume any values within their

bounds at a given time t. It should be pointed out that the

time-varying delays cannot be lumped together, since the

various elements in the control loop do not commute.

Note that no relationship is assumed between δi(t) and

δo(t). In reality, the delays are likely to be dependent. This

is especially true if Ji +Jo > 2L, since the output operation
cannot take place before the input operation in a real system.

This may introduce some conservativeness in the analysis.

III. ANALYSIS

A. Analysis under Pure Output Jitter

The case of pure output jitter (obtained by setting Ji = 0)
was treated in [9], [10]. We here review the result of main

interest to us:

Theorem 1 (Corollary 3.4 in [9], p. 121): For the control

loop in Fig. 3, with strictly proper and stable P (s), proper
K(z), nominal delay e−sL, and zero input jitter, the closed-

loop system is stable under any output jitter satisfying (3)

if
∣∣∣∣

Palias(ω)K(eiω)

1 − Pdelay(eiω)K(eiω)

∣∣∣∣ <

√
2

Ñ |eiω − 1|
, ∀ω ∈ [0, π],

(4)

where Ñ =
√
⌊N⌋2 + 2⌊N⌋g + g, g = N − ⌊N⌋, N =

Jo/h, Pdelay(z) is the zero-order-hold discretization of

P (s)e−sL, and

Palias(ω) =

√√√√
∞∑

k=0

∣∣∣∣P
(
i(ω + 2πk)

1

h

)∣∣∣∣
2

.

Proof sketch: The delay operator ∆o is transformed into a

direct feedthrough path and an error path, as shown in Fig. 4.
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Fig. 5. Loop transformation with time-varying uncertainties ∆1 and ∆2, representing induced errors due to output jitter and input jitter, respectively.
The gate operator Λh blocks the error signal w1 during certain intervals in each period.
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Fig. 4. Loop transformation of sampled-data control loop with pure output
jitter (from [9], [10]).

The gain of the time-varying uncertainty ∆1, assuming zero-

order-hold input signals of period h, can be shown to be

||∆1|| =
Ñ√
2

(5)

(see [9], pp. 128–129). The gain of the linear, time-periodic

system Gvw is computed using an aliasing formula from [12].

The small gain theorem then gives the result. �

Note that the requirement for a stable P (s) is due to the

chosen method for calculating the L2-induced gain of the

mixed system Gvw. In this paper, we rather propose to use

a fast-sampling/fast-hold approximation [11] to compute the

gain, removing the need for a stable plant model.

B. Improving the Output Jitter Analysis

Theorem 1 can be quite conservative for small amounts

of output jitter, because the gain of ∆1 is proportional to√
Jo for Jo < h. Some of the conservativeness can be

reduced by noting that the error signal w must be zero during

certain intervals in each period if Jo < h. It is thus possible
to include a periodic gate operator Λh with the following

behavior at the input of Gvw, without affecting the system

under analysis:

Λh(w) =

{
w(t), kh − Jo/2 ≤ t ≤ kh + Jo/2

0, kh + Jo/2 < t < kh + h − Jo/2
(6)

When Jo < h, the inclusion of the gate operator will modify

the gain of Gvw by approximately a factor
√

Jo/h, creating a
near-linear relationship between Jo and the loop gain ||∆1|| ·
||Gvw||. The gate operator will act as a feedthrough path

when Jo ≥ h.

C. Analysis under Input and Output Jitter

In order to analyze the combined effect of input jitter

and output jitter, we introduce a new loop transformation

that contains two error paths, see Fig. 5. The output jitter

is modeled using the same sampled-data error path as be-

fore. By contrast, the input jitter delay operator acts on a

continuous signal, requiring a continuous-time model of the

jitter-induced error. According to [9], [10], the gain of the

time-varying uncertainty ∆2 in Fig. 5 is given by

||∆2|| =
Ji√
2

(7)

To arrive at a sufficient stability criterion via the small

gain theorem, we need to compute all input-output gains

of the mixed continuous-time/discrete-time system G in

Fig. 5. To facilitate the gain computations, we first make

fast-sampling/fast-hold approximations of the continuous-

time signals d, w1, y and v2 with the short interval δ =
h/N , N ≫ 1, and invoke discrete-time lifting according to

[11]. In the lifted system, the continuous-time signal d(t) is

represented by its fast-sampled approximation

d̂(k) =




d(kh)

d(kh + δ)

...

d(kh + (N−1)δ)




(8)

and similarly for ŵ1(k), ŷ(k), and v̂1(k). Further, let

ŵ2(k) = w2(kh) and v̂1(k) = v1(kh).

Next, we sample the continuous-time parts of G. Assum-

ing that P (s) has the state-space representation (A, B, C, 0),
the plant and the continuous-time differentiator block are



described by

ẋP(t) = AxP(t) + BuP(t)

y(t) = CxP(t)

v2(t) = CẋP(t) = CAxP(t) + CBuP(t)

(9)

The plant input signal uP contains contributions from the

plant disturbance, the gated output jitter error signal, and the

delayed control signal. To simplify the formulas below, the

nominal input-output delay is represented as L = ⌊L⌋ + τ .
The integer delay part can be included as an extra factor

z−⌊L⌋ in K(z).

Sampling (9) with the interval h and introducing the

shorthand notation Φt = eAt and Γt =
∫ t

0
eAsBds, we

obtain

xP(k+1) = ΦxP(k) + Γ0u(k) + Γ1u(k−1)

+ Γdd̂(k) + Γw1
ŵ1(k)

ŷ(k) = CyxP(k) + Dy0u(k) + Dy1u(k−1)

+ Dydd̂(k) + Dyw1
ŵ1(k)

v̂2(k) = Cv2
xP(k) + Dv20u(k) + Dv21u(k−1)

+ Dv2dd̂(k) + Dv2w1
ŵ1(k)

(10)

where

Φ = Φh

Γ0 = Γh−τ

Γ1 = Φh−τΓτ

Γd = [ Φh−δΓδ Φh−2δΓδ · · · Γδ ]

Cy =




C

CΦδ

...

CΦh−δ




, Cv2
=




CA

CAΦδ

...

CAΦh−δ




Dyd =




0

CΓδ 0
...

...
. . .

CΦh−2δΓδ CΦh−3δΓδ · · · 0




Dv2d =




CB

CAΓδ CB
...

...
. . .

CAΦh−2δΓδ CAΦh−3δΓδ · · · CB




The delayed control signal gives rise to

Dy0(l) =

N∑

m=τ/δ+1

Dyd(l, m)

Dy1(l) =

τ/δ∑

m=1

Dyd(l, m)

and similarly for Dv20 and Dv21. Finally, the gated output

jitter error signal gives rise to

Γw1
(l, m)

=





Γd(l, m), min
(
|τ + (1

2
− m)δ|,

|τ + (1
2
− m)δ + h|

)
≤ Jo/2

0, otherwise

(11)

and similarly for Dyw1
and Dv2w1

.

Next, we formulate the discrete-time closed-loop system,

with state vector [xT
P xT

K uT (k − 1) ]T , inputs d̂, v̂1, and

ŵ2, and outputs ŷ, ŵ1, and ŵ2. Assume that K(z) has

the state-space realization (ΦK, ΓK, CK, DK). The closed-loop
system then becomes




xP(k+1)

xK(k+1)

u(k)


 =




Φ+Γ0DKC Γ0CK Γ1

ΓKC ΦK 0

DKC CK 0







xP(k)

xK(k)

u(k−1)




+




Γd Γw1
Γ0DK

0 0 ΓK

0 0 DK







d̂(k)

ŵ1(k)

ŵ2(k)




2

4

ŷ(k)

v̂1(k)

v̂2(k)

3

5 =

2

4

Cy+Dy0DKC Dy0CK Dy1

DKC CK −1

Cv2
+Dv20DKC Dv20CK Dv21

3

5

2

4

xP(k)

xK(k)

u(k−1)

3

5

+

2

4

Dyd Dyw1
Dy0DK

0 0 DK

Dv2d Dv2w1
Dv20DK

3

5

2

4

d̂(k)

ŵ1(k)

ŵ2(k)

3

5 (12)

According to [11], the ℓ2-induced gain of the discrete-time

lifted system will uniformly and approach the L2-induced

gain of the original system as N grows. Correcting for the

fact that v̂1 and ŵ2 were introduced as unlifted variables

above, we recover the input-output gains of the original

system G through

||Gyd|| ≈ ||Gŷd̂||
||Gyw1

|| ≈ ||Gŷŵ1
||

||Gyw2
|| ≈ ||Gŷŵ2

||/
√

N

||Gv1d|| ≈ ||Gv̂1d̂|| ·
√

N

||Gv1w1
|| ≈ ||Gv̂1ŵ1

|| ·
√

N

||Gv1w2
|| = ||Gv̂1ŵ2

||
||Gv2d|| ≈ ||Gv̂2d̂||

||Gv2w1
|| ≈ ||Gv̂2v̂1

||
||Gv2w2

|| ≈ ||Gv̂2ŵ2
||/

√
N

(13)

(Note that ||Gv1w2
|| is computed without error, since both

the input and output are true discrete-time signals.)

We are now ready to formulate the main result of the

paper.



Theorem 2: Define the gains

g00 = ||Gyd||
g01 = ||Gyw1

|| · ||∆1||
g02 = ||Gyw2

|| · ||∆2||
g10 = ||Gv1d||
g11 = ||Gv1w1

|| · ||∆1||
g12 = ||Gv1w2

|| · ||∆2||
g20 = ||Gv2d||
g21 = ||Gv2w1

|| · ||∆1||
g22 = ||Gv2w2

|| · ||∆2||

(14)

where ||∆1|| and ||∆2|| are given by (5) and (7), and where

the input–output gains of G are computed according to (10)–

(13). For the control loop in Fig. 3, with strictly proper

P (s), proper K(z), and nominal delay e−sL, the closed-loop

system is stable under any input and output jitter satisfying

(2) and (3) if

g11 < 1

g22 < 1

g12g21 <
(
1 − g11

)(
1 − g22

) (15)

Moreover, if the closed-loop system is stable, then the worst-

case gain from d to y is bounded by

||y|| ≤
(

[ g01 g02 ]

[
1−g11 −g12

−g21 1−g22

]−1[
g10

g20

]
+ g00

)
||d||

(16)

Proof: The proof is a straight-forward application of the

small gain theorem. For the signals in the closed-loop system,

it holds that

||y|| ≤ g00||d|| + g01||v1|| + g02||v2||
||v1|| ≤ g10||d|| + g11||v1|| + g12||v2||
||v2|| ≤ g20||d|| + g21||v1|| + g22||v2||

(17)

If the small gain conditions (15) are fulfilled, then it is

possible to solve for ||y|| by eliminating ||v1|| and ||v2|| in
(17), yielding the finite-gain input-output relationship in (16).

�

IV. EXAMPLES

We here give two examples of how the jitter analysis can

be applied.

Example 1 (Pure output jitter)

In the first example, we illustrate how the conservativeness

of Kao and Lincoln [9], [10] for subsample output jitter is

reduced by the new analysis. Let the system be given by

P (s) =
1

s
, K(z) = −1.3

z
, h = 0.5, Ji = 0

The constant delay margin for this system is

Lm = 0.455

We vary the nominal delay L between 0 and Lm and compute

the maximum tolerable output jitter Jo for each value of
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Fig. 6. Maximum allowable output jitter (Jmax
o ) as a function of the

nominal input-output delay (L) for the system in Example 1.
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Fig. 7. Worst-case performance degradation as a function of the amount
of input jitter (Ji) and output jitter (Jo) for the system in Example 2.

L, first using Kao and Lincoln’s criterion, and then using

Theorem 2. The results are shown in Fig. 6. The ramp at

the start of the plot is due to the restriction Jo ≤ 2L. It is
seen that Theorem 2 can indeed guarantee stability for much

larger values of the output jitter.

Example 2 (Input and output jitter)

In the second example, we analyze the worst-case perfor-

mance degradation of a system with both input and output

jitter. Let the system be given by

P (s) =
1

s2 − 0.01

K(z) =
−12.95z2 + 10z

z2 − 0.2181z + 0.1081
, h = 0.2

We fix L = 0.08 and independently vary Ji and Jo between

0 and 2L. Fig. 7 reports the performance degradation of the

system relative to the nominal case L = Ji = Jo = 0. It
is seen that this system is slightly more sensitive to input

jitter than to output jitter. The performance degradation level

curves bend only very slightly inwards, indicating that the

combined analysis is not very conservative.



V. CONCLUSION

We have extended the stability analysis in [9], [10] to

handle systems with both input jitter and output. A sufficient

stability criterion was derived, which takes three timing

parameters into account: the input jitter, the output jitter, and

the nominal input-output delay. The criterion is based on the

small gain theorem and requires the calculation of the input-

output gains of a linear, time-periodic system using, e.g.,

lifting. The criterion can be used to guarantee the stability

and performance of a control task executing in a real-time

system.
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