
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

An optimization approach to multi-dimensional time domain acoustic inverse problems

Gustafsson, Mats; He, Sailing

1997

Link to publication

Citation for published version (APA):
Gustafsson, M., & He, S. (1997). An optimization approach to multi-dimensional time domain acoustic inverse
problems. (Technical Report LUTEDX/(TEAT-7064)/1-15/(1997); Vol. TEAT-7064). [Publisher information
missing].

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 25. Apr. 2024

https://portal.research.lu.se/en/publications/62e444d5-880c-4876-b605-ff198c1428fc


CODEN:LUTEDX/(TEAT-7064)/1-15/(1997)

An optimization approach to
multi-dimensional time domain
acoustic inverse problems

Mats Gustafsson and Sailing He

Department of Electroscience
Electromagnetic Theory
Lund Institute of Technology
Sweden



Mats Gustafsson

Department of Electroscience
Electromagnetic Theory
Lund Institute of Technology
P.O. Box 118
SE-221 00 Lund
Sweden

Sailing He

Department of Electromagnetic Theory
Royal Institute of Technology
SE-100 44 Stockholm
Sweden

Editor: Gerhard Kristensson
c© Mats Gustafsson and Sailing He, Lund, November 28, 1997



1

Abstract

An optimization approach to a multi-dimensional acoustic inverse problem
in the time domain is considered. The density and/or the velocity are recon-
structed by minimizing an objective functional. By introducing dual func-
tions and using the Gauss divergence theorem, the gradient of the objective
functional is found as an explicit expression. The parameters are then re-
constructed by an iterative algorithm (the conjugate gradient method). The
reconstruction algorithm is tested with noisy data, and these tests indicate
that the algorithm is stable and robust. The computation time for the recon-
struction is greatly improved when the analytic gradient is used.

1 Introduction

Acoustic inverse problems have been studied with various methods (see e.g., Refs. 2,
3, 12, 13, 16, 18, 20). Recent developments and applications of various optimization
methods have provided efficient tools for obtaining numerical solutions to various
types of inverse problems (see e.g., Refs. 1, 8,10,15). Optimization methods can be
grouped into two types, namely, global search methods and gradient search meth-
ods. A global search method is usually based on a stochastic algorithm, and its
convergence can be very slow. A gradient search method is based on a deterministic
algorithm, and it converges rapidly (though it may converge to a local minimum). In
order to apply a gradient search method to an inverse problem, one first introduces
a suitable objective functional, and then computes the gradient of this functional.
Once the gradient of the objective functional has been computed, one can use a
conventional steepest descent method or conjugate gradient method to minimize
the objective functional in an iterative way.

Most of the literature in this field concerning multi-dimensional inverse problems
deals with frequency domain problems. For a time domain multi-dimensional inverse
problem, the computation is usually more memory- and time-consuming. Therefore,
it is of great importance to find a reconstruction algorithm which can complete
the reconstruction within a reasonable time (say e.g., a few hours on a modern
workstation).

In the present paper, we use an optimization algorithm with an analytic gradient,
which improves greatly the speed of the reconstruction. Wave-splitting is used to
formulate a direct problem which can be solved easily by a finite difference method.
Wave-splitting means the decomposition of the total field into two components which
propagate in opposite directions [9]. Dual functions are introduced to derive an
explicit expression for the gradient. It is shown that by using wave-splitting one
obtains a simple expression for the gradient and a robust algorithm.

The paper is organized as follows. A multi-dimensional time domain acoustic
inverse problem is formulated in Section 2. In Section 3, a simple explicit expression
for the gradient of the objective functional is derived by introducing some dual
functions and using the Gauss divergence theorem. A numerical reconstruction
algorithm based on a conjugate gradient method is described in Section 4.
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Figure 1: Scattering configurations: (a) the case of a finite object; (b) the half-
space case.

2 Problem formulation

The formulation presented in this section and in Section 3 is valid in two or three
spatial dimensions. The numerical implementation in Section 4, however, is only
made in two spatial dimensions.

Consider wave propagation in an inhomogeneous acoustic region Ω ⊂ R
3( or R

2),
which is described by the following stress-strain system of equations for fluids [4]




1

ρc2
∂tp+ ∇ · v = 0,

ρ∂tv + ∇p = 0,

(2.1)

where p is the pressure, v is the velocity (the time derivative of the displacement),
ρ is the fluid density, and c is the sound speed in the medium. Outside the region
Ω, the medium is homogeneous with the sound speed c0 and the density ρ0. It
is assumed that the source has compact spatial support and is located outside the
surface Γ of the inhomogeneous region Ω. It is also assumed that the incident wave
will not reach the surface Γ until the time t = 0. This leads to the following initial
conditions

p(x, 0) = 0, v(x, 0) = 0, x ∈ Ω. (2.2)

In the inverse problem, it is assumed that the pressure p and the normal compo-
nent of the velocity, vn, are known for t ∈ [0, T ] on Γ1, which is a part of the surface
Γ, i.e.,

p(x, t) = p(m)(x, t), vn(x, t) ≡ v · n̂ = v(m)
n (x, t), x ∈ Γ1, t ∈ [0, T ], (2.3)

where n̂ is the unit normal vector of the surface Γ, p(m)(x, t), and v
(m)
n (x, t) are

known functions on surface Γ1 and for the period t ∈ [0, T ]. The inverse problem is
to determine the density ρ(x) and/or the velocity c(x) in the inhomogeneous region
Ω (the parameters at the surface Γ1 are assumed to be known). Furthermore, we
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assume that the incident wave have not reached the surface Γ2 = Γ\Γ1 at the time
t = T , i.e.,

p(x, t) = 0, v(x, t) = 0, x ∈ Γ2, t ∈ [0, T ]. (2.4)

In the case when the inhomogeneity is confined in a bounded region Ω, one can
measure p and vn on the whole surface Γ, and thus set Γ2 = ∅ (see Figure 1(a)).
In another case when the inhomogeneity exists in a half-space (the medium above
the inhomogeneous half-space is homogeneous with sound speed c0 and density ρ0),
one can choose Γ1 on the surface of the half-space large enough so that there exists
a surface Γ2 (in the inhomogeneous half-space) on which the condition (2.4) holds
(see Figure 1(b)).

Introduce the following split pressures p± at the boundary Γ:

p± =
1

2
[p∓ ρ0c0vn], x ∈ Γ.

Note that p+ and p− have a physical meaning as incident (in-coming) and scattered
(out-going) pressures, respectively, only in a homogeneous region (characterized by
c0 and ρ0) and in a local sense as a normally incident or reflected plane wave. One
of the main advantage of using such a splitting is that a simple expression for the
gradient can be obtained in a strict sense with energy estimate methods (cf. (3.2)).
Numerically it has advantages for the direct solver, as it is e.g., simpler to implement
the boundary condition (cf. Subsection 4.1 below). From the above definition, one
has 


p = p+ + p−,

vn =
1

ρ0c0
[p− − p+]

x ∈ Γ.

Define an objective functional J(ρ, c) as follows,

J(ρ, c) ≡
∫ T

0

∫
Γ1

Φ
{[
p− p(m)

]2
+ ρ2

0c
2
0

[
vn − v(m)

n

]2
}

dS dt

= 2

∫ T

0

∫
Γ1

Φ
{[
p+ − p(m)+

]2
+

[
p− − p(m)−]2

}
dS dt,

(2.5)

where Φ = Φ(x, t) is a weight function, dS is a surface area element, and

p(m)± =
1

2

[
p(m) ∓ ρ0c0v

(m)
n

]
, x ∈ Γ.

The inverse problem is to find a function ρ(x) and/or c(x) which minimizes J(ρ, c).
The minimum of J(ρ, c) is zero if the inverse problem has a solution. In the present
paper we treat p+ as the input to the optimization algorithm and p− as the corre-
sponding output, i.e.,

p+ = p(m)+, x ∈ Γ1, t ∈ [0, T ]. (2.6)
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3 Explicit expression for the gradient

Let p̃, ṽ be the solution to the system of equations (2.1), (2.2), (2.4), and (2.6) with
perturbed parameters ρ + δρ, c + δc. Then δp ≡ p̃ − p and δv ≡ ṽ − v satisfy the
following system of equations (obtained by taking the first order approximation):




1

ρc2
∂t(δp) + ∇ · δv = −

(
δρ

ρ
+

2δc

c

)
∇ · v,

ρ∂tδv + ∇δp =
δρ

ρ
∇p,

δp(x, t) = 0, δv(x, t) = 0, x ∈ Γ2, t ∈ [0, T ],

δp+ = 0, x ∈ Γ1, t ∈ [0, T ],

δp(x, 0) = 0, δv(x, 0) = 0, x ∈ Ω.

(3.1)

The corresponding increment of the objective functional J(ρ, c) can then be
written as follows:

δJ(ρ, c) ≡ J(ρ+ δρ, c+ δc) − J(ρ, c)

= 2

∫ T

0

∫
Γ1

Φ
[
(p+ + δp+ − p(m)+)2 + (p− + δp− − p(m)−)2

−(p+ − p(m)+)2 − (p− − p(m)−)2
]

dS dt

= 2

∫ T

0

∫
Γ1

Φ
[
δp+(2p+ − 2p(m)+ + δp+) + δp−(2p− − 2p(m)− + δp−)

]
dS dt

= 4

∫ T

0

∫
Γ1

Φ
[
δp+(p+ − p(m)+) + δp−(p− − p(m)−) + (δp+)2 + (δp−)2

]
dS dt

= 4

∫ T

0

∫
Γ1

δp−
[
Φ(p− − p(m)−)

]
dS dt+ O(‖δρ‖2 + ‖δc‖2), (3.2)

where O(x)/x is bounded as x approaches 0, and ‖ ‖ denotes the L2 norm, i.e.,
‖F (x)‖ = {

∫
Ω
[F (x)]2 dx}1/2. The estimate given by the above equation can be

proved with energy estimate methods (see e.g., Refs. 11 and 7).
We use a direct solver for the following forward problem:




1

ρc2
∂tp+ ∇ · v = 0,

ρ∂tv + ∇p = 0,

p+ = p(m)+, x ∈ Γ1, t ∈ [0, T ],

p(x, 0) = 0,v(x, 0) = 0,

(3.3)
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and the following backward dual problem:




1

ρc2
∂tq + ∇ · u = 0,

ρ∂tu + ∇q = 0,

q− = Φ[p− − p(m)−], x ∈ Γ1, t ∈ [0, T ],

q(x, T ) = 0, u(x, T ) = 0,

(3.4)

where

q± =
1

2
[q ∓ ρ0c0un], x ∈ Γ.

Note that (cf. (2.4))

q(x, t) = 0, u(x, t) = 0, x ∈ Γ2, t ∈ [0, T ].

The system (3.3) is solved by a finite difference method with a forward time stepping,
and the system (3.4) is solved by a finite difference method with a backward time
stepping. In order to avoid any inconsistency between the boundary and initial
conditions in the system (3.4), one should choose the weight function such that

Φ(x, T ) = 0.

Using the differential equations in the systems (3.1), (3.3) and (3.4), one obtains

∇· (δpu + qδv) = [∇(δp)] · u + δp∇ · u + (∇q) · δv + q∇ · (δv)

= −∂t

[
1

ρc2
(δp)q + ρ(δv) · u

]
+
δρ

ρ
[−q∇ · v + (∇p) · u] − 2δc

c
q∇ · v

= −∂t

[
1

ρc2
(δp)q + ρ(δv) · u

]
+
δρ

ρ
[−q∇ · v + ∇ · (pu) − p∇ · u] − 2δc

c
q∇ · v

= −∂t

[
1

ρc2
(δp)q + ρ(δv) · u − δρ

ρ2c2
(qp)

]
+
δρ

ρ
∇ · (pu) − 2δc

c
q∇ · v.

Integrating the above equation over the time period [0, T ] and the region Ω and
using the Gauss divergence theorem, one obtains

∫ T

0

∫
Γ

(δpu + qδv) · n̂ dS dt =

∫ T

0

∫
Ω

δρ

ρ
∇ · (pu) dx dt− 2

∫ T

0

∫
Ω

δc

c
q∇ · v dx dt.

(3.5)
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Since (cf. (3.2) and noting that δp+ = 0 and q− = Φ(p− − p(m)−))

∫ T

0

∫
Γ

(δpu + qδv) · n̂ dS dt =

∫ T

0

∫
Γ1

(δpun + qδvn) dS dt

= − 1

ρ0c0

∫ T

0

∫
Γ1

[
(δp+ + δp−)(q+ − q−) + (δp+ − δp−)(q+ + q−)

]
dS dt

= − 2

ρ0c0

∫ T

0

∫
Γ1

[
δp+q+ − δp−q−

]
dS dt =

2

ρ0c0

∫ T

0

∫
Γ1

(δp−)q− dS dt

=
2

ρ0c0

∫ T

0

∫
Γ1

(δp−)Φ
[
p− − p(m)−]

dS dt =
1

2ρ0c0
δJ(ρ, c) + O(‖δρ‖2 + ‖δc‖2),

it follows from (3.5) that

δJ =< Gρ, δρ > + < Gc, δc > +O(‖δρ‖2 + ‖δc‖2),

where < , > denotes the inner product (with respect to the spatial region Ω) and

Gρ =

2ρ0c0
ρ

∫ T

0

∇ · (up) dt, x ∈ Ω,

Gc = −4ρ0c0
c

∫ T

0

q∇ · v dt =
4ρ0c0
ρc3

∫ T

0

q∂tp dt, x ∈ Ω

(3.6)

Equation (3.6) gives the explicit expressions for the gradients of the objective func-
tional J(ρ, c) with respect to the density ρ(x) and the sound speed c(x), respectively.

Note that the results given in this subsection are valid for arbitrary number n of
space dimensions, n ≥ 2.

4 Parameter reconstruction

In this section we use an optimization algorithm (the conjugate gradient algorithm)
with the analytic gradients derived in the previous section to reconstruct the density
and sound speed in the two-dimensional case (i.e., x = (x1, x2) in all the formulas
given in the previous sections).

4.1 The direct solver

We use both a leapfrog scheme and a Lax-Wendroff scheme to solve the systems
(3.3) and (3.4) (cf. e.g., Refs. 17 and 6).

A leapfrog scheme. Let pn
i,j denote an approximation of p at t = nk, x1 = ih

and x2 = jh, and similarly for vn
i,j. At interior points the leapfrog scheme becomes



pn+1

i,j = pn−1
i,j − ρi,jc

2
i,j2k∇0 · vn

i,j

vn+1
i,j = vn−1

i,j − 2

ρi,j

k∇0p
n
i,j
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where ∇0 is the central difference nabla operator (i.e., ∇0fi,j = (fi+1,j−fi−1,j, fi,j+1−
fi,j−1)/2h). For a finite inhomogeneous object located in a square area (x1, x2) ∈
[0, 1] × [0, 1], the fields at the boundary are computed with a one way propagation
type of scheme. For example, at the left boundary x1 = 0, the differential equations
in (2.1) are equivalent to the following system of differential equations (for simplicity,
here we assume that ρ0 = c0 = 1)



∂tp

± ± ∂x1p
± +

1

2
∇T · vT = 0,

∂tvT + ∇Tp = 0,

where we have used the split fields p± = 1
2
[p ∓ ρ0c0vn] = (p ± v1)/2 at the left

boundary x1 = 0, and the subscript T is used to denote the tangential component.
The above system of equations can be implemented numerically as follows:




(p+)n+1
0,j = (p(m)+)n+1

0,j , (cf. the boundary condition (2.6))

(p−)n+1
0,j = (p−)n

0,j +
k

h

[
(p−)n

1,j − (p−)n
0,j

]
− k

2
(∇T)0 · (vT)n

0,j,

pn+1
0,j = (p+)n+1

0,j + (p−)n+1
0,j ,

(v1)
n+1
0,j = (p+)n+1

0,j − (p−)n+1
0,j ,

(vT)n+1
0,j = (vT)n−1

0,j − 2k(∇T)0p
n
0,j.

The boundary conditions at the other boundaries are treated similarly.
A Lax-Wendroff scheme. The Lax-Wendroff scheme is based on the following

Taylor series approximation,



pn+1 = pn − kρc2∇ · vn +

k2

2
ρc2∇ ·

(
1

ρ
∇pn

)
,

vn+1 = vn − k
ρ
∇pn +

k2

2ρ
∇

(
ρc2∇ · vn

)
,

with the second order approximations for the spatial derivatives. The fields at the
boundary are treated in a way that is similar to the one used in the leapfrog scheme,
except that the tangential components are implemented with a Lax-type scheme,
e.g., ,

(vT)n+1
0,j =

1

2
(vT)n

0,j−1 +
1

2
(vT)n

0,j+1 − k(∇T)0p
n
0,j,

at the left boundary x1 = 0.
In the gradient calculation the leapfrog scheme is used to simulate the systems

(3.3) and (3.4), as well as in the calculation of the objective functional defined by
(2.5). The Lax-Wendroff scheme is used to calculate the measured fields p(m)(x, t)

and v
(m)
n at the boundary (cf. (2.3)). Since the measured data are calculated in a

way that is different from what is used for the direct solver, we avoid the ‘inverse
crime’ when solving the inverse problem [3].
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4.2 The conjugate gradient method

Once the gradient of the objective functional has been computed, one can use a
conventional steepest descent method or conjugate gradient method to minimize
the objective functional in an iterative way. The steepest descent method usually
exhibits slower convergence rates than the conjugate gradient method [5]. In the
present paper we use a standard conjugate gradient method (Polak-Ribiere algorithm
[5, 14]) to minimize the objective functional and reconstruct the density ρ(x1, x2) or
the sound speed c(x1, x2). The iterative algorithm for the reconstruction of ρ(x1, x2)
is as follows:
Step 0: Select an initial approximation (guess) ρ = ρ(0)(x1, x2). In all our numerical
reconstructions, we take the initial approximation ρ = ρ0 (the constant density value
outside the region Ω).
Step 1: Set i = 0. Solve the direct problem for the system (3.3) with the leapfrog
scheme, and calculate the gradient G(0) = G(ρ(0)) using (3.6) (u is obtained by
solving the system (3.4) with the leapfrog scheme). Set H(0) = G(0).
Step 2: Compute a scalar stepsize λi > 0 in the line search such that

J(ρ(i) − λiH
(i)) = min{J(ρ(i) − λH(i))|λ ≥ 0}.

Step 3: Improve the reconstruction by setting

ρ(i+1) = ρ(i) − λiH
(i).

Step 4: Compute the new gradient G(i+1) = G(ρ(i+1)) using (3.6) (p and u are
obtained by solving the systems (3.3) and (3.4), respectively, with the leapfrog
scheme).
Step 5: If G(i+1) = 0, stop; if not, set

H(i+1) = G(i+1) + γiH
(i), with γi =

< G(i+1) −G(i), G(i+1) >

< G(i), G(i) >
,

and set i = i+ 1, and go to step 2.

4.3 Regularization

The parameter reconstruction is ill-posed in the sense that the high frequency part
of the parameter is not known. To get a smooth solution we regularize the problem
with a Tikhonov type of regularization.

For example, in the reconstruction of the density ρ(x1, x2), we add a term∫
Ω
α|∇ρ|2 dx to the objective functional, i.e.,

Jα(ρ) = J(ρ) +

∫
Ω

α(x)|∇ρ|2 dx.
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The corresponding increment in the objective functional is∫
Ω

α{|∇(ρ+ δρ)|2 − |∇ρ|2} dx =

∫
Ω

α{∇δρ · ∇(2ρ+ δρ)} dx

= 2

∫
Ω

{∇ · [δρα∇ρ] − δρ∇ · [α∇ρ]} dx+

∫
Ω

α|∇δρ|2 dx

= 2

∫
Γ

αδρ∂nρ dS − 2

∫
Ω

{δρ∇ · [α∇ρ]} dx+

∫
Ω

α|∇δρ|2 dx.

Thus one obtains the following gradient with respect to the density (note that δρ|Γ =
0),

Gρ,α =
2

ρ

∫ T

0

∇ · (up) dt− 2∇ · [α∇ρ].

The optimal value of the regularization parameter α can be determined by the
generalized cross validation method [19].

We can also force ρ at the boundary to assume the known values ρb, by adding
a term β

∫
Ω

Ψ|ρ− ρb|2 dx to the objective functional, i.e.,

Jβ(ρ) = J(ρ) + β

∫
Ω

Ψ|ρ− ρb|2 dx,

where ρb is the known value of ρ at the boundary. The weight function Ψ(x) is
large when x is close to the boundary and small in the interior region. In all the
numerical reconstructions given in next subsection we use Ψ(x) = e−0.5[γ(x)]2 , where
γ(x) is the distance to the boundary. The corresponding increment in the objective
functional is∫

Ω

Ψ{|ρ+ δρ− ρb|2 − |ρ− ρb|2} dx =

∫
Ω

Ψδρ(2(ρ− ρb) + δρ) dx

= 2

∫
Ω

Ψδρ(ρ− ρb) dx+

∫
Ω

Ψδρ2 dx.

Thus, one obtains the following gradient with respect to the density (note that
δρ|Γ = 0),

Gρ,β =
2

ρ

∫ T

0

∇ · (up) dt− 2βΨ(ρ− ρb).

4.4 Reconstruction results

In a first numerical example, we consider an inhomogeneous density profile in a
square area (x1, x2) ∈ [0, 1] × [0, 1] as shown in Figure 2(a). The sound speed is a
constant c = c0 = 1. The inhomogeneous square region is discretized by 72 × 72
equidistant grid points. One Gaussian pulse of p+ is used as a source illuminating
the square from the left side (as shown in Figure 3(a)), and the scattered fields
are measured on all the four sides of the square (as shown in Figure 3(b)). In the
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Figure 2: Reconstruction of the density profile in a square area using one Gaussian
pulse at the left side of the square. (a) the true density profile; (b) the reconstruc-
tion.

time-space plots of Figures 3(a) and 3(b), the four t = 0 lines correspond, from left
to right, respectively, to the up, left, down, and right sides. The ‘measured’ data
are simulated with the Lax-Wendroff scheme. The fields are measured in a time
interval [0, 2.5] discretized with 360 grid points. Random white noise with a root
mean square signal to noise ratio (SNRrms) of 11 has been added to the measured

fields p(m) and v
(m)
n (equivalent to p(m)±). The signal to noise ratio is estimated by

the following formula

SNRrms =
1

σ

(
1

TA

∫ T

0

∫
Γ

(
p± − p̄±

)2
dS dt

)1/2

,

where A is the area of the boundary Γ and

σ =

(
1

TA

∫ T

0

∫
Γ

ε2 dS dt

)1/2

,

p̄± =
1

TA

∫ T

0

∫
Γ

p± dS dt,

and where ε is the noise added to the fields. In the numerical reconstructions we
choose the regularization parameters α = 0.001, β = 10, and a weight function Φ
that goes to zero smoothly over the last 15 time steps. The reconstructed density
after 47 iterations is shown in Figure 2(b) (the starting guess is ρ = ρ0 = 1 every-
where). The maximum absolute error in the density reconstruction is about 0.29.
The reconstruction took about 20 minutes on a Sun workstation (Ultra 1). The
reconstruction requires a memory of about 30 MByte in RAM.

The reconstruction can be improved further if 4 Gaussian pulses at four different
sides of the square are used, and the corresponding reconstruction using noisy data
with SNRrms = 11 is given in Figure 4(a) (the starting guess is ρ = ρ0 = 1
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Figure 3: The measured fields at the boundary. (a) the input p(m)+ on the four
sides of the square; (b) the output p(m)− on the four sides of the square.

everywhere; 23 iterations are used). In this reconstruction and the reconstructions
hereafter, the measured noisy data are smoothed by a weighted five point mean
value smoother. For example, the data at the top and bottom sides of the square
area are smoothed by

pn
i =

4pn
i + pn

i−1 + pn
i+1 + pn−1

i + pn+1
i

8
.

The reconstruction error of the density at each point of the square is shown in Figure
4(b) (note that the colour rules in Figures 4(a) and 4(b) are different). As seen from
Figure 4(b), the maximum absolute error in the density reconstruction is about 0.05.

The reconstruction of the the sound speed can be performed in a completely
analogous way, and an example is shown in Figures 5(a) (the true profile of the
sound speed) and 5(b) (the corresponding reconstruction). In this reconstruction,
noisy data with SNRrms = 11 are used, the starting guess is c = c0 = 1 everywhere,
and the density is a constant ρ = ρ0 = 1.

In a last numerical example, we reconstruct the density in an inhomogeneous
half-space using the ‘measured’ fields on a finite area of the surface x2 = 0 for a finite
period of time. In this example, a wide input field p+ (with a unit width) excites
the surface x1 = 0, see Figure 6. As one would expect, good reconstruction can be
achieved only in a finite region (below the surface x1 = 0) of the inhomogeneous
half-space. The true density and the reconstructed density are shown in Figures
6(a) and 6(b), respectively. This reconstruction took about 5.5 hours on a Silicon
Graphics workstation (Power Indigo2) and the memory requirement was about 150
MByte in RAM.
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Figure 4: Reconstruction of the density profile in a square area using four Gaussian
pulses at four different sides of the square (for the same density profile as shown in
Figure 2(a)). (a) the reconstruction; (b) reconstruction error of the density.

4.5 Computation efficiency

We compare the computation times for the reconstructions obtained with and with-
out the analytic gradients. When an analytic gradient is not available, one can
calculate the gradient numerically through the following set of characteristic func-
tions

ψi(x) =




1, x ∈ Vi,

0, otherwise,

where Vi, i = 1, 2, ..., N , are the discretized volume cells. Assume that ρ(x) =∑
i

Piψi(x) (ρ(x) is the density to be reconstructed), and the corresponding gradient

Gρ(x) =
∑
i

giψi(x), then one can calculate the coefficient Gi numerically through

the following approximation:

Gi ≈
J(< P0, P1, ..., Pi + ε, ..., PN >) − J(< P0, P1, ..., Pi, ..., PN >)

ε
,

where ε is a small quantity. In the present reconstruction algorithm, the computation
time is consumed mainly by calling the forward direct solver for the system (3.3)
and the backward direct solver for the system (3.4) (which takes a time that is
roughly equal to that for the forward direct solver). To calculate the gradient, one
has to call the forward direct solver N times when the numerical perturbation is
used, while using the present analytic expression, one only needs to call the forward
and backward direct solvers once. Therefore, the ratio of the computation times for
the gradient with and without the analytic expression is about 2/N . In fact, the
ratio of the overall computation time for the reconstruction (if the same number
of iterations is required) with and without the analytic gradients is approximately

2 + s
N + 1 + s , where s is the average number of steps in the line search within each
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Figure 5: Reconstruction of the sound speed profile in a square area using four
Gaussian pulses at the four different sides of the square. (a) the true density profile;
(b) the reconstruction.

iteration (s ≈ 2 if an optimal line search program is used). In a multi-dimensional
case, N is large (if one takes Nx discretization points along each orthogonal space
direction, then N = (Nx)

n, where n = 2, 3 in two- and three-dimensional cases,
respectively). Therefore, the computation time required for the reconstruction can
be greatly improved in a multi-dimensional case if an analytic gradient is used.

5 Conclusion

In the present paper we have treated an multi-dimensional acoustic inverse problem
in the time domain with a deterministic gradient search algorithm. The density
and/or the velocity are reconstructed by minimizing an objective functional with
an analytic gradient. By introducing some dual functions and using the Gauss
divergence theorem, explicit expression for the gradient of the objective functional
has been derived. The parameters have been reconstructed by a conjugate gradient
method. The reconstruction algorithm has been tested in the two-dimensional case
with noisy data, and the numerical examples indicate that the algorithm is stable
and robust. The computation time required for the reconstruction is significantly
reduced in the multi-dimensional case when the analytic gradient is used.
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Figure 6: Reconstruction of the density profile in an inhomogeneous half-space.
(a) the true density profile; (b) the reconstruction.
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