
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

An improvement to Stern's algorithm

Johansson, Thomas; Löndahl, Carl

2011

Link to publication

Citation for published version (APA):
Johansson, T., & Löndahl, C. (2011). An improvement to Stern's algorithm. [Publisher information missing].

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ae6b4a32-b5db-4854-bbe5-b26e8083718b

An improvement to Stern’s algorithm⋆

Thomas Johansson and Carl Löndahl

Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{thomas, carl}@eit.lth.se

Abstract. The decoding problem is a fundamental problem in com-
putational complexity theory. In particular, the efficiency of which the
problem can be decided has implications on the security of cryptosys-
tems based on hard problems in coding theory. Stern’s algorithm has
long been the best algorithm available, with slight modifications over the
years yielding only small speed-ups. This paper describes an improved
method of finding low weight codewords in a random code, leading to an
improved decoding algorithm.

Keywords: information set decoding, random codes, public-key cryp-
tography, birthday technique, binary codes.

1 Introduction

Error-correcting codes are wide-spread in the realm of information theory and
have found applications in several areas of cryptography. Due to theoretical
advances in quantum computation, which renders many classical cryptosystems
obsolete, cryptography based on hard problems in coding theory has become
more interesting.

A linear [n, k]-code is a linear subspace of Fn
q , defined as C =

{

uG : u ∈ F
k
q

}

,
where uG ∈ F

n
q . The matrix G is called the generator matrix and corresponds

to a linear map F
k
q → F

n
q , where u 7→ v. In this paper, we will only consider the

binary case, i.e. q = 2. The code C can also be defined by its parity check matrix
H, as C =

{

v ∈ F
n
q : HvT = 0

}

.
The elements of the code C are called codewords and the distance between two

codewords, x,y, is measured through the Hamming distance, denoted dH(x,y).
This is defined as the number of positions in which x and y differ. Another
important measure is the Hamming weight, denoted wH (x), which is the number
of non-zero entries in the vector x. Hamming distance and Hamming weight are
connected by the identity wH (x) = dH(x,0). The minimum distance d of the
code C is the smallest distance among all pairs of disjoint codewords in C. The
minimum distance of a linear C can be computed as minv∈C\0wH (v). The error-
correcting capability t = ⌊(d−1)/2⌋ of a code C is equal to the maximum number
of errors it can correct.
⋆ Just before finalizing this paper we found that similar work had been done in parallel

by May, Meurer and Tomae [8] and their work will appear at Asiacrypt 2011.

The Nearest Codeword Problem (NCP) is defined as follows: given
a linear code C, a received message vector r = v + e, where v is an unkown
codeword in C and e is an unkown error vector of weight less than or equal to
t, find the closest codeword v ∈ C. The assumption here is that there exists a
unique closest codeword. NCP is shown to be NP-complete (by reduction from
for instance the well-known Max-Cut Problem) and this difficulty has been
used in public-key cryptosystems such as McEliece PKC [9] and identification
schemes such as the one by Stern [12].

The basic idea of basing security upon the hardness of NCP is this: an at-
tacker without further knowledge will face the challenge of decoding a seemingly
random code. As the code will have no obvious structure to exploit, the attacker
cannot use efficient decoding algorithms. It is important to point out that since
the codes used in coding-based cryptography are not truly random codes, it is
not necessarily true that decoding that particular subset of codes used in the
construction is hard. Thus, there may exist subexponential or even polynomial-
time decoding algorithms. Such attacks are often referred to as structural attacks.
Codes which open up for structural attacks should be refuted in the context of
public-key cryptography. An example of this is the use of Reed-Solomon codes
as underlying codes in McEliece PKC, as noted by Sidelnikov and Shestakov in
[11].

In this paper, we will assume that the code actually is truly random. Since
the problem is in NP , we cannot in the worst case do better than exponential
complexity assuming P 6= NP . Still, it is important to study how efficient the
decoding can be done. In particular, this gives guidelines when building coding-
based cryptography. The naive approach is to perform brute-force search over
all

(

n
w

)

possible weight w vectors. It is however possible to do more efficient than
this. These attacks are often referred to as generic decoding algorithms.

The best known algorithms rely on information set decoding (ISD), which
was introduced in a paper by Prange [10]. The idea behind information set de-
coding is to pick a sufficiently large set of error-free positions in a sent codeword
such that the corresponding columns in the generator matrix form an invertible
submatrix. The information sequence then can be obtained by multiplication of
the corresponding subvector of the received vector and the inverted submatrix.
Over the years, this simple technique has undergone further improvements in
papers by Lee and Brickell [6], Leon [7] and Stern [5].

The ISD algorithms solve a problem which basically is the same as NCP,
namely the function problem version of Subspace Weights. The function prob-
lem is to find a codeword of a certain weight w in a given code C. In code-based
cryptosystems, the number of errors e are generally kept constant and it is no
more than half of the minimum distance of the underlying code C. This means
that if one extends the code C with the received sequence r, i.e. if we can find a

codeword of weight e in the code C′ generated by G′ =
[

GT rT
]T

, then we know
the error sequence e since e ∈ C′. Given e, one can easily obtain the information.

Our new algorithm differs from Stern’s algorithm in that we choose the initial
pairs from a single set of systematic positions instead two disjoint ones, intro-

ducing more degrees of freedom. Instead of a single list that is sorted and where
elements then are matched together, we perform the procedure twice. Instead
of assuming one error-free field, we assume that two fields are error-free. These
ideas are similiar to ideas used in [4] for solving the Knapsack problem.

The paper is organized as follows. In Section 2, we present some classical
algorithms and in Section 3, we present our new algorithm and explain the
ideas behind it. We give complexity analysis and claims in Section 4. Section 5
concludes the paper.

2 Previous work

As mentioned before, Subspace Weights is the problem of determining if there
exists a codeword of weight w in a random linear [n, k]-code C, assuming one
such codeword exists. Since Subspace Weights is NP-complete, the problem
solved by the ISD algorithms is NP-hard.

There exist many algorithms for solving the function problem version of
Subspace Weights. We go through the most significant ones in chronological
order.

Lee-Brickell algorithm The Lee-Brickell algorithm is a probabilistic algorithm
intially proposed in [6]. It is the simplest non-trivial decoding algorithm and
it serves as basis for other improvements. The Lee-Brickell algorithm works as
follows: In practice, the first step is generally performed by choosing the columns

Algorithm 1 Lee-Brickell’s algorithm

Input: Generator matrix G with k rows and n columns, parameters p

1. Choose a column permutation and form π (G), where π is a random col-
umn permutation and G is the given generator matrix.

2. Bring the generator matrix π (G) to systematic form:

G
′ =

[
I J

]
,

where I is the k × k identity matrix, J is a k × n− k matrix.
3. Let u run through all weight p vector of length k. For each u, check if the

weight of uG is w − p. If no such codeword is found, return to 1.

one at the time and checking whether the chosen one is linearly independent of
the other.

The parameter p is optimized given n and k to assert the lowest possible
computational complexity.

Leon’s algorithm This algorithm was proposed by Leon in [7]. It differs from
Lee-Brickell’s algorithm by assuming a field of bits of size i to be error-free, i.e.
the sum of the rows of G in a given interval is assumed to have weight 0.

Algorithm 2 Leon’s algorithm

Input: Generator matrix G with k rows and n columns, parameters p, l

1. Choose a column permutation and form π (G), where π is a random col-
umn permutation and G is the given generator matrix.

2. Bring the generator matrix π (G) to systematic form:

G
′ =

[
I L J

]
,

where I is the k×k identity matrix, L is a k×l matrix and J is a k×n−k−l
matrix.

3. Let u run through all weight at most p vector of length k. If x = u
[
I L

]

has weight less than p, compute the whole codeword.

The largest complexity cost of the algorithm is in the first (Gaussian) step.
It was later modified by Canteaut and Chabaud in [2] to reduce the complexity
of the first step. In their modification, the Gaussian step is performed once and
then for each iteration a column from the information set and a column from the
redudant set are swapped. Hence, the expensive Gaussian step can be omitted.
The authors show that the algorithm still converges using this method.

Stern’s algorithm Proposed by Stern in [5], this algorithm further improves
the algorithm by Leon using a birthday technique. The previously mentioned
algorithms and their improvements all have the same running time up to a
polynomial factor. Stern’s algorithm, however, slightly improves the decoding
exponent.

Definition 1. Let the set

Wp = {x ∈ F
n
2 : |{i : xi 6= 0, 1 ≤ i ≤ k}| = p}

be the set of vectors that have weight p in the first k positions.

Stern’s algorithm described using the generator matrix is as follows. The
algorithm works with generator matrices G′ in the following systematic form:

G′ =
[

I L J
]

,

where I is the k× k identity matrix, L is a k× l matrix and J is a k× n− k− l
matrix. Let φL(x) ∈ F

l
2 be the value of x in positions in L, i.e.

φL(x) =
[

xk+1 xk+2 · · ·xk+l

]

.

Algorithm 3 Stern’s algorithm

Input: Generator matrix G with k rows and n columns, parameters p, l

1. Choose a column permutation and form π (G), where π is a random col-
umn permutation and G is the given generator matrix.

2. Bring the generator matrix π (G) to systematic form:

G
′ =

[
I L J

]
,

where I is the k×k identity matrix, L is a k×l matrix and J is a k×n−k−l
matrix.

3. Let u run through all weight p vectors of length k/2. Store all vectors
x = (u,0)G′ in a sorted list H0, sorted according to φL(x). Then construct
a list H1 sorted according to φL(x), containing all vectors x = (0,u)G′

where u runs through all weight p vectors. Add all pairs of vectors x ∈ H0

and x
′ ∈ H1 for which φL(x) = φL(x′) and put in a list H2.

4. For each x ∈ H2, check if the weight of x is w − 2p. If no such codeword
is found, return to 1.

Finiasz-Sendrier algorithm This algorithm, suggested in [3], solves NCP
using the parity check matrix H. This problem sometimes referred to as Com-

putational Syndrome Decoding. The algorithm operates basically in same
manner as Stern’s algorithm, using the birthday trick. Given a binary matrix H,
a binary vector s and a non-negative integer w, find a binary vector e such that
eHT = s. The parity check matrix H is divided as follows:

H =
[

L J
]

,

where L is an n× l matrix and J an n×k− l matrix. The steps of the algorithm
are:

Algorithm 4 Finiasz-Sendrier algorithm

Input: Parity check matrix H with n rows and k columns, parameter l

1. Choose a column permutation and form H
′ = π (H), where π is a random

column permutation and H is the given parity check matrix.
2. Let e1 run through all weight ⌊w/2⌋ vectors of length n and store it in a

list H indexed by φL(e1H
T).

3. Let e2 run through all weight ⌈w/2⌉ and calculate x = φL(e2H
T). For

each such x, go through all elements stored at position x in H and check
whether e1H

T = s⊕ e2H
T . If so, return π−1(e1 ⊕ e2) else continue.

Ball-collision decoding Contrary to assuming fields of error-free bits, it was
proposed by Bernstein, Lange and Peters in [1] to allow q > 0 errors. We will
not go into the description of ball-collision decoding, as it is not related to
our approach. However, we mention that it exists and that it possibly might
be combined with the approach we present, yielding further improvement in
complexity. We will also use the numerical complexities given in [1] to compare
with.

k n− k

Plain ISD � · · · · · · · · · �
︸ ︷︷ ︸

0

� · �
︸ ︷︷ ︸

w

Lee-Brickell � · · · · · · · · · �
︸ ︷︷ ︸

p

� · �
︸ ︷︷ ︸

w−p

Leon � · · · · · · · · · �
︸ ︷︷ ︸

p

� · · ·�
︸ ︷︷ ︸

0

� · · · · · · · · · · · · · · · · · ·�
︸ ︷︷ ︸

w−p

Stern’s algorithm � · · ·�
︸ ︷︷ ︸

p

� · · ·�
︸ ︷︷ ︸

p

� · · ·�
︸ ︷︷ ︸

0

� · · · · · · · · · · · · · · · · · ·�
︸ ︷︷ ︸

w−2p

Ball-collision decoding � · · ·�
︸ ︷︷ ︸

p

� · · ·�
︸ ︷︷ ︸

p

� · · ·�
︸ ︷︷ ︸

q

� · · ·�
︸ ︷︷ ︸

q

� · · · · · · · · · �
︸ ︷︷ ︸

w−2p−2q

Improved Stern’s algoritm � · · · · · · · · · �
︸ ︷︷ ︸

2p

� · · ·�
︸ ︷︷ ︸

0

� · · ·�
︸ ︷︷ ︸

0

� · · · · · · · · · �
︸ ︷︷ ︸

w−2p

Fig. 1. Assumed error distributions for decoding algorithms.

3 A new improved algorithm

The algorithm will be working with generator matrices G′ in the following sys-
tematic form:

G′ =
[

I Z L J
]

,

where I is the k× k identity matrix, Z is a k× z matrix, L is a k× l matrix and
J is a k × n− k− z − l matrix. Let φZ(x) ∈ F

z
2 be the value of x in positions in

Z, i.e.
φZ(x) =

[

xk+1 xk+2 · · · xk+z

]

.

Similarly, let φL(x) ∈ F
l
2 be the value of x in positions in L, i.e.

φL(x) =
[

xk+z+1 xk+z+2 · · · xk+z+l

]

.

3.1 Explaining the ideas behind the algorithm

First we note that the algorithm is similar to Stern’s algorithm in its steps. It
makes a number of iterations, where each iteration can be successful, i.e. finding
the weight w codeword, with a small probability.

Algorithm 5 Improved Stern

Input: Generator matrix G, parameters p, z, l

1. Let G
′ = π (G), where π is a random column permutation and G is the

generator matrix with k rows and n columns.
2. Bring the generator matrix G

′ to systematic form:

[
I Z L J

]
,

where I is the k×k identity matrix, Z is a k×z matrix, L is a k× l matrix
and J is a k × n− z − l matrix.

3. Let u run through all weight p vector of length k. Store all vectors x =
uG

′ such that φZ(x) =
[
0 0 · · · 0

]
in a sorted list H1, sorted according

to φL(x). This is done by constructing a list H0 containing all vectors
x = uG

′ where u runs through all weight p/2 vectors. Then add all pairs
of vectors x,x′ ∈ H0 in the list with φZ(x) = φZ(x′) and such that the
largest index of the nonzero entries in x is smaller than the smallest index
of nonzero entries in x

′.
4. As above, combine the list H1 with itself to receive a new list H2 of all

codewords x = uG
′ with u of weight 2p, such that φL(x) =

[
0 0 · · · 0

]
.

5. For each x ∈ H2, check if weight of x is w − 2p. If no such codeword is
found, return to 1.

Each iteration starts with selecting a random permutation of the columns
in the generator matrix, and bringing it to systematic form. As for Stern, this
means that the nonzero entries in the low weight codeword appear in randomly
selected positions in the codeword.

In an iteration, we require that in the first k positions (systematic part) of
the desired codeword has weight 2p, and in the following z + l positions has
weight 0. We can hope for a successful iteration, if this condition is fulfilled.
Stern’s algorithm has a similar (but not the same) condition.

The main new idea of this paper comes by introducing a second condition,
that needs to hold for an iteration to be successful. A second necessary condi-
tion lowers the probability of a successful iteration, which is not to our benefit.
However, it also lowers the number of active candidates in each iteration, hence
reducing the computational complexity of each iteration.

The second condition can be explained as follows. Assuming that the first
condition is valid, our desired codeword cw of weight w has weight 2p in the first
k positions, and in the following z + l positions has weight 0. Then we can see
that we will successfully find cw in the iteration if there are two words x,x′ ∈ Wp

such that cw = x+ x′, and φZ(x) =
[

0 0 · · · 0
]

.

Since φZ(cw) =
[

0 0 · · · 0
]

from our first condition, we have φZ(x′) =
[

0 0 · · · 0
]

,
so if x remains in the list H1, then so must x′.

We write this condition as

∃x,x′ ∈ Wp : φZ(x) = 0. (1)

An overview picture of the reductions of the different lists done in the algorithm
is given in Figure 2.

Wp/2 =

Wp ⊇

W2p ⊇

φZ = 0

φL = 0

⊕ ⊕

⊕

Fig. 2. An overview picture of how the lists are processed in the algorithm.

4 Complexity analysis

We derive formulas for the computational complexity similar to existing complex-
ity formulas for the Stern algorithm. Note that we consider the basic approach
where some implementation-oriented improvements have not been made.

The proposed algorithm has a structure similar to Stern’s algorithm and
we can use the same approach to evaluate its computational complexity. The
algorithm runs a number of iterations and a first requirement is that the error
vector after the random permutation is such that there are 2p errors in the first
k positions, followed by zero errors in the z + l following bits. The probability
for this event is denoted W ,

W = Pr
[

wH

(

φI(e)
)

= 2p, wH

(

φZ(e)
)

= 0, wH

(

φL(e)
)

= 0
]

,

where e is a weight w error vector of length n. This probability is

W =

(

k
2p

)(

n−k−z−l
w−2p

)

(

n
w

) . (2)

1. In the first step of an iteration, we apply a random permutation and trans-
form the generator to systematic form. The complexity for this step, denoted
A0, is the same as for Stern’s algorithm and is as in previous work set to

A0 = (n− k)2(n+ k)/2. (3)

2. Next, we construct all codewords with weight p/2 in the information set
part. They are put in an array sorted according to φZ(x). The complexity
of this step, denoted A1 is

A1 =

(

k

p/2

)

c1, (4)

where c1 denotes the actual work that has to be done to find φZ(x) and then
possibly storing more. The standard approach would set c1 = pz/2 as we
need to sum p/2 vectors over z bits to find out φZ(x).

3. We now come to the filtering step. We build a new array of all codewords with
weight p on the information set such that φZ(x) = 0, by adding pairwise all
weight p/2 vectors with the same φZ(x). Assume that we only add weight
p/2 vectors that result in weight p in the first k bits. As every pairwise
addition then gives a weight p vector such that φZ(x) = 0 and we assume
that only a fraction 2−z of all weight p vector will have φZ(x) = 0.

Observation 1 There exist several pairs of vectors of weight p/2 that sum
up to the same weight p vector.

In fact, we will have
(

p
p/2

)

pairs that sum up to the same vector. Since we

desire to pick only one among these, we add a condition which is true for
one and only one pair. Let I1 = {i1, . . . , ip/2} and I2 = {j1, . . . , jp/2} be
(disjoint) sets of indices. Now assume that there exists a codeword with
indices I1 ∪I2 which fulfills the condition φZ(x) = 0. As a consequence, the
condition max I1 < min I2 will be true for one and only one pair of indices,
since we generated all possible weight p/2 vectors without restriction. The
filtering step can only be applied once with non-zero probability of loss of
correct codewords. We show this by assuming the contrary and finding a
counter-example. This is given in Example 1.

Example 1 Assume that p = 4, that ai, i ∈ [1, 8] are rows of G and φZ(a1⊕
· · ·⊕a4) = φZ(a5 ⊕ · · ·⊕a8) and φJ(a1⊕ · · ·⊕a4) = φJ(a5 ⊕ · · ·⊕a8). This
implies one (or all) of three cases:

φZ(a1 ⊕ a2) =

φZ(a3 ⊕ a4)
φZ(a5 ⊕ a6)
φZ(a7 ⊕ a8)

Now, assume that the only true case is φZ(a1 ⊕ a2) = φZ(a7 ⊕ a8). This
implies that φZ(a3 ⊕a4) = φZ(a5 ⊕a6) and that φZ(a1 ⊕a2) 6= φZ(a5 ⊕a6).
The use of filtering now implies that the two concatenated codewords are
a1⊕a2⊕a7⊕a8 and a3⊕a4⊕a5⊕a6, and that these are the only codewords
involving these indices. The conclusion is that repeated use of filtering would
yield that the codewords could not be concatenated since 8 > 3 and 6 > 1.

This filtering step gives rise to complexity

A2 =

(

k

p

)

2−zc2, (5)

where c2 is the cost of computing the value of φL(x). The standard approach
would set c2 = pl as we need to sum p vectors over l bits to find out φL(x).

4. The final step is the generation of a subset of all weight 2p vectors x such
that φL(x) = 0. The array contains about

(

k
p

)

2−z elements, and we sum

together any two of them, x,x′, with the same φL(x) = φL(x′). As is argued
in the analysis of Stern’s algorithm, the total number of weight 2p vectors

x′′ = x + x′ such that φL(x′′) = 0 is then
(

(

k
p

)

2−z
)2

2−l. For each of them

we need to check if its weight is w and we get the complexity for this part
as

A3 =

((

k

p

)

2−z

)2

2−lc3,

where c3 is the cost of deciding if a vector is the desired vector. Following
previous work, the standard value for c3 would be c3 = 2p(n− k).

The final issue is the following. Assuming that the desired low weight code-
word has 2p ones in the first k positions, then zero ones in the next z+l positions,
what is the probability that this codeword is actually in the subset of the re-
maining codewords of weight 2p in the information set. Well, in the process of
building this subset there is one filtering stage. Namely, we keep only vectors
with p ones in the first k positions such that φZ(x) = 0.

Note that if the desired codeword x′′ can be written as x′′ = x + x′ where
φZ(x) = 0 then we must also have φZ(x′) = 0. This means that the desired
codeword x′′ remains in the subset if there is an x such that φZ(x) = 0.

As x′′ has 2p ones in first k positions, there are
(

2p
p

)

/2 different ways to

choose two vectors x,x′ of weight p in the first k positions. This means that
the probability that there exists at least one pair of vectors x,x′ with φZ(x) =
φZ(x′) = 0, denoted here by Q, is

Q = 1−
(

1− 2−z
) (2p

p
)/2

. (6)

We may now put all the expressions together to get the overall avarage com-
plexity for finding the low weight codeword.

Theorem 1 The total complexity of the algorithm is given by

(

n
w

)

(

(n− k)2(n+ k)/2 +
(

k
p/2

)

pz/2 +
(

k
p

)

2−zpl +
(

(

k
p

)

2−z
)2

2−l2p(n− k)

)

(

k
2p

)(

n−k−z−l
w−2p

)

(

1− (1− 2−z) (
2p

p)/2
) .

Proof. Putting together the parts we obtained, we get

E [#operations] =
A0 +A1 +A2 +A3

WQ

=

(

n
w

)

(

(n− k)2(n+ k)/2 +
(

k
p/2

)

pz/2 +
(

k
p

)

2−zpl+
(

(

k
p

)

2−z
)2

2−l2p(n− k)

)

(

k
2p

)(

n−k−z−l
w−2p

)

(

1− (1− 2−z) (
2p

p
)/2

) .

4.1 Parameters and security

Various examples of parameters were given in [1] to obtain certain security levels.
New bit security levels of our new algorithm applied the given parameters are
presented in Table 1.

As for the case (6624, 5129, 117), that is recommended for 256 bit security,
we break it with on average 2247.29 operations with p = 12, z = 52 and l = 74.
Moreover, for the 1000 bit security level with parameters (30332, 22968, 494), we
obtain a much better complexity of 2976.55 operations using our algorithm with
p = 28, z = 53 and l = 264.

Parameters Bit security

n k w Original Stern Improved Stern Ball-collision

1632 1269 34 82.23 78.91 81.33

2960 2288 57 129.84 125.06 127.89

6624 5129 117 258.61 247.29 254.15

30332 22968 494 1007.4 976.55 996.22

Table 1. Choice of parameters and their security with corresponding algorithm.

4.2 Further improvements

Adjusting coefficients There are several improvements that can be applied
to the coefficients c1, c2 and c3. For instance, if we in the first step sum the
both the z bits of the first field and the l bits from the second field, then in the
second step we only need to sum two l-bit vectors. In order to balance out the
complexity of the steps, one can calculate a subset of the positions in l, as given
below:

K(m)
def

= (c1, c2, c3) = (p(z +m)/2, p(l−m) + 2m, 2p(n− k))

To find the best complexity, we minimize over both p and m.

5 Conclusions

In this article we have proposed a new information set decoding algorithm based
on Stern’s algorithm which further pushes down the complexity of decoding
random codes. We have specified parameters for expected numbers of bit oper-
ations. Also, we have proposed minor improvements that can be applied to ISD
algorithms in general.

References

1. D. J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: Ball collision
decoding. volume 6841 of Lecture Notes in Computer Science, pages 743–760.
Springer-Verlag, 2011.

2. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory, 44:367–378, 1998.

3. M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryptosys-
tems. In M. Matsui, editor, Advances in Cryptology—ASIACRYPT 2009, volume
5912 of Lecture Notes in Computer Science, pages 88–105. Springer-Verlag, 2009.

4. N. Howgrave-Graham and A. Joux. New generic algorithms for hard knapsacks.
In H. Gilbert, editor, Advances in Cryptology—EUROCRYPT 2010, volume 6110
of Lecture Notes in Computer Science, pages 235–256. Springer-Verlag, 2010.

5. J. Stern. A method for finding codewords of small weight. In J. Wolfmann G. D. Co-
hen, editor, Coding theory and applications, Lecture Notes in Computer Science,
pages 106–113. Springer-Verlag, 1989.

6. P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-key
cryptosystem. In Advances in Cryptology—EUROCRYPT’89.

7. J. S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. volume 34 of IEEE Transactions on Information Theory,
pages 1354–1359, 1988.

8. A. May, A. Meurer, and E. Tomae. Decoding random linear codes in O(20.054n).
http://www.cits.rub.de/imperia/md/content/may/paper/decoding.pdf.

9. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report 42–44, pages 114–116, 1978.

10. E. Prange. The use of information sets in decoding cyclic codes. In IRE Transac-
tions on Information Theory IT-8, pages 5–9, 1962.

11. V. Sidelnikov and S. Shestakov. On insecurity of cryptosystems based on general-
ized reed-solomon codes. In Discrete Math. Appl., pages 439–444. Springer-Verlag,
1992.

12. J. Stern. A new identification scheme based on syndrome decoding. In Advances
in Cryptology—CRYPTO’93, volume 388 of Lecture Notes in Computer Science,
pages 13–21. Springer-Verlag, 1994.

