
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

The square circle

Angere, Staffan

Published in:
Preprint without journal information

2014

Link to publication

Citation for published version (APA):
Angere, S. (2014). The square circle. Unpublished.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/6c64016b-616b-49ac-a895-febbdf5ed981


The Square Circle
PREPRINT

Staffan Angere
Department of Philosophy

University of Lund

April 16, 2014

Abstract

This note shows that there are square circles, at least in the same sense
that there are round circles.

The “round square”, or the “square circle” (I will take these to be equivalent,
so I will take “round” to be the same as “circular”) are well-worn examples
of concepts that allegedly cannot be instantiated. Contemporary philosophers
probably associate the notion with Meinong on basis of Russell’s [1905] criticism
of him in, or with Quine’s [1905] invocation of the round square cupola of
Berkeley College in his criticism of Russell’s previous acceptence of Meinong.
Its use as an example of impossibility or inconceivability goes back at least to
Hobbes, who asserts that “(. . . ) the word Round Quadrangle signifies nothing,
but is a meere sound” [Hobbes, 1651, ch. IV]. Already Aristotle uses it as an
example of a non-entity ; in the Categories, we find him stating “(. . . ) the square
is no more a circle than the rectangle, for to neither is the definition of the circle
appropriate.”[Aristotle, 1984, ch. VIII]. Other famous philosophers invoking the
round square as an example of an impossibility include Kant [Kant, 1783, §52],
Berkeley [Berkeley, 1735, §XLVIII] Leibniz Leibniz [1966] and Spinoza [Spinoza,
1677, book I, prop. XI].

But start up any image manipulation program, such as Paintbrush, GIMP,
or Photoshop, and draw a circle with a one pixels radius, making sure that any
antialiasing is off. The result will be something like this, where we have marked
the center of each pixel with an x.

On one interpretation, this is the closest approximation to a circle of radius
one on a square grid. But we can also see it in another way: a computer
screen has its own type of geometry, in which the distance between points is the
Euclidean one, but rounded to the nearest integer. When the radius is a single
pixel, the concepts of square and circle coincide.
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This, admittedly, involves a lot of hand-waving, such as assuming certain
tacit interpretations of circularity and squareness. The obvious counter-argument
to the argument is that these interpretations are wrong ; sqaureness and circu-
larity, correctly construed, are incompatible.

We can, of course, easily conceive of an interpretation of the constituent
concepts which makes the impossibility a logical truth. But this does no more
than show that the nonexistence of round squares does not contradict the defini-
tions of roundness and squareness. Compare with the parallel axiom: while the
notions of “straight line” and “parallel” do not contradict there being parallel
straight lines that intersect, it does not follow from them either.

So which concepts do “circle” and “square” entail? The usual definition of
a circle is the following.

Definition 1. A circle is the set of all points that have the same distance r
from a point x called its center.

This means that circles are definable in any two-dimensional space X in
which distances are defined. In mathematical terms, such distances are deter-
mined by a metric, i.e. a function d : X × X → R+ ∪ {0} that satisfies the
following axioms.

Reflexivity d(a, b) = 0 iff a = b.

Symmetry d(a, b) = d(b, a).

Triangle inequality d(a, c) > d(a, b) + d(b, c).

The most well-known metric is the Euclidean metric on R2, defined by

d((x1, y1), (x2, y2)) =
√

(x2 − x1)2 + (y2 − y1)2

It is, as is also well-known, not the only one, and it is also not the one that
describes distances in all planes in physical space. By definition 1, each metric
on X gives rise to a specification of which sets of points are its circles.

What is a square then? Its definition is unfortunately somewhat more com-
plicated than that of a circle, but a common, fairly straightforward one is the
following.

Definition 2. A square is a quadrilateral with equal sides which meet at right
angles.

Definition 3. A quadrilateral is a closed figure consisting of four straight line
segments.

The concept of a straight line segment is commonly defined in terms of that
of geodesic, which requires X to have differentiable structure. But straight line
segments are also definable in any metric space through their property of being
the images of paths of least length connecting two points.

A path on X is a continuous function p : [0, 1]→ X, where [0, 1] is the closed
unit interval. We define the length of paths on X as a function ` : X [0,1] →
R ∪ {∞} that satisfies

`(p) = sup
σ∈S

|σ|+1∑
k=1

d(p(σk−1), p(σk))
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where S is the set of all n + 1-tuples (t0, . . . , tn) of real numbers in [0, 1] such
that t0 = 0, tn = 1, and tk 6 tk+1 for all k. This definition gives the length of a
path p from a to b as the supremum of the total lengths of all piecewise linear
approximations p(t0), . . . , p(tn) of p:1

a

b

A line segment or arc is the image of a path. For any arc A with endpoints2

a, b we say that a path p is a parametrisation of A if p(0) = a, p(1) = b, and
p is injective except for possibly at its endpoints. Since it can be proved that
`(p) = `(q) = x for any parametrisations p, q of A, we say that A’s length `(A)
is x.

The exact minimal distance definition of a straight line requires only that
it is an arc that is of locally minimal length, i.e. no small change in the arc’s
shape gives a shorter arc. However, for the purposes of this note, we will not
need to consider non-global minima, so it is enough for us to note that any arc
A between a and b of minimal length is a straight line. Because of the triangle
inequality, this is equivalent to to `(A) = d(a, b) being a sufficient condition for
A to be a straight line.

The other concept we need for the definition of quadrilateral is that of closed
figure, which, classically, means one that can be drawn without lifting the pen,
and which begins and ends at the same point. In our terms, this is simply an
arc whose endpoints coincide. Since the parametrisation of an arc is arbitrary,
we can thus define a quadrilateral as the image of a closed loop whose images
of the intervals [0, 1

4 ], [ 1
4 ,

1
2 ], [ 1

2 ,
3
4 ] and [3

4 , 1] are all straight lines.
This completes the definition of quadrilateral. For defining what a square

is, we also need to know what an angle is. This was a hotly debated topic in
antiquity, and is still the subject of some confusion in students, as witnessed by
our tendency to talk of angles as having a dimension (e.g. degrees or radians)
that they mathematically do not. We will follow tradition and define angles in
terms of circular arcs:

Definition 4. A circular arc with center x and radius r is an arc that is a
subset of a circle with centre x and radius r.

The following is a very general definition of angle:

Definition 5. The angle between two arcs A,B intersecting at x is the limit
value

lim
r→0

inf
C∈Γr

x

`(C)

r

where Γrx is the set of circular arcs with center x and radius r whose endpoints
lie on A and B.

1Have we incurred a circularity in talking of piecewise linear approximations here, before
we have define linearity? No; the concept does not appear in the definition given, but merely
in our informal description of it.

2The endpoints of an arc are definable as the only two boundary points on that arc; it does
not matter which one we denote by a or by b.
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This definition assigns a unique angle between two arcs in most cases. It is
based on the idea that an angle is simply the length of the section of the unit
circle spanning two lines:

x

A

B

C

r

A right angle is one that is 1
4 the length of a full circle. This definition means

that such an angle will not, in every geometry, be equal to π
2 , but is does ensure

that the sum of angles of any square is four right angles. A different definition
of right angle would require us to use a slightly more general definition of square
as a quadrilateral with four equal angles, although our argument will go through
in either case.

We are now ready to show that there are square circles. For simplicity,
assume that X is a topological 2-manifold, which means that for each point
a ∈ X, there is a neighbourhood Y such that Y is homeomorphic to an open
subset of R2. This, in turns, means that there is a continuous injection coord :
X → R × R whose inverse is also continuous, which gives coordinates for each
point. For the purposes of this note, it is enough to consider very simple (or
trivial) such manifolds, in which a single coordinate function suffices for the
whole of X. Fixing a specific a one-to-one homeomorphic bijection between
pairs of real numbers (x, y) and points of X then allows us to refer to any
point a by its unique coordinates (x, y), and we will therefore in the sequel not
distinguish between a point and its coordinates.

Impose the following metric on X:

d(a, b) = ||a− b|| = max(|xa − xb|, |ya − yb|)

This is known as the Chebyshev distance, or the chessboard distance since,
in discrete spaces, it describes the minimum number of moves it takes to get a
king from one square on a chessboard to another.

Now consider the points a = (−1, 1), b = (1, 1), c = (1,−1) and d =
(−1,−1), and let SC be the union of the straight lines ab, bc, cd and da (these
are uniquely determined since we have assumed X to be homeomorphic to R2).

-
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d c

Given our definitions, the coordinate system, and the metric we have im-
posed, it is now easy to prove the following.
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Lemma 1. SC is a circle with radius r.

Lemma 2. SC is a square with side 2r.

Corollary 1. SC is a square circle.

This shows conclusively that there are square circles, at least in the abstract,
mathematical sense in which there are round circles. Rather than being an
impossibility, the square circle implies no contradiction at all. I do not, of
course, claim that any of this would be news to a mathematician educated
after the 19th century, but the round square remains a staple of philosophers’
impossibilia. A search in JSTOR’s philosophy section results in 874 books or
articles mentioning of the “round square” or “square circle” published between
2000 and 2013.

I do not mean to insinuate that all of these philosophers are unaware of
the mathematical fact that there are round squares. Sometimes examples get
carried along even when we know that they are not strictly true, or at least no
longer have strong reasons to believe them. The pseudo-Aristotelian definition
of man as a rational animal is an example of this. In that case, however, the
presupposition that rationality by necessity is something reserved for humans
alone arguably held back theorising about rationality as well as about nonhuman
behaviour until the 20th century.

What we should ask, therefore, is if the existence of square circles is a mere
mathematical curiosity, or whether recognising that the square circle implies no
contradiction points to a deeper lesson about philosophical prejudices that we
may have carried with us. I think that there are in fact several such lessons,
but at least one of them concerns the stability and determinacy of our so-called
common concepts.

Let us imagine a typical philosopher using the round square concept as an
example of impossibility being presented with our proof of its existence. As
with the pixelated round square, perhaps he would say something like “that is
not at all what we mean with ‘round’ and ‘square’ when we say that the round
square is impossible.” But what do “we” mean then? How does one determine
that?

It should be clear that an appeal to Platonism would be of no help. We
have shown that there are perfectly viable and natural concepts of roundness
and squareness that they imply no contradiction, so for a Platonist, this round
square should be as much an existing universal as the round circle and the square
square. Invoking Platonism does not help the philosopher determine which of
the purported universals (the Chebyshev round square, or the Euclidean round
square) is meant.

More useful, perhaps, would be an appeal to Kantian intuition. According
to this view, concepts such as circlularity and squareness are features of our
innate abilities to experience the world as subject to spatial organisation. Since
these abilities are taken to be the same for all humans, one might postulate that
the philosopher’s use of square and circle would express these concepts, and no
others.

The problem with this is that squareness and circularity are, first and fore-
most, geometrical concepts. Furthermore, as was made plain during the 19th

century, the Kantian view does not capture at all what geometry is like. Valid
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arguments for geometrical theses proceed exactly like arguments for other math-
ematical theses, and never invoke spatial intuition. Much of contemporary
geometry rather concerns things about which most people, arguably, have no
spatial intuitions at all.

Now, perhaps the philosopher only meant to say “when I have imagined a
circle, I have never also imagined it as a square; in fact, I do not even think
I can imagine a square circle”. This is hard to argue against, but neither
the impossibility nor the non-existence of round squares follows from it. As
Berkeley pointed out, we cannot imagine a triangle which is “neither oblique
nor rectangle, equilateral, equicrural nor scalenon” [Berkeley, 1734, §13], but
not even the esteemed Bishop of Cloyne drew from this the conclusion that
there are no triangles.

Most of our abilities to imagine forms have likely developed or been learnt
in close connection with our abilities to orient ourselves in physical space, and,
especially, around physical objects. We may therefore finally consider the answer
that what is meant by “square” or “circle” should be actual physical squares or
circles, or some kind of idealisations thereof. This is right in the sense that there
are physical things that are shaped in a roughly circular manner, and physical
things that are shaped in a roughly square manner, and these classes of things,
as far as we have found, do not overlap. But this does not even show that
round squares are a physical impossiblility; perhaps space-time is so warped
somewhere that a two-dimensional section of it actually instantiates something
very close to the Chebyshev metric, or the Taxicab metric, which also allows
round squares. In such a part of space-time, one could perhaps even draw a
round square, at least in the same idealised sense that one can draw a round
circle.

The important point is that it is not the whole physical world that plays
into what our concepts are like. We largely learn about circles and squares by
ostension, and the examples of them we are given are medium-sized objects in
a part of space that is close enough to be Euclidean that it is very hard to spot
the difference. “There is no circular square between 1 mm and 10 m in radius
in my vicinity” is a statement for which we have much stronger grounds than
“there are no circular squares”, or even “there can be no circular squares”. We
have a reasonable ability to identify circles and squares of this kind.

The main conclusion I would like to draw from the existence of square circles
in more exotic spaces, however, is that concepts such as squareness and circular-
ity are only partially defined, and even which parts are defined is fairly vague.
For the moment interpreting concepts as individual abilities of classification,
these are evolved in specific contexts. In such contexts, it is likely that we get
significant levels of interpersonal agreement. But outside a concept’s “natural
habitat”, it become vague, indeterminate, and sometimes simply inapplicable.
This is the case with our pre-formal versions of “circle” and “square”, whose
ordinary use in classifying surfaces of middle-sized objects in a Euclidean plane
does not determine their interpretations in other kinds of spaces.

This does not, of course, mean that we cannot extend concepts as we wish,
and most of the time we do not even notice that we do so. Thus, when the
round square is taken as an example of an impossibility, the principle of charity
makes us extend the concepts of “round” and “square” so that the example holds
true. The conscious extension of geometrical concepts is largely the business of
mathematics, however.
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—saying that no circle is square is an explicit part of a new definition of the
concept; it doesn’t follow from anything.

As so eminently illustrated by Lakatos [1976], mathematical concepts, like
any others, are in general not crystallised, definite, or exact. Even when explic-
itly defined, they tend to rest on other concepts in which vagueness remains.
The standard antidote to this—expression in a formal language—does not solve
the problem completely. Very few theories or concepts can be reduced to purely
logical ones, and therefore we will always need undefined predicates, whose in-
terpretation will remain open outside the narrow confines in which they can
have been learned or introduced.

This insight has, I believe, importance for the methodology of philosophy.
It indicates that the use of most thought experiments in conceptual analysis are
far less useful than what it commonly presupposed. If only the “centre” of a
concept is somewhat stable, since it has been determined by the contexts it has
evolved in or been learnt in, then it is meaningless to try to draw conclusions
from intuitions about what it would be applicable to in situations very different
from these.

A consequence of this is that arguments against, say, utilitarianism, which
make use of extreme or uncommon situations, such as ones in which one can
only stem a riot by sentencing an innocent man, will always be invalid. Gettier
arguments have no relevance for the analysis of knowledge, since these involve
events that are very unlikely and also very much unlike typical uses of locutions
such as “he knew that p”. And deriving a counter-intuitive or even absurd
consequence from a metaphysical thesis does not constitute a counterargument
to that thesis, since metaphysics as a whole arguably lies far from our usual
experience. After all, if even the concepts square or circle are so vague that it is
not determinate whether they are contradictory or not, how much more so must
this not hold of concepts such as knowledge, meaning, right, justice or reality?
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