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Abstract

This paper concerns propagation of transient electromagnetic waves in lat-
erally discontinuous dispersive media. The approach, used here, employs a
component decomposition of all fields. Specifically, the propagation opera-
tor that maps a transverse field on one plane to another plane is specified.
Expansion of this mapping near the wave front determines the precursor or
forerunner of the problem.

1 Introduction

In a series of papers, wave propagation of transient scalar waves in inhomogeneous
media has been analyzed [5–8]. This analysis has later been extended such that
media with dispersion are allowed [3]. The wave splitting of the Maxwell equations
was recently done by Weston [9]. The purpose of this paper is to generalize the
results in these papers to include also laterally discontinuous, dispersion effects in
the vector case. In this first paper the scalar wave splitting is exploited. The vector
splitting is presented in a subsequent paper.

The results presented in this paper have applications in electromagnetic wave
propagation of pulses in optical fibers. This problem has not been possible to analyze
with the existing scalar formulations.

The scalar wave equation with dispersion was treated in Ref. 3. The pertinent
equation is

�u(r, t) + b(r)
∂u

∂t
(r, t) +

∂2

∂t2
(χ(r, ·) ∗ u(r, ·)) (t) = 0, (1.1)

where � is the wave propagation operator

� =
1

c2(r)

∂2

∂t2
−∇2 =

1

c2(r)

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
,

and where ∗ denotes temporal convolution

(χ(r, ·) ∗ u(r, ·)) (t) =

∫ t

−∞
χ(r, t − t′)u(r, t′) dt′.

In this paper we use italic bold face to denote vectors. The space vector r in R
3

and ρ in R
2 are {

r = xx̂ + yŷ + zẑ,

ρ = xx̂ + yŷ,

respectively. The lengths of these vectors are denoted{
r =

√
x2 + y2 + z2 = |r|,

ρ =
√

x2 + y2 = |ρ|.
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The wave splitting of the principal part of equation (1.1) is analyzed in Ref. 5.
The Neumann to Dirichlet operator, Kα, maps Neumann data on the plane z = α to
Dirichlet data on that plane [5]. The appropriate half-space, initial value problem
associated with this mapping is

1

c2(ρ, α)

∂2u

∂t2
(r, t) −∇2u(r, t) = 0, α < z < ∞, 0 < t < T,

u(r, 0) =
∂u

∂t
(r, 0) = 0, α < z < ∞,

∂u

∂z
(r, t)

∣∣
z=α

= v(ρ, t), 0 < t < T,

where v(ρ, t) is Neumann data given on the plane z = α, which is assumed to be
compactly supported in R

2. The limit z → α+ of the solution u defines an operator
such that on the plane z = α,

u(ρ, α, t) = − (Kαv) (ρ, t), 0 < t < T. (1.2)

This relation defines the up-going wave condition. We use the calligraphic font to
denote operators throughout this paper. Similarly, by studying a lower half-space
problem, a down-going wave condition is defined.

u(ρ, α, t) = (Kαv) (ρ, t), 0 < t < T. (1.3)

In a medium with constant wave front velocity, c(r) = c, the Neumann to Dirich-
let operator is independent of α, Kα = K. An explicit integral representation of the
operator K is [5]

Kf(r, t) =

∫∫
R2

f(ρ′, z, t − |ρ − ρ′|/c)
2π|ρ − ρ′| dρ′.

The variable z is only a parameter in this equation. The corresponding integral
kernel K(ρ, t; ρ′, t′) to the operator K is

Kf(r, t) =

∫ ∞

0

∫∫
R2

K(ρ, t; ρ′, t′)f(ρ′, z, t′) dρ′ dt′,

where

K(ρ, t; ρ′, t′) =
δ(t − t′ − |ρ − ρ′|/c)

2π|ρ − ρ′| .

The Neumann to Dirichlet operator K satisfies [5]

K−1 = K�T , (1.4)

where the transverse D’Alembertian is

�T =
1

c2

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
.
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Introduce the scalar wave splitting [3](
u+(r, t)
u−(r, t)

)
=

1

2

(
1 −K
1 K

) (
u(r, t)
∂
∂z

u(r, t)

)
, 0 < t < T. (1.5)

The wave equation, (1.1), can be written as a system of first order equations in z.

∂

∂z

(
u(r, t)
∂
∂z

u(r, t)

)
=

[(
0 1

�T 0

)
+

(
0 0

b(r) ∂
∂t

+ χ(r, ·) ∗ ∂2

∂t2
0

)] (
u(r, t)
∂
∂z

u(r, t)

)
.

With the wave splitting, (1.5), this equation transforms into [6]

∂

∂z

(
u+

u−

)
=

[
K−1

(
−1 0
0 1

)
+

1

2
K

(
b(r)

∂

∂t
+ χ(r, ·) ∗ ∂2

∂t2

) (
−1 −1
1 1

)] (
u+

u−

)
.

2 Basic equations in the electromagnetic case

The half-space z > 0 is denoted D ∈ R
3. Let S denote a surface, with bounded

or unbounded cross section Ω in the x-y-plane1. The surface S is assumed to be
smooth, e.g., a C2 surface. Furthermore, the normal n̂ is assumed to be parallel
to the x-y-plane everywhere. Therefore the cross-section Ω is independent of z.
The surface can enclose a bounded region in the x-y-plane, see Figure 1a), or an
unbounded region as depicted in Figure 1b). This surface is the boundary surface
between the two different materials of the problem. The domain inside (outside)
the surface, wrt the direction of the normal n̂, is denoted D−(D+) ∈ R

3. We have
D = D+ ∪ D− ∪ S.

The source-free Maxwell equations are
∇× E(r, t) = −∂B

∂t
(r, t),

∇× H(r, t) =
∂D

∂t
(r, t).

(2.1)

All fields in this paper are assumed to be quiescent before a fixed time. This property
guarantees that all fields vanish at t → −∞. The appropriate constitutive relations
in this paper are {

D(r, t) = ε [E(r, t) + (χ(r, ·) ∗ E(r, ·)) (t)] ,

B(r, t) = µH(r, t).
(2.2)

where the susceptibility kernel χ(r, t) models the electric dispersive effects (memory
effects) of the material. The instantaneous electric and magnetic responses are mod-
eled by the permittivity constant ε, and the permeability constant µ, respectively.

1The generalization to more than one surface S is straightforward.
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S

n̂

z

z = 0
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z = 0
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D−

D+

Figure 1: Two examples of geometry relevant to the problem of this paper.

In this paper the susceptibility kernel χ(r, t) is assumed to be different functions
of time in D− and D+, respectively, which are twice continuously differentiable and
vanish2 at t = 0, i.e.,

χ(r, t) =

{
χ−(t), r ∈ D−,

χ+(t), r ∈ D+,{
χ+, χ− ∈ C2(0,∞),

χ+(0) = χ−(0) = 0.

(2.3)

The susceptibility function therefore varies only with respect to the transverse co-
ordinates ρ and time t and it is a piecewise constant function of ρ. The values of
the permittivity ε and permeability µ of the half space are the same both in D− and
in D+. The velocity of light, c = 1/

√
εµ, is therefore the same constant throughout

the half-space. The wave impedance of space is denoted η =
√

µ/ε.
The goal of this paper is to develop a new method adapted for wave propaga-

tion in three dimensions of transient electromagnetic fields in complex media. The
specific problem addressed in this paper, is that of calculating the propagation of
an excitation on the plane z = 0 into the medium z > 0. The most straightforward
way is to use the Cartesian components of the fields. This is possible due to the
assumption that the susceptibility function is piecewise constant as a function of the
spatial variables.

3 Component decomposition

In this section an arbitrary vector field and the underlying equations are decomposed
in their transverse and longitudinal components.

2An extension to χ+(0) = χ−(0) 	= 0 (same constant at t = 0+) is possible.
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All vector fields are decomposed into their longitudinal (the z-component of the
field), and transverse components, e.g., for the electric field (a subscript T is used
to denote the transverse components of a vector field)

E(r, t) = ET (r, t) + ẑEz(r, t).

The decomposition of the Maxwell equations into their transverse and longitudi-
nal parts is also easily found using the Maxwell equations, (2.1), and the constitutive
relations, (2.2). The result is

ẑ · (∇T × ET (r, t)) = −1

c

∂

∂t
ηHz(r, t),

ẑ · (∇T × ηHT (r, t)) =
1

c

∂

∂t
{Ez(r, t) + (χ(ρ, ·) ∗ Ez(r, ·)) (t)} ,

(3.1)

for the longitudinal parts, and for the transverse components the result is
1

c

∂

∂t
ηHT (r, t) + ẑ × ∂

∂z
ET (r, t) = ẑ ×∇T Ez(r, t),

1

c

∂

∂t

{
ET (r, t) + (χ(ρ, ·) ∗ ET (r, ·)) (t)

}
− ẑ × ∂

∂z
ηHT (r, t)

= −ẑ ×∇T ηHz(r, t),

(3.2)

where two-dimensional gradient

∇T = x̂
∂

∂x
+ ŷ

∂

∂y
,

has been introduced.
By combining the Maxwell equations, (2.1), and the constitutive relations, (2.2),

we get

∇× (∇× E(r, t)) +
1

c2

∂2

∂t2
[E(r, t) + (χ(ρ, ·) ∗ E(r, ·)) (t)] = 0.

The divergence of E is zero, provided r is not on the boundary S.

∇ · E(r, t) = 0, r /∈ S.

This follows from the assumption that the susceptibility function χ(ρ, t) is inde-
pendent of the spatial variables in the regions D±, and the unique solubility of the
resolvent of χ. This implies that

∇2E(r, t) − 1

c2

∂2

∂t2
[E(r, t) + (χ(ρ, ·) ∗ E(r, ·)) (t)] = 0, r /∈ S.

Similarly, for the magnetic field H

∇2H(r, t) − 1

c2

∂2

∂t2
[H(r, t) + (χ(ρ, ·) ∗ H(r, ·)) (t)] = 0, r /∈ S.
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Especially for the transverse components ET we have

∇2ET (r, t) − 1

c2

∂2

∂t2
[ET (r, t) + (χ(ρ, ·) ∗ ET (r, ·)) (t)] = 0, r /∈ S. (3.3)

Similarly, for HT :

∇2HT (r, t) − 1

c2

∂2

∂t2
[HT (r, t) + (χ(ρ, ·) ∗ HT (r, ·)) (t)] = 0, r /∈ S. (3.4)

From the solution of the equation (3.3), we can construct all other components
of the electric and magnetic fields. From the ET -field we can first construct Hz and
HT by using (3.1) and (3.2)

ηHz(r, t) = −c

∫ t

−∞
ẑ · (∇T × ET (r, t′)) dt′,

ηHT (r, t) = ηHT (r, t)|z=0 +

∫ z

0

∇T ηHz(ρ, z′, t) dz′

− 1

c

∂

∂t
ẑ ×

∫ z

0

{
ET (ρ, z′, t) + (χ(ρ, ·) ∗ ET (ρ, z′, ·)) (t)

}
dz′,

and finally from (3.1) we get

Ez = f(r, t) + (ψ(ρ, ·) ∗ f(r, ·))(t),

where

f(r, t) = c

∫ t

−∞
ẑ · (∇T × ηHT (r, t′)) dt′,

and ψ(ρ, t) is the resolvent in time of χ(ρ, t).
The differential equations (3.3) and (3.4) do not couple different components of

the field to each other. The coupling between different Cartesian components is
made at the boundary S via the boundary conditions. These conditions are:{

n × E,

n × H ,

{
n · D,

n · B,
continuous across S.

4 Fundamental solution and the field representa-

tion

In this section an integral representation of the transverse electric field ET at a
point r ∈ D(z > 0) in terms of the corresponding values of this field at the surface
z = 0 is developed.
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The appropriate mixed initial boundary value problem for the electric field E is

∇× (∇× E(r, t)) +
1

c2

∂2

∂t2

{
E(r, t) + (χ(ρ, ·) ∗ E(r, ·)) (t)

}
= 0, r ∈ D,

E(r, t) = 0, r ∈ D, t ≤ 0,

∂E

∂t
(r, t) = 0, r ∈ D, t ≤ 0,

n̂ × E, continuous across S,

n̂ × (∇× E), continuous across S,

ET (r, t)|z=0 = fT (ρ, t).

The data, fT (ρ, t), specified on the plane z = 0 is assumed to be compactly sup-
ported in the variable ρ.

The fundamental solution, E , to our problem is the solution to the following
PDE (r′ ∈ R

3, t′ ∈ (−∞,∞)):

∇2E(r, t; r′, t′) − 1

c2

∂2

∂t2

{
E(r, t; r′, t′) + (χ(ρ, ·) ∗ E(r, ·; r′, t′)) (t)

}
= −δ(r − r′)δ(t − t′), r ∈ R

3, t ∈ (−∞,∞),

E(r, t; r′, t′), continuous across S,

∂

∂n
E(r, t; r′, t′), continuous across S,

E(r, t; r′, t′) = 0, t < t′, r ∈ R
3,

(4.1)

where the surface S for negative z-values is mirrored in the plane z = 0, and where
the temporal convolution is

(χ(ρ, ·) ∗ E(r, ·; r′, t′)) (t) =

∫ t

t′
χ(ρ, t − s)E(r, s; r′, t′) ds.

The existence proof for the solution E(r, t; r′, t′) for (4.1) can be found in Appen-
dix A. Due to temporal invariance and translational invariance in the z-direction,
we have

E(r, t; r′, t′) = E(ρ, ρ′, z − z′, t − t′).

Furthermore, the solution is even in z − z′. It can be shown that E(r, t; r′, t′) has
the form (see Appendix A)

E(r, t; r′, t′) =
δ (t − t′ − |r − r′|/c)

4π|r − r′| + H (t − t′ − |r − r′|/c) Ψ(r, t; r′, t′),

where Ψ is a continuous function.
The corresponding adjoint fundamental solution, E†, to our problem is the solu-
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tion to the problem (r′ ∈ R
3, t′ ∈ (−∞,∞))

∇2E†(r, t; r′, t′) − 1

c2

∂2

∂t2

{
E†(r, t; r′, t′) +

(
χ(ρ, ·)∗E†(r, ·; r′, t′)

)
(t)

}
= −δ(r − r′)δ(t − t′), r ∈ R

3, t ∈ (−∞,∞),

E†(r, t; r′, t′), continuous across S,

∂

∂n
E†(r, t; r′, t′), continuous across S,

E†(r, t; r′, t′) = 0, t > t′, r ∈ R
3.

where ∗ denotes the adjoint temporal convolution

(
χ(ρ, ·)∗E†(r, ·; r′, t′)

)
(t) =

∫ t′

t

χ(ρ, s − t)E†(r, s; r′, t′) ds.

Due to temporal invariance and translational invariance in the z-direction, we have

E†(r, t; r′, t′) = E†(ρ, ρ′, z − z′, t − t′),

and the solution is even in z − z′. The singular behavior of this solution is given by

E†(r, t; r′, t′) =
δ (t − t′ + |r − r′|/c)

4π|r − r′| + H (t − t′ + |r − r′|/c) Ψ(r, t; r′, t′),

where Ψ is a continuous function.
Reciprocity of the problem implies that

E†(r1, t1; r2, t2) = E(r2, t2; r1, t1). (4.2)

This relation is found by integrating the following identity wrt t ∈ (−∞,∞) and
r ∈ R

3:

∇·
(
E(r, t; r1, t1)∇E†(r, t; r2, t2) −∇E(r, t; r1, t1)E†(r, t; r2, t2)

)
=E(r, t; r1, t1)

1

c2

∂2

∂t2

{
E†(r, t; r2, t2) +

(
χ(ρ, ·)∗E†(r, ·; r2, t2)

)
(t)

}
− 1

c2

∂2

∂t2

{
E(r, t; r1, t1) + (χ(ρ, ·) ∗ E(r, ·; r1, t1)) (t)

}
E†(r, t; r2, t2)

+ δ(r − r1)δ(t − t1)E†(r, t; r2, t2) − δ(r − r2)δ(t − t2)E(r, t; r1, t1).

From the fundamental solutions, E† and E , we construct two solutions, Ẽ† and
Ẽ , that satisfy a homogeneous boundary condition on the plane z = 0 and z′ = 0,
respectively. 

Ẽ†(r, t; r′, t′)
∣∣∣
z=0

= 0,

Ẽ(r, t; r′, t′)
∣∣∣
z′=0

= 0.
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This solution is easily found by the mirror image in the plane z′ = 0.{
Ẽ†(r, t; r′, t′) = E†(r, t; r′, t′) − E†(r, t; r′ − 2z′ẑ, t′),

Ẽ(r, t; r′, t′) = Ẽ†(r′, t′; r, t).
(4.3)

The solution Ẽ(r, t; r′, t′) has the form (see Appendix A)

Ẽ(r, t; r′, t′) =
δ (t − t′ − |r − r′|/c)

4π|r − r′| − δ (t − t′ − |r − 2zẑ − r′|/c)
4π|r − 2zẑ − r′|

+ H (t − t′ − |r − r′|/c) Ψ1(r, t; r′, t′)

+ H (t − t′ − |r − 2zẑ − r′|/c) Ψ2(r, t; r′, t′),

where Ψ1 and Ψ2 are continuous functions.
As a starting point to find the integral representation, we use the Green’s identity

for vector fields [2].∫ ∞

0

∫∫
S0

{
ψ (n̂ × (∇× F )) + (∇ψ)(n̂ · F ) − n̂ψ(∇ · F ) − (∇ψ) × (n̂ × F )

}
dS dt

=

∫ ∞

0

∫∫∫
V0

{
F∇2ψ + ψ (∇× (∇× F ) −∇(∇ · F ))

}
dr dt.

(4.4)

Here V0 is a finite volume with boundary S0, and dr is the volume element.
Let F = E and ψ = Ẽ†. The integrand of the right hand side of (4.4) for z, z′ > 0

then is

E(r, t)∇2Ẽ†(r, t; r′, t′) + Ẽ†(r, t; r′, t′) (∇× (∇× E(r, t)) −∇(∇ · E(r, t)))

=
1

c2

∂

∂t

(
E(r, t)

∂

∂t
Ẽ†(r, t; r′, t′) − Ẽ†(r, t; r′, t′)

∂

∂t
E(r, t)

)
− δ(r − r′)δ(t − t′)E(r, t) +

1

c2

{
E(r, t)

∂2

∂t2

(
χ(·)∗Ẽ†(r, ·; r′, t′)

)
(t)

− Ẽ†(r, t; r′, t′)
∂2

∂t2
(χ(·) ∗ E(r, ·)) (t)

}
.

Integrate this expression wrt time t from 0 to ∞. The first and the third terms on
the right hand side then vanish due to the initial conditions posed on E and Ẽ† and
properties of the time convolution. Finally, integrate the space variables r over V0,
and the Green’s identity (4.4) becomes (t > 0)

−
∫ ∞

0

∫∫
S0

{
Ẽ†(r, t; r′, t′) (n̂ × (∇× E(r, t))) + (∇Ẽ†(r, t; r′, t′))(n̂ · E(r, t))

− (∇Ẽ†(r, t; r′, t′)) × (n̂ × E(r, t))
}

dS dt =

{
E(r′, t′), r′ ∈ V0

0, r′ ∈ R
3\V 0.
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or by the use of the Maxwell equations and changing the unprimed and the primed
space and time coordinates (t > 0)∫ ∞

0

∫∫
S0

{
Ẽ(r, t; r′, t′)

(
n̂′ × ∂

∂t′
µH(r′, t′)

)
− (∇′Ẽ(r, t; r′, t′))(n̂′ · E(r′, t′))

+ (∇′Ẽ(r, t; r′, t′)) × (n̂′ × E(r′, t′))
}

dS ′ dt′ =

{
E(r, t), r ∈ V0

0, r ∈ R
3\V 0.

The unit vector n̂′ denotes the normal vector of the surface S as a function of
the primed variables r′. Here, we have used the reciprocity relation (4.2) and the
notation in (4.3).

Let V0 be the domain D±, respectively. Due to compact support of excitation at
z = 0 and causality, all fields vanish outside a sufficiently large ball for each finite
time t. Adding the two contributions together and taking the transverse part of the
result, gives for an r in the upper half plane D

ET (r, t) =

∫ ∞

0

∫∫
R2

∂

∂z′
Ẽ(r, t; r′, t′)

∣∣∣
z′=0

fT (ρ′, t) dx′dy′ dt′

+

∫ ∞

0

∫∫
S

(∇′
T Ẽ(r, t; r′, t′)) [n̂′ · ET (r′, t′)] dS ′ dt′ r ∈ D, t > 0,

(4.5)

where fT (ρ, t) = ET (r, t)|z=0 and the possible jump discontinuity in the normal
component of the electric field across S is denoted

[n̂ · ET (r, t)] = n̂ · ET (r, t)|r→S+0 − n̂ · ET (r, t)|r→S−0 .

The limits S ± 0 are taken with respect to the normal n̂ of the surface S pointing
into the domain D+.

The two integrals on the right hand side of the expression (4.5) can be written
as, see Appendix B

ET (r, t) =

∫ ∞

0

∫∫
R2

W (r, t; ρ′, t′)fT (ρ′, t′) dρ′ dt′

+

∫ ∞

0

∫∫
R2

T(r, t; ρ′, t′) · fT (ρ′, t′) dρ′ dt′,

(4.6)

where the singular kernel W (r, t; ρ′, t′) is

W (r, t; ρ′, t′) = − ∂

∂z

δ(t − t′ − |r − ρ′|/c)
2π|r − ρ′| .

The dyadic-valued function T(r, t; ρ′, t′) is conjectured to be less singular than
W (r, t; ρ′, t′). The explicit form of this function is given in Appendix B. Equa-
tion (4.6) relates the total transverse field ET (r, t) to the corresponding field on the
plane z = 0. This equation is the main result of this section.
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5 Wave splitting—component decomposition

In this section we introduce the wave splitting concept of the fields. This paper
employs the scalar splitting [5].

For each component of the electric field, define the up-going and down-going
conditions as, cf. (1.2) and (1.3)

ET (r, t) = ∓K∂zET (r, t). (5.1)

where the operator K is defined as

KET (r, t) =

∫ ∞

0

∫∫
R2

K(ρ, t; ρ′, t′)ET (ρ′, z, t′) dρ′ dt′,

where the kernel K(ρ, t; ρ′, t′) is

K(ρ, t; ρ′, t′) =
δ(t − t′ − |ρ − ρ′|/c)

2π|ρ − ρ′| .

We notice that the kernel W (r, t; ρ′, t′) satisfies the up-going condition (1.2) or (5.1),
because the field point r (z > 0) lies over the source point ρ′ (z′ = 0). So we have

W (r, t; ρ′, t′) = −K∂zW (r, t; ρ′, t′), z > 0. (5.2)

The up-going and down-going conditions for the Maxwell equations are intro-
duced in Ref. 9. These are 

HT = ∓ 1

µ
MET ,

ET = ±1

ε
NHT ,

(5.3)

respectively. In the special case treated in this paper, the operators N and M are
identical and explicitly given by [9]

NET (ρ, t) = MET (ρ, t) = ∂−1
t K

(
∂x∂y

(
1
c2

∂2
t − ∂2

x

)(
∂2

y − 1
c2

∂2
t

)
−∂x∂y

) (
Ex

Ey

)
,

The definition of up- and down-going waves, (5.1), is consistent with the corre-
sponding definition for the vector case (5.3). From the definition of the M-operator,
the definition of up- and down-going waves, (5.1), and (1.4), we get for the up- and
down-going waves

− 1

µ
MET = − 1

µ
∂−1

t K
(

∂x∂y
1
c2

∂2
t − ∂2

x

−
(

1
c2

∂2
t − ∂2

y

)
−∂x∂y

) (
Ex

Ey

)
= ± 1

µ
∂−1

t K2∂z

(
∂x∂y ∂2

y

−∂2
x −∂x∂y

) (
Ex

Ey

)
± 1

µ
∂−1

t ∂z

(
0 1
−1 0

) (
Ex

Ey

)
= ∓ 1

µ
∂−1

t

[
ẑ ×∇T (K2∂z∇T · ET ) + ẑ × ∂zET

]
= ± 1

µ
∂−1

t

[
ẑ ×∇T (K2∂2

zEz) − ẑ × ∂zET

]
= ± 1

µ
∂−1

t [ẑ ×∇T Ez − ẑ × ∂zET ] = ±HT .
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In this derivation we have explicitly used that ∇ · E = 0, (1.4), (3.2), and the fact
that the Ez-field satisfies (

∇2 − 1

c2

∂2

∂t2

)
Ez(r, t) = 0,

in the absence of any scatterer (χ = 0).
Since we have this consistency between the scalar and the vector formulations

in this case, we prefer to use the simpler scalar wave splitting, instead of the vector
one, in this paper.

At each value of z, decompose the transverse electric field ET in two new com-
ponents F±

T defined by

F±
T (r, t) =

1

2
{ET (r, t) ∓K∂zET (r, t)} . (5.4)

From the wave equation, (3.3), the split fields F±
T satisfy

∂

∂z

(
F +

T

F−
T

)
= K−1

(
−I 0
0 I

)
·
(

F +
T

F−
T

)
+

1

2
Kχ(ρ, ·) ∗ ∂2

∂t2

(
−I −I
I I

)
·
(

F +
T

F−
T

)
. (5.5)

6 Propagator

In this section the wave splitting, (5.4), is used to define the propagator operators
of the problem.

We first apply the splitting to the transverse field on the plane z = 0. The total
transverse field ET is

ET (ρ, 0, t) = F−
T (ρ, 0, t) + F +

T (ρ, 0, t).

On this plane the up- and down-going waves are related by a reflection operator R.

F−
T (ρ, 0, t) = RF +

T (ρ, 0, t).

The integral kernel of the reflection operator is denoted R.

F−
T (ρ, 0, t) =

∫ ∞

0

∫∫
R2

R(ρ, t; ρ′, t′) · F +
T (ρ′, 0, t′) dρ′ dt′.

We now apply the splitting defined in (5.4) to (4.6). From (4.6) we find (z ≥ 0)

F +
T (r, t) =

∫ ∞

0

∫∫
R2

W (r, t; ρ′, t′) · F +
T (ρ′, 0, t′) dρ′ dt′

+

∫ ∞

0

∫∫
R2

P+(r, t; ρ′, t′) · F +
T (ρ′, 0, t′) dρ′ dt′,

F−
T (r, t) =

∫ ∞

0

∫∫
R2

P−(r, t; ρ′, t′) · F +
T (ρ′, 0, t′) dρ′ dt′,

(6.1)
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where we used (5.2) and were P+(r, t; ρ′, t′) and P−(r, t; ρ′, t′) are defined as

P+(r, t; ρ′, t′) = T+(r, t; ρ′, t′)

+

∫ ∞

0

∫∫
R2

W (r, t; ρ′′, t′′) · R(ρ′′, t′′; ρ′, t′) dρ′′ dt′′

+

∫ ∞

0

∫∫
R2

T+(r, t; ρ′′, t′′) · R(ρ′′, t′′; ρ′, t′) dρ′′ dt′′,

P−(r, t; ρ′, t′) = T−(r, t; ρ′, t′)

+

∫ ∞

0

∫∫
R2

T−(r, t; ρ′′, t′′) · R(ρ′′, t′′; ρ′, t′) dρ′′ dt′′.

where

T±(r, t; ρ′, t′) =
1

2
{I ∓ K∂z}T(r, t; ρ′, t′).

and I is the identity operator.
The early time behavior of the kernel P+(r, t; ρ′, t′) controls the field near the

wave front, and therefore determines the precursor or the forerunner of the wave
propagation [1]. The relevant early time behavior of this kernel will be reported
elsewhere.

Let z → 0+ in (6.1). The result is

F−
T (ρ, 0, t) =

∫ ∞

0

∫∫
R2

P−(ρ, 0, t; ρ′, t′) · F +
T (ρ′, 0, t′) dρ′ dt′,

which is another representation of the reflection operator R, i.e.,

R(ρ, t; ρ′, t′) = T−(ρ, t; ρ′, t′)

+

∫ ∞

0

∫∫
R2

T−(ρ, 0, t; ρ′′, t′′) · R(ρ′′, t′′; ρ′, t′) dρ′′ dt′′.

which implies that the reflection kernel R(ρ, t; ρ′, t′) is as smooth as T−.

7 Propagator equations

With the use of (6.1) and (5.5) it is straightforward to prove that the propagator
equations are:

∂

∂z
P+(r, t; ρ′, t′) + K−1P+(r, t; ρ′, t′)

= −1

2
Kχ(ρ, ·) ∗ ∂2

∂t2
(
P+(r, t; ρ′, t′) + P−(r, t; ρ′, t′)

)
− A(r, t; ρ′, t′),

∂

∂z
P−(r, t; ρ′, t′) −K−1P−(r, t; ρ′, t′)

=
1

2
Kχ(ρ, ·) ∗ ∂2

∂t2
(
P+(r, t; ρ′, t′) + P−(r, t; ρ′, t′)

)
+ A(r, t; ρ′, t′),
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where the source term A(r, t; ρ′, t′) is

A(r, t; ρ′, t′) =
1

2
Kχ(ρ, ·) ∗ ∂2

∂t2
W (r, t; ρ′, t′).

The inverse of the splitting operator K has the following integral representation
[5]:

K−1 =
1

c

∂

∂t
+ L,

where

Lf(r, t) =
c

2π

∫ t

0

∫ 2π

0

(∂2f

∂x2
(ρ + c(t − t′)ρ̂, z, t′) sin2 φ

− ∂2f

∂x∂y
(ρ + c(t − t′)ρ̂, z, t′) sin 2φ

+
∂2f

∂y2
(ρ + c(t − t′)ρ̂, z, t′) cos2 φ

)
dφ dt′,

and ρ̂ = x̂ cos φ + ŷ sin φ.

8 Conclusions

In this paper an electromagnetic wave propagation problem is studied. The medium
is supposed to exhibit laterally discontinuous dispersive properties. The appropri-
ate mixed, initial boundary value problem is studied, and the form of the mapping,
that maps a transverse electric field in the plane z = 0 into the transverse elec-
tric field on another plane, is explicitly given. The scalar wave propagation of the
transverse electric field is introduced, and the appropriate propagator operators are
investigated. The kernels of these operators satisfy a set of coupled linear PDEs.

Appendix A Existence and continuity of the fun-

damental solution

A.1 Iterative solution of an initial-value problem

In this appendix we show that the solution of the initial-value problem∇2u(r, t) − 1

c2

∂2

∂t2
{u(r, t) + (χ(r, ·) ∗ u(r, ·)) (t)} = g(r, t), r ∈ R

3, t′ < t < T

u(r, t) = 0 r ∈ R
3, t ≤ t′,

(A.1)
can be obtained by an iteration procedure. Here t′ and T are fixed parameters. Due
to invariance under time translation there is no loss of generality to let t′ = 0.

Here, as in Section 2, χ(r, t) is a piecewise constant function of r with a finite
number of surfaces of discontinuity. Furthermore, it is a C2 function of t for 0 ≤



15

t ≤ T , and it is assumed that χ(r, 0) = 0. Thus, there exist constants m1 and m2

such that {
|χt(r, t)| < m1, r ∈ R

3, 0 ≤ t ≤ T,

|χtt(r, t)| < m2, r ∈ R
3, 0 ≤ t ≤ T.

(A.2)

The conditions on g(r, t) are given below in an implicit form.
System (A.1) is first written in the form(
∇2 − 1

c2

∂2

∂t2

)
u(r, t) =

1

c2

{
χt(r, 0+)u(r, t) +

∫ t

0

χtt(r, t − s)u(r, s)ds

}
+ g(r, t)

(A.3)
Using the fundamental solution δ(t−s−|r−r′|/c)/4π|r−r′| for the wave equation,
treating the right-hand side as a source term and using the causality condition on
u(r, t), equation (A.3) is converted into the following integral equation:

u(r, t) = −Au(r, t) + G(r, t), t > 0, (A.4)

where

G(r, t) = −
∫∫∫

R3

g(r′, t − |r − r′|/c)
4π|r − r′| dr′, (A.5)

and

Au(r, t) =

∫∫∫
R3

H (t − |r − r′|/c)
4π|r − r′|c2

{
χt(r

′, 0+)u (r′, t − |r − r′|/c)

+

∫ t−|r−r′|/c

0

χtt (r′, t − s − |r − r′|/c) u(r′, s) ds

}
dr′.

(A.6)

The function G(r, t) is supposed to be bounded in r, continuous in the variable t
for 0 ≤ t ≤ T , with G(r, 0) = 0. The following norms are introduced:

‖G‖ = max
r∈R3, 0≤t≤T

|G(r, t)|

‖u‖ = max
r∈R3, 0≤t≤T

|u(r, t)|.

It is shown that equation (A.4) can be solved by the following iteration scheme:{
u0(r, t) = G(r, t),

un(r, t) = G(r, t) −Aun−1(r, t), n = 1, 2, 3, . . . .
(A.7)

A preliminary step is to show that

max
r∈R3

|Anu(r, t)| ≤ (M1t
2)n

(2n)!
‖u‖, 0 ≤ t ≤ T, n = 1, 2, 3, . . . , (A.8)
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where M1 = m1 + Tm2. This inequality can be proved by induction, using the
estimate (n = 0, 1, 2, . . .)

|An+1u(r, t)| ≤
∫∫∫

R3

H (t − |r − r′|/c)
4π|r − r′|c2

×
{

m1|Anu(r′, t − |r − r′|/c)| + m2

∫ t−|r−r′|/c

0

|Anu(r′, s)| ds

}
dr′.

The n = 1, and the general case of the induction can be done at the same time. We
have (n = 0, 1, 2, . . .)

max
r∈R3

|An+1u(r, t)| ≤ Mn
1 ‖u‖

c2(2n)!
max
r∈R3

∫∫∫
R3

H(t − |r − r′|/c)
4π|r − r′|

×
{

m1(t − |r − r′|/c)2n +
m2

2n + 1
(t − |r − r′|/c)2n+1

}
dr′

=
Mn

1 ‖u‖
(2n)!

∫ t

0

{
m1(t − τ)2n +

m2

2n + 1
(t − τ)2n+1

}
τdτ

=
Mn

1 ‖u‖
(2n + 2)!

t2n+2

{
m1 +

m2t

(2n + 3)

}
≤ Mn+1

1 ‖u‖
(2n + 2)!

t2n+2.

Thus, it follows that the nth iterate of our procedure given by

un = G −AG + A2G + . . . + (−1)nAnG,

has the property that for r ∈ R
3, 0 ≤ t ≤ T

‖un‖ ≤ ‖G‖
n∑

k=0

(M1T
2)k

(2k)!
,

and thus the sequence of partial sums {un} converges uniformly.
With a small modification of the proof of a theorem in [4, Section 1.6] it can be

shown that the operator∫∫∫
R3

H (t − |r − r′|/c)
|r − r′| f (r′, t − |r − r′|/c) dr′, 0 ≤ t ≤ T, (A.9)

maps function f(r, t), bounded in r, continuous in t for 0 ≤ t ≤ T , with f(r, 0) = 0,
into a continuous function of r and t. Thus, it follows that with the conditions on
G(r, t), the iterates Anu are continuous functions in r and t and the solution u(r, t)
is a continuous function of r and t.

Stronger results can be given. Again modifying the proof for the potential func-
tions in Ref. 4, it can be shown that if in addition the function f(r, t) in (A.9) is
continuously differentiable in t for 0 ≤ t ≤ T , and ∂

∂t
f(r, 0) = 0, then the operator

given by (A.9) is a C1 function of r and t.
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We can now examine the behavior of the derivatives ∂x, ∂y of the solution u(r, t),
in light of the fact that χ(r, t) is piecewise constant in r, and the surface of dis-
continuity being cylinder parallel the z-axis. Let n̂ be unit outward normal to the
cylindrical surface of discontinuity S, then

∂xχ(r, t) = n̂ · x̂ [χ] δS,

∂yχ(r, t) = n̂ · ŷ [χ] δS,

where
∫∫∫
R3

φ(r)δSdr =
∫∫
S

φ(r)dS. Differentiate equation (A.3) with respect to

x, and obtain an equation for ∂xu similar to the equation (A.3), but with g(r, t)
replaced by ∂xg(r, t) + δShx(r, t), where

hx(r, t) =
1

c2
n̂ · x̂

{
[χt] (r, 0+)u(r, t) +

∫ t

0

[χtt] (r, t − s)u(r, s)ds

}
.

Thus, we obtain an integral equation for ∂xu similar to the one for u(r, t). Specifi-
cally, we have

∂xu(r, t) = −A∂xu + Gx(r, t), (A.10)

where

Gx(r, t) = −
∫∫∫

R3

∂xg(r′, t − |r − r′|/c)
4π|r − r′| dr′ −

∫∫
S

hx(r
′, t − |r − r′|/c)
4π|r − r′| dS ′.

Putting the appropriate conditions on Gx(r, t) one can show that equation (A.10)
can be solved by iteration (same as equation (A.3)). A similar result can be obtained
for ∂yu.

A.2 Application to the problem in question

In this subsection, we apply the general method described above to the problem
(4.1). First, we identify the leading singular term of E(r, t; r′, t′) as the fundamental
solution of the wave equation. Let

E(r, t; r′, t′) = E0(r, t; r′, t′) + E1(r, t; r′, t′) (A.11)

where E0(r, t; r′, t′) = δ (t − t′ − |r − r′|/c) /4π|r − r′|. We insert (A.11) into equa-
tion (4.1) and convert the expression into an integral equation in the manner de-
scribed above. Straightforward calculations (change of variables to prolate spher-
oidal coordinates with focal points in r and r′) give an equation for E1(r, t; r′, t′)
similar to (A.4) with

G(r, t; r′, t′) = Φ(r, t; r′, t′) + H (t − t′ − |r − r′|/c) Ψ(r, t; r′, t′),

where the functions Φ and Ψ are continuous and Φ(r, t; r′, t′) = 0, for t − t′ − |r −
r′|/c ≤ 0. These functions depend on χ and on the form of the surface of discon-
tinuity S. Function G does not fulfill conditions listed in the previous subsection
because it is not continuous when

t − t′ − |r − r′|/c = 0.
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This difficulty can be removed by introducing E2 = E1 − G. It is obvious that
E2(r, t; r′, t′) satisfies

u(r, t) = −Au(r, t) −AG(r, t),

which is of the same type, and the source term −AG(r, t) obviously satisfies all the
conditions listed above.

Thus, we have shown that the solution to the problem (4.1) does exist and has
the form

E(r, t; r′, t′) =
δ (t − t′ − |r − r′|/c)

4π|r − r′| + H (t − t′ − |r − r′|/c) Ψ(r, t; r′, t′), (A.12)

where Ψ is a continuous function.

Appendix B Elimination of the jump [n̂ · ET ]

In this appendix we show that equation (4.5) can be written as

ET (r, t) =

∫ ∞

0

∫∫
R2

W (r, t; ρ′, t′)fT (ρ′, t′) dρ′ dt′

+

∫ ∞

0

∫∫
R2

T(r, t; ρ′, t′) · fT (ρ′, t′) dρ′ dt′,

where the singular kernel W (r, t; ρ′, t′) is

W (r, t; ρ′, t′) = − ∂

∂z

δ(t − t′ − |r − ρ′|/c)
2π|r − ρ′| ,

and T(r, t; ρ′, t′) is a less singular function. It is enough to show that the last
integral in (4.5) can be written as∫ ∞

0

∫∫
R2

S(r, t; ρ′, t′) · fT (ρ′, t′) dx′dy′ dt′,

where S is a classical function. First, eliminate the jump discontinuity of the normal
component of the electric field [n̂ · ET (r, t)] in the expression (4.5). To do this, let
r → S from the negative side, and take the normal component on the surface S, see
Appendix C.

2n̂ · E−
T (r, t) = g(r, t) − f(r, t)

+

∫ ∞

0

∫∫
S

V (r, t; r′, t′)f(r′, t′) dS ′ dt′, r ∈ S, t > 0, (B.1)

where 
f(r, t) = [n̂ · ET (r, t)] ,

g(r, t) = 2n̂ ·
∫ ∞

0

∫∫
R2

∂

∂z′
Ẽ(r, t; r′, t′)

∣∣∣
z′=0

fT (ρ′, t′) dρ′ dt′,

V (r, t; r′, t′) = 2n̂ · ∇′
T Ẽ(r, t; r′, t′).

(B.2)
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The surface integral in (B.1) is interpreted as the Cauchy principal value.
Furthermore, due to continuity of n̂ · D across S, we also have that

f(r, t) +
(
χ+(·) ∗ f(r, ·)

)
(t) +

(
[χ] (·) ∗ n̂ · E−

T (r, ·)
)
(t) = 0, r ∈ S, t > 0,

where
[χ] (t) = χ+(t) − χ−(t).

Eliminate the field n̂ · E−
T (r, t) by using (B.1). We get (r ∈ S, t > 0)

2f(r, t) + 2
(
χ+(·) ∗ f(r, ·)

)
(t)

+
{

[χ] (·) ∗
(
g(r, ·) − f(r, ·) +

∫ ∞

0

∫∫
S

V (r, ·, r′, t′)f(r′, t′) dS ′ dt′
)}

(t) = 0,

or

f(r, t) +
1

2

(
[χ+(·) + χ−(·)] ∗ f(r, ·)

)
(t) + G(r, t)

+

∫ ∞

0

∫∫
S

M(r, t, r′, t′)f(r′, t′) dS ′ dt′ = 0, r ∈ S, t > 0,
(B.3)

where 
G(r, t) =

1

2
([χ] (·) ∗ g(r, ·)) (t),

M(r, t; r′, t′) =
1

2
([χ] (·) ∗ V (r, ·, r′, t′)) (t).

Let L(t) be the resolvent of 1/2(χ+(t) + χ−(t)), i.e.,

1

2

(
χ+(t) + χ−(t)

)
+ L(t) +

1

2

(
(χ+(·) + χ−(·)) ∗ L(·)

)
(t) = 0.

Apply the resolvent to (B.3). We get

f(r, t) + N f(r, t) = H(r, t), r ∈ S, t > 0, (B.4)

where (r ∈ S, t > 0)
H(r, t) = −G(r, t) − (L(·) ∗ G(r, ·)) (t),

N f(r, t) =

∫ ∞

0

∫∫
S

(M(r, t, r′, t′) + (L(·) ∗ M(r, ·, r′, t′)) (t))f(r′, t′) dS ′ dt′.

This equation can be inverted and the solution is formally

f(r, t) = ((I + N )−1H)(r, t), r ∈ S, t > 0.

We want to briefly indicate that the operator I+N can be inverted by iteration.
Since N = (I−L∗)M we need only to study the behavior of the operator M whose
kernel is given by

M(r, t; r′, t′) = ([χ] (·) ∗ n̂ · ∇′
T {E(r, ·, r′, t′) − E(r − 2zẑ, ·, r′, t′)}) (t), (B.5)
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and in particular to study only the first part in this expression. This has the form(
[χ] (·) ∗ n̂ · ∇′

TE(r, ·, r′, t′)
)
(t)

=
n̂ · R̂

4π |r − r′|
{ 1

|r − r′| [χ] (t − t′ − |r − r′| /c)

+
1

c
[χt] (t − t′ − |r − r′| /c)

}
H(t − t′ − |r − r′| /c)

+
(
[χ] (·) ∗ n̂ · ∇′

TE1(r, ·, r′, t′)
)
(t),

(B.6)

where the unit vector R̂ is

R̂ =
r − r′

|r − r′| .

Because E1(r, t; r′, t′) behaves like H(t − t′ − |r − r′| /c), all terms in expression
(B.6) vanish for t < t′ + |r − r′| /c. Applying this result to the second term in
(B.5), it can be shown that the kernel M(r, t; r′, t′) = 0 for t < t′. Restricting
the study of the operator M to a finite time interval, 0 < t < T , it follows that
the kernel M(r, t; r′, t′) is non-zero only on a bounded portion of the cylindrical
surface S. Apart from the factor [χ] (t − t′ − |r − r′| /c)H(t − t′ − |r − r′| /c),
which is continuous in r and r′ (since [χ] (0) = 0), the leading singular term in the
expression (B.6) is given by

n̂ · R̂
|r − r′|2

. (B.7)

For a bounded C2 surface S, the factor n̂ · R̂ is bounded as follows:

n̂ · R̂ ≤ Constant |r − r′| . (B.8)

Thus, the double-layer potential operator, with (B.7) as kernel, maps bounded func-
tions on S into continuous functions on S. This result can be generalized by the
first term of (B.6). In light of inequality (B.8), the second term in (B.6) is bounded
at r = r′. Because the remaining terms are not as singular as the first two, and
that the kernel M(r, t; r′, t′) vanish for t < t′, one can infer that

|Mf | ≤ Constant‖f‖t, 0 ≤ t ≤ T,

for a bounded function f(r, t). Thus, the operator M is of Volterra type and
(I+M)−1, and therefore also (I+N )−1, can be obtained through iteration (similar
results are given in Appendix A).

Now recalling the definitions of functions H, G and g and interchanging the order
of integration we get:

f(r, t) =

∫ ∞

0

∫∫
R2

S0(r, t; ρ′, t′) · fT (ρ′, t′) dρ′ dt′, r ∈ S, t > 0,
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where

S0(r, t; ρ′, t′) = − n̂(I + N )−1
{(

[χ] (·) ∗ ∂

∂z′
Ẽ(r, ·, r′, t′)

∣∣∣
z′=0

)
(t)

+
(
L(·) ∗

(
[χ] (•) ∗ ∂

∂z′
Ẽ(r, •, r′, t′)

∣∣∣
z′=0

(·)
))

(t)
}

.

The last integral in (4.5) can be written in a dyadic notation as∫ ∞

0

∫∫
R2

{∫ ∞

0

∫∫
S

∇′
T Ẽ(r, t; r′, t′)S0(ρ

′, t′; ρ′′, t′′) dS ′ dt′
}
· fT (ρ′′, t′′) dρ′′ dt′′

=

∫ ∞

0

∫∫
R2

S(r, t; ρ′, t′) · fT (ρ′, t′) dρ′ dt′,

where

S(r, t; ρ′, t′) =

∫ ∞

0

∫∫
S

∇′
T Ẽ(r, t; r′′, t′′)S0(r

′′, t′′; ρ′, t′) dS ′′ dt′′,

The kernel S(r, t; ρ′, t′) is a classical function. Finally, write the transverse field ET

in equation (4.5) in the form (z ≥ 0, t > 0)

ET (r, t) =

∫∫
R2

zfT (ρ′, t − |r − ρ′|/c)
2π|r − ρ′|3 dρ′

+

∫∫
R2

z ∂fT

∂t
(ρ, t − |r − ρ′|/c)
2cπ|r − ρ′|2 dρ′

+

∫ ∞

0

∫∫
R2

T(r, t; ρ′, t′) · fT (ρ′, t′) dρ′ dt′,

or

ET (r, t) =

∫ ∞

0

∫∫
R2

W (r, t; ρ′, t′)fT (ρ′, t′) dρ′ dt′

+

∫ ∞

0

∫∫
R2

T(r, t; ρ′, t′) · fT (ρ′, t′) dρ′ dt′.

The singular kernel W (r, t; ρ′, t′) is

W (r, t; ρ′, t′) = − ∂

∂z

δ(t − t′ − |r − ρ′|/c)
2π|r − ρ′| ,

and T(r, t; ρ′, t′) is

T(r, t; ρ′, t′) =

{
∂

∂z′
Ẽ(r, t; r′, t′)

∣∣∣
z′=0

− W (r, t; ρ′, t′)

}
I + S(r, t; ρ′, t′),

where I is the unit dyadic in two dimensions.
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Appendix C Boundary integrals

In this appendix we show that

lim
r→r0±0

∫ ∞

0

∫∫
S

V (r, t; r′, t′)f(r′, t′) dS ′ dt′

=

∫ ∞

0

∫∫
S

V (r0, t; r
′, t′)f(r′, t′) dS ′ dt′ ± f(r0, t) r0 ∈ S,

(C.1)

where V (r, t; r′, t′) is defined in (B.2) and S is the boundary surface defined in
Section 2. The limits S ± 0 are taken with respect to the normal n̂ of the surface S.

It follows from (B.2) and (A.12) that the function V (r, t; r′, t′) in (C.1) can be
decomposed in a sum of three terms: a well-behaved part, a ”Heaviside” part and a
singular part Vs(r, t; r′, t′). It is easy to see that the integrals of the first two parts
are continuous across the surface S, so we need only to consider the singular part
Vs(r, t; r′, t′), where

Vs(r, t; r′, t′) = 2n̂ · ∇′
T

(
δ(t − t′ − |r − r′|/c)

4π|r − r′| − δ(t − t′ − |r − 2zẑ − r′|/c)
4π|r − 2zẑ − r′|

)
.

Now define for r 	∈ S

v(r, t) =

∫ ∞

0

∫∫
S

Vs(r, t; r′, t′)f(r′, t′) dS ′ dt′.

Define a new surface S0 which is the union of surface S and its mirror image in the
plane z = 0, i.e. S0 = {r; (x, y, |z|) ∈ S}. For z < 0 define f(r, t) = −f(r − 2zẑ, t),
r ∈ S. Then the previous expression can be rewritten as

v(r, t) =

∫ ∞

0

∫∫
S0

2n̂ · ∇′
(

δ(t − t′ − |r − r′|/c)
4π|r − r′|

)
f(r′, t′) dS ′ dt′

=
1

2π

∫∫
S0

{
n̂ · ∇′

(
1

|r − r′|

)
f(r′, t − |r − r′|/c)

+
n̂ · ∇′|r − r′|
|r − r′|c ft(r

′, t − |r − r′|/c)
}

dS ′

where we require that f(r, t) and ft(r, t) are continuous in time and on the surface
S0 for 0 ≤ t ≤ T , so we can assume that |f(r, t)| ≤ M , |ft(r, t)| ≤ M for some
real M . Furthermore, it is assumed that f(r, t) is compactly supported on S0. The



23

integral v(r, t) can be written as a sum of two integrals I1 and I2, where

I1 =
1

2π

∫∫
S0

n̂ · ∇′
(

1

|r − r′|

)
f(r′, t) dS ′

I2 =
1

2π

∫∫
S0

n̂ · ∇′|r − r′|
|r − r′|2

{
(f(r′, t) − f(r′, t − |r − r′|/c)

+
|r − r′|

c
ft(r

′, t − |r − r′|/c)
}

dS ′

Take now the limit r → r0 ± 0 where r0 ∈ S. Noting that the first integral is
the derivative of a single-layer potential, we have [4] (f continuous in r and S0 a
Lyapunov surface)

I1(r, t) → ±f(r0, t) +
1

2π

∫∫
S1

n̂ · ∇′
(

1

|r − r′|

)
f(r′, t) dS ′

Here we have closed the surface S0 to get a bounded closed surface S1 in such a way
that it does not change the value of the integral, i.e. we added some surfaces at the
ends of the cylinder S0 at |z| = B, where f(r, t) = 0 for 0 < t < T , |z| > B.

In the second integral I2 we have

|f(r′, t − |r − r′|/c) − f(r′, t)| ≤ |r − r′|
c

M

|ft(r
′, t − |r − r′|/c)| ≤ M

So the integrand behaves like n̂ · ∇′(|r − r′|)/|r − r′| which is a weakly singular
kernel. So there is no jump discontinuity in the integral I2(r, t) when r → r0 ± 0
where r0 ∈ S.
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