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Abstract

As a preparatory study of electromagnetic pulse propagation in open wave-
guides, the modes of propagation of pulses in open slab waveguides are in-
vestigated systematically. Core and cladding both consist of simple (linear,
homogeneous, isotropic), dispersive materials modeled by temporal convolu-
tion with physically sound susceptibility kernels. Under these circumstances,
pulses cannot propagate along the guide unless the sum of the (first) initial
derivatives of the electric and magnetic susceptibility kernels of the medium
in the core is less than the corresponding sum for the medium in the cladding.
Only a finite number of pulse modes can be excited, and relevant temporal
Volterra integral equations of the second kind for these modes are derived.

1 Introduction

Propagation of time-harmonic electromagnetic waves in closed and open dielectric
waveguides is a technically important and well-known subject that is discussed in
many textbooks on electromagnetism, see, e.g., [2, 3, 5, 6, 12, 14]. In particular, open
circular dielectric waveguides, e.g., optical fibers, are of great importance.

Pulse propagation in waveguides has been less attended to. However, Kristens-
son [10] managed to analyze the modes of propagation in closed empty guides using
wave splitting technique, and later his results were extended to closed guides with
isotropic fillings [1]. The purpose of the present paper is to analyze the modes of
propagation of electromagnetic pulses in open slab waveguides, which is, of course,
an highly artificial model problem. However, the work can be seen as a preparatory
study of pulse propagation in open circular waveguides, a subject that would be of
great technical interest.

In section 2, the basic field equations for relevant for pulse propagation in simple
(linear, homogeneous, isotropic), dispersive materials are presented. Modes of prop-
agation of pulses in the slab waveguide are analyzed in full extent in section 3. A
brief discussion of the conditions for propagation concludes the paper in section 4.

2 Basic equations for simple, dispersive media

2.1 Notation

The following notation is used: position is denoted by r = (x, y, z), time by t, elec-
tric and magnetic field vectors by E(r, t) and H(r, t), respectively, and correspond-
ing flux densities by D(r, t) and B(r, t). Each field vector is written in the form
E(r, t) = uxEx(r, t) + uyEy(r, t) + uzEz(r, t) = (Ex(r, t), Ey(r, t), Ez(r, t)), where
ux, uy, and uz are the basis vectors in the Cartesian frame. The dynamics of the
fields is modeled by the macroscopic Maxwell equations: ∇× E(r, t) = −∂tB(r, t)
and ∇ × H(r, t) = J(r, t) + ∂tD(r, t), where J(r, t) is the current density. For
brevity, the independent variables (r, t) are often suppressed. The speed of light in
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vacuum and the intrinsic impedance of vacuum are denoted by c0 and η0, respec-
tively. At a few occasions, the temporal Heaviside step H(t) appear. Finally, the
positive square root is intended wherever the square-root operator

√
appears.

2.2 Constitutive relations

The constitutive relations of a simple, causal, time-invariant, and continuous mate-
rial can be written in the form c0η0D = εE and c0B = µη0H , where the relative
permittivity and permeability operators of the medium are ε = 1 + χe(t)∗ and
µ = 1 + χm(t)∗, respectively, and the asterisk (∗) denotes temporal convolution [7]:

[εE] (r, t) = E(r, t) + (χe ∗ E)(r, t) = E(r, t) +

∫ ∞

−∞
χe(t− t′)E(r, t′) dt′.

The integral kernels χe(t) and χm(t) are the susceptibility kernels of the medium.
Owing to causality, these functions vanish for t < 0, and, for t > 0, they are assumed
to be twice continuously differentiable. Furthermore, the continuity condition [4]

χe(+0) = χm(+0) = 0. (2.1)

is imposed on the isotropic medium. Condition (2.1) is met by, for instance, the
well-known Lorentz model (the resonance model),

χe(t) =
ω2

p√
ω2

0 −
(

ν
2

)2
exp

(
−νt

2

)
sin

(√
ω2

0 −
(ν

2

)2

t

)
H(t), (2.2)

which applies to bound electrons in insulators, and, by the Drude model,

χe(t) =
ω2

p

ν
(1 − exp (−νt))H(t),

which applies to free electrons in conductors (set ω0 = 0 in the Lorentz model), and
by any linear combination of these models. On the other hand, the Debye model
(the relaxation model) for polar liquids and Ohm’s law for conductors violate the
condition (2.1). In practise, the imposed condition (2.1) is not a severe restriction:
by introducing short rise times, any susceptibility kernel can be approximated by
an integral kernel, for which the condition (2.1) holds, without much changing the
value of the convolution integral. Models that violate (2.1) have been described as
“unphysical” in a major textbook on classical electrodynamics [6].

Substituting the constitutive relations into the Maxwell equations gives a lin-
ear system of first-order hyperbolic integro-differential equations in the electric and
magnetic field vectors only:{

∇× E = µη0H ,

∇× η0H = η0J + c−1
0 ∂tεE.

(2.3)
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2.3 The complex electromagnetic field vector

It it economical, however not necessary, to introduce a complex time-dependent
field, cf. Stratton [13]. Any (real) time-dependent electromagnetic field (E,H) in
a simple medium can be represented uniquely by the complex field vector

Q =
1

2
(E − iZη0H) ,

where the real temporal integral operator Z = 1 + Z(t)∗ is the relative intrinsic
impedance of the medium. It is also appropriate to introduce a real temporal integral
operator Y = 1 + Y (t)∗ defined by YZ = 1. This operator is referred to as the
relative intrinsic admittance of the medium.

The introduction of the complex electromagnetic field vector reduces the system
of integro-differential equations (2.3) to the first-order dispersive wave equation

∇× Q = −ic−1
0 ∂tN Q − iη0ZJ/2, (2.4)

where the real temporal integral operator N = 1+N(t)∗ is referred to as the index of
refraction of the medium. It is understood that Y , N , and Z are intrinsic operators
of the medium, that is, independent of the field vectors E and H .

2.4 The intrinsic operators of the medium

The decoupling of (2.3) in accordance with (2.4) leads to conditions on the relative
intrinsic admittance Y and the index of refraction N in terms of the susceptibility
operators: N = µY and NY = ε. Combining these equations gives NN = µε.
Consequently, the refractive kernel N(t) satisfies the Volterra integral equation of
the second kind

2N(t) + (N ∗N)(t) = χe(t) + χm(t) + (χe ∗ χm)(t). (2.5)

Volterra integral equations of the second kind are uniquely solvable in the space
of continuous functions in each compact time-interval and the solutions depend
continuously on data [9]. Consequently, the refractive kernel inherits causality and
smoothness properties from the susceptibility kernels.

Similarly, the admittance and impedance kernels satisfy Volterra integral equa-
tion of the second kind:

Y (t) + (Y ∗ χm)(t) = N(t) − χm(t),

Z(t) + (Z ∗N)(t) = χm(t) −N(t).

The admittance and impedance kernels inherit causality and regularity from the
susceptibility kernels. Notice also that the continuity condition (2.1) implies that

N(+0) = Y (+0) = Z(+0) = 0. (2.6)

In the non-magnetic case, µ = 1, one obtains N = µY = Y .
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Figure 1: A slab waveguide. The electric and magnetic susceptibility kernels of
the core, |y| < d/2, are χe

1(t) and χm
1 (t), whereas the corresponding properties of

the cladding, |y| > d/2, are χe
2(t) and χm

2 (t). Pulses propagate in the z-direction
only.

3 Modes in open slab waveguides

The general idea of an open waveguide is that it should support pulse modes that

1. travel along the guide only, i.e., not in transverse directions, and

2. are confined mainly to the core in order to carry finite energy.

3.1 Basic modes of propagation

The geometry of the slab waveguide is depicted in Figure 1. The coordinate system
has been located symmetrically with the y-axis perpendicular to the planes (y =
±d/2) that separate the two materials. Equations (2.3) hold in both regions with

ε =

{
ε1 = 1 + χe

1(t) ∗ (|y| < d/2),

ε2 = 1 + χe
2(t) ∗ (|y| > d/2)

and

µ =

{
µ1 = 1 + χm

1 (t) ∗ (|y| < d/2),

µ2 = 1 + χm
2 (t) ∗ (|y| > d/2).
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Due to the special geometry, all fields are assumed to be independent of, say,
the x-coordinate, and, consequently, by (2.3), two kind of solutions can be identi-
fied, namely, transverse electric (TE) solutions, for which Ex(y, z, t), Hy(y, z, t), and
Hz(y, z, t) are the only non-vanishing components, and transverse magnetic (TM)
solutions, for which Hx(y, z, t), Ey(y, z, t), and Ez(y, z, t) are the only non-vanishing
components. Furthermore, since the longitudinal fields can be decomposed uniquely
in odd and even parts with respect to the transverse coordinate y, four fundamental
types of modes can be identified, namely,

• Even longitudinal TE solutions: Hz(y, z, t) is even w.r.t. y, whereas Ex(y, z, t)
and Hy(y, z, t) are odd w.r.t. y,

• Odd longitudinal TE solutions: Hz(y, z, t) is odd w.r.t. y, whereas Ex(y, z, t)
and Hy(y, z, t) are even w.r.t. y,

• Even longitudinal TM solutions: Ez(y, z, t) is even w.r.t. y, whereas Hx(y, z, t)
and Ey(y, z, t) are odd w.r.t. y,

• Odd longitudinal TM solutions: Ez(y, z, t) is odd w.r.t. y, whereas Hx(y, z, t)
and Ey(y, z, t) are even w.r.t. y.

This is, of course, in concordance with the time-harmonic case.
By definition, pulses are propagated along the z-axis only, and owing to the

absence of optical response in permittivity and permeability operators of the con-
stituents [11], wave-fronts travel with the vacuum speed c0. The aim is to look for
up-going or down-going modes of propagation with the z-dependencies

exp
(
∓zc−1

0 ∂tNz

)
, (3.1)

respectively, where the real temporal integral operator

Nz = 1 + Nz(t) ∗ (for all y),

is referred to as the longitudinal refractive index. The integral kernel Nz(t) is sup-
posed to inherit causality and regularity from the susceptibility kernels; in particular

Nz(+0) = 0. (3.2)

The propagator (3.1) can, therefore, be factored as

δ
(
t∓ zc−1

0

)
∗ exp

(
∓zc−1

0 N ′
z(t)∗

)
= δ

(
t∓ zc−1

0

)
∗

(
1 + P∓(z, t)∗

)
,

where the kernels P∓(z, t), for fixed z, satisfy the temporal Volterra integral equa-
tions of the second kind [8]

tP∓(z, t) = ∓tzc−1
0 N ′

z(t) ∓
(
tzc−1

0 N ′
z ∗ P∓)

(z, t) (3.3)

in terms of the kernel N ′
z(t). In particular, P∓(0, t) = 0, and, by differentiation of

both members of (3.3), P∓(z,+0) = ∓zc−1
0 N ′

z(+0). The short-hand notation

∂z = ∓c−1
0 ∂tNz = ∓Kz (3.4)

is used frequently below, depending on whether the mode is up-going or down-going.



6

3.2 Propagators in transverse directions

Propagators are well-known concepts from normal incidence scattering problems,
see, e.g., Karlsson and Rikte [8]. These operators take TEM pulses in the plane
y = y1 to a plane y = y2, and if the medium is homogeneous, the propagator
depends on the distance y2 − y1 rather than on y1 and y2. It is natural to employ
the propagator concept also in slab waveguide problems, although pulses do not
propagate in transverse directions in this case.

It is appropriate to introduce the intrinsic operators

N =

{
N1 = 1 + N1(t) ∗ (|y| < d/2),

N2 = 1 + N2(t) ∗ (|y| > d/2),

Y =

{
Y1 = 1 + Y1(t) ∗ (|y| < d/2),

Y2 = 1 + Y2(t) ∗ (|y| > d/2),

and

Z =

{
Z1 = 1 + Z1(t) ∗ (|y| < d/2),

Z2 = 1 + Z2(t) ∗ (|y| > d/2).

The dynamics (2.4) of the complex field now be written as

∂y

(
Qz

Qx

)
=

(
0

(
ic−1

0 ∂tN
)−1

((
c−1
0 ∂tN

)2 − ∂2
z

)
ic−1

0 ∂tN 0

)(
Qz

Qx

)
,

where

Qy = −
(
ic−1

0 ∂tN
)−1

∂zQx.

The propagator for the field vector (Qz, Qx) a distance y in the inner or in the outer
region is thus, formally,(

1 0
0 1

)
cosh

(
y
√

K2 − ∂2
z

)

+

(
0 (iK)−1

√
K2 − ∂2

z

iK
(√

K2 − ∂2
z

)−1

0

)
sinh

(
y
√

K2 − ∂2
z

)
,

or (
1 0
0 1

)
cos

(
y
√
∂2

z −K2
)

+ i

(
0 K−1

√
∂2

z −K2

K
(√

∂2
z −K2

)−1

0

)
sin

(
y
√
∂2

z −K2
)
,
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where

K = c−1
0 ∂tN =

{
K1 = c−1

0 ∂tN1 (|y| < d/2),

K2 = c−1
0 ∂tN2 (|y| > d/2),

and the positive square-root has been chosen1. This propagator can be written as

W+ exp
(
−y

√
K2 − ∂2

z

)
+ W− exp

(
y
√
K2 − ∂2

z

)
where the operators 2

W± =
1

2

(
1 ∓ (iK)−1

√
K2 − ∂2

z

∓iK
(√

K2 − ∂2
z

)−1

1

)

are orthogonal projections:


W∓ · W∓ = W∓,

W± · W∓ = W∓ · W± =

(
0 0
0 0

)
,

W+ + W− =

(
1 0
0 1

)
.

Consequently, the operators

W± exp
(
∓y

√
K2 − ∂2

z

)
represent independent solutions.

3.3 Condition for existence of pulse modes

For a specific mode, (3.4) applies, and

K2 − ∂2
z =K2 −K2

z = c−2
0 ∂2

t (2 + (N + Nz)(t)∗) (N −Nz)(t) ∗
=c−2

0 (2 + (N + Nz)(t)∗) ((N −Nz)
′(+0) + (N −Nz)

′′(t)∗) ,

where the initial conditions (2.6) and (3.2) have been used. The positive square-root
of this operator is well defined if only N ′(+0) �= N ′

z(+0). Thus,

N ′
1(+0) �= N ′

z(+0) �= N ′
2(+0). (3.5)

From the proceeding sections follows that pulse modes with finite energy cannot
propagate unless

N ′
1(+0) ≤ N ′

z(+0) ≤ N ′
2(+0). (3.6)

1The negative square-root could equally well have been chosen.
2These operators are known as spectral projections.
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Combining this with (3.5) gives

N ′
1(+0) < N ′

z(+0) < N ′
2(+0), (3.7)

and, in particular,

N ′
1(+0) < N ′

2(+0), (3.8)

which is the condition for existence of propagating finite energy pulse modes in the
slab. Observe that the inequality (3.8) is equivalent to

(χe
1)

′(+0) + (χm
1 )′(+0) < (χe

2)
′(+0) + (χm

2 )′(+0).

3.4 Square-root, exponential, cosine, and sine operators

One of the relevant square-root operators introduced above is of the form

d/2
√
K2

2 −K2
z =

d

2c0

√
2(N ′

2(+0) −N ′
z(+0) + U2(t)∗,

where

d

2c0
2
√

2 (N ′
2(+0) −N ′

z(+0))U2(t) + (U2 ∗ U2) (t) = [2(N ′′
2 (t) −N ′′

z (t))

+ (N ′
2(+0) −N ′

z(+0)) (N2(t) + Nz(t))

+ ((N ′′
2 −N ′′

z ) ∗ (N2 + Nz)) (t)]

(
d

2c0

)2

.

(3.9)

Since Nz(t) = (H ∗N ′
z)(t) combined with

N ′
z(t) = N ′

z(+0)H(t) + (H ∗N ′′
z )(t), (3.10)

gives

Nz(t) = N ′
z(+0)tH(t) + ((tH) ∗N ′′

z )(t),

equation (3.9) is a temporal Volterra integral equation of the second kind in the
unknown kernels U2(t) and N ′′

z (t) for a fixed value of N ′
z(+0).

Observe that N ′′
2 (t) and for that matter N ′′

1 (t) are known quantities since dif-
ferentiation of both members of equation (2.5) gives the temporal Volterra integral
equation of the second kind

2N ′′(t) + N ′(+0)N(t) + (N ∗N ′′)(t) = (χe)′′(t) + (χm)′′(t) + ((χe)′ ∗ (χm)′)(t),

where N(t) in the left member and the function in the right member are known,
and 2N ′(+0) = (χe)′(+0) + (χm)′(+0) is known as well.
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The corresponding exponentials are

exp
(
∓y

√
K2 −K2

z

)
= exp

(
∓yc−1

0

√
2(N ′

2(+0) −N ′
z(+0)

)
exp (∓y2/dU2(t)∗)

= exp
(
∓yc−1

0

√
2(N ′

2(+0) −N ′
z(+0)

) (
1 + V ∓

2 (y, t)∗
)
,

where the kernels V ∓
2 (y, t) for fixed y satisfy the temporal Volterra integral equations

of the second kind

tV ∓
2 (y, t) = ∓ty2/dU2(t) ∓

(
ty2/dU2 ∗ V ∓

2

)
(y, t) (3.11)

in terms of the kernel U2(t). In view of (3.7), only the upper solution is finite.
The other square-root operator of interest is of the form

d/2
√

K2
z −K2

1 =
d

2c0

√
2(N ′

z(+0) −N ′
1(+0) + U1(t)∗,

where

d

2c0
2
√

2 (N ′
z(+0) −N ′

1(+0))U1(t) + (U1 ∗ U1) (t) = [2(N ′′
z (t) −N ′′

1 (t))

+ (N ′
z(+0) −N ′

1(+0)) (Nz(t) + N1(t))

+ ((N ′′
z −N ′′

1 ) ∗ (Nz + N1)) (t)]

(
d

2c0

)2

.

(3.12)

This is a temporal Volterra integral equation of the second kind in the kernels U1(t)
and N ′′

z (t) for a fixed value of N ′
z(+0).

The sine and cosine operators


sin

(
y
√

K2
z −K2

1

)
=

exp
(
iy

√
K2

z −K2
1

)
− exp

(
−iy

√
K2

z −K2
1

)
2i

cos

(
y
√
K2

z −K2
1

)
=

exp
(
iy

√
K2

z −K2
1

)
+ exp

(
−iy

√
K2

z −K2
1

)
2

are perhaps most easily obtained from the complex exponentials

exp

(
∓iy

√
K2

z −K2
1

)
= exp

(
∓iyc−1

0

√
2(N ′

z(+0) −N ′
1(+0)

)
exp (∓iy2/dU1(t)∗)

= exp
(
∓iyc−1

0

√
2(N ′

z(+0) −N ′
1(+0)

) (
1 + V ∓

1 (y, t)∗
)
,

where the complex conjugate kernels V ∓
1 (y, t) for fixed y satisfy the temporal Vol-

terra integral equations of the second kind

tV ∓
1 (y, t) = ∓ity2/dU1(t) ∓

(
ity2/dU1 ∗ V ∓

1

)
(y, t) (3.13)

in terms of the kernel U1(t).
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3.5 TM modes

For transverse magnetic modes,(
Qz

Qx

)
=

1

2

(
1 0
0 −iZ

) (
Ez

η0Hx

)

and, consequently, (
Ez

η0Hx

)
= 2

(
1 0
0 iY

) (
Qz

Qx

)
.

The propagator for the vector (Ez, η0Hx) is therefore
 cos

(
y
√
∂2

z −K2
)

ZK−1
√
∂2

z −K2 sin
(
y
√
∂2

z −K2
)

−YK
(√

∂2
z −K2

)−1

sin
(
y
√
∂2

z −K2
)

cos
(
y
√
∂2

z −K2
)




or, equivalently, the sum of the independent propagators

1

2

(
1 ±ZK−1

√
K2 − ∂2

z

±YK
(√

K2 − ∂2
z

)−1

1

)
exp

(
∓y

√
K2 − ∂2

z

)
. (3.14)

In the outer region, the propagators (3.14) apply. In order to obtain finite-energy
solutions in each transverse plane, one has to demand that

Ez(d/2, z, t) = Z2K−1
2

√
K2

2 − ∂2
zη0Hx(d/2, z, t), (3.15)

in view of the results presented in section 3.4.

3.5.1 Even longitudinal TM modes

For even longitudinal TM solutions, Hx(0, z, t) = 0. The solution in the inner region
is given by

Ez(y, z, t) = cos

(
y
√

K2
z −K2

1

)
f(z, t)

η0Hx(y, z, t) = −Y1K1

(√
K2

z −K2
1

)−1

sin

(
y
√

K2
z −K2

1

)
f(z, t)

(|y| < d/2),

where f(z, t) = Ez(0, z, t) is a real function. Combination with the condition for
finite outer solutions (3.15) gives the Volterra integral equation of the second kind

−Z1K−1
1

√
K2

z −K2
1 cot

(
d/2

√
K2

z −K2
1

)
f = Z2K−1

2

√
K2

2 −K2
zf (3.16)
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or, equivalently, since f is arbitrary, the temporal integral operator identity(
ε1

√
K2

2 −K2
z + iε2

√
K2

z −K2
1

)
exp

(
id

√
K2

z −K2
1

)

= ε1

√
K2

2 −K2
z − iε2

√
K2

z −K2
1,

(3.17)

which determines the possible longitudinal refractive indices, Nz, i.e., the modes of
propagation. Condition (3.15) shows that, for a fixed mode, the outer solution is

Ez(y, z, t) = exp

(
− (|y| − d/2)

√
K2

2 −K2
z

)
Ez(d/2, z, t)

η0Hx(y, z, t) = sgn(y) exp

(
− (|y| − d/2)

√
K2

2 −K2
z

)
η0Hx(d/2, z, t)

(|y| > d/2).

To obtain the different modes of propagation, one has to solve equation (3.17)
(or equation (3.16)). The variety of modes arise from the possible values of the
initial derivative of the longitudinal refractive kernel, N ′

z(+0). Since the principal
parts of both members of equation (3.16) must agree, one obtains

−
√
λz − λ1 cot

(√
λz − λ1

)
=

√
λ2 − λz, (3.18)

where the introduced dimensionless numbers are defined by

λi =
d2

c202
N ′

i(+0) (i = 1, 2, z). (3.19)

Equation (3.18) shows that the inequalities (3.6) hold: for if N ′
z(+0) > N ′

2(+0),
then the right-hand side of equation (3.18) becomes purely imaginary, which can
never be the case for the left-hand side, and, moreover, if N ′

1(+0) > N ′
z(+0), then

equation (3.18) reads

0 > −
√
λ1 − λz coth

(√
λ1 − λz

)
=

√
λ2 − λz > 0,

which, since the members are of opposite signs, leads to a contradiction. Further-
more, the equation

−
√
λz − λ1 cot

(√
λz − λ1

)
=

√
λ2 − λz (λ1 ≤ λz ≤ λ2), (3.20)

has at most a finite number of zeros for given values of λ1, λ2. This is so because
the right-hand side is positive and strictly decreasing, whereas the left-hand side
(extended to all λz > λ1) is strictly increasing from the value −1 to the value +∞
in the interval 0 ≤ λz − λ1 ≤ π2 and strictly increasing from the value −∞ to the
value +∞ in the intervals (nπ)2 ≤ λz − λ1 ≤ ((n + 1)π)2 for n = 1, 2, 3, · · · . If
λ2 − λ1 < (π/2)2, then there is no solution. The situation when λ1 = 1 and λ2 = 12
is depicted in Figure 2.
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Figure 2: The functions −
√
λz − λ1 cot

(√
λz − λ1

)
and

√
λ2 − λz restricted to

λ1 ≤ λz ≤ λ2 in case λ1 = 1 and λ2 = 12. There is precisely one point of intersection,
namely, approximately at λz = 6.5; the other visible “solution” is due to a curiosity
of MATLAB.

For a fixed solution λz of (3.20), the temporal integral operator identity (3.17)
becomes(

(1 + χe
1(t)∗)

(√
λ2 − λz + U2(t)∗

)
+ i (1 + χe

2(t)∗)
(√

λz − λ1 + U1(t)∗
))

· exp
(
i2

√
λz − λ1

) (
1 + V +

1 (d, t)∗
)

= (1 + χe
1(t)∗)

(√
λ2 − λz + U2(t)∗

)
− i (1 + χe

2(t)∗)
(√

λz − λ1 + U1(t)∗
)
,

where the law of exponents for the exponential has been used. Since, due to (3.20),(√
λ2 − λz + i

√
λz − λ1

)
exp

(
i2

√
λz − λ1

)
=

√
λ2 − λz − i

√
λz − λ1,
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this identity reduces to the temporal Volterra integral equation of the second kind(
U2 +

√
λ2 − λzχ

e
1 + U2 ∗ χe

1 + iU1 + i
√
λz − λ1χ

e
2 + iU1 ∗ χe

2

)
(t)

+
((

U2 +
√
λ2 − λzχ

e
1 + U2 ∗ χe

1 + iU1 + i
√
λz − λ1χ

e
2 +

iU1 ∗ χe
2

)
(·) ∗ V +

1 (d, ·)
)
(t)

+
(√

λ2 − λz + i
√
λz − λ1

)
V +

1 (d, t)

= c
(
U2 +

√
λ2 − λzχ

e
1 + U2 ∗ χe

1 − iU1 − i
√
λz − λ1χ

e
2 − iU1 ∗ χe

2

)
(t),

(3.21)

where

c = exp
(
−i2

√
λz − λ1

)
=

√
λ2 − λz + i

√
λz − λ1√

λ2 − λz − i
√
λz − λ1

.

Together with equation (3.9),

2
√
λ2 − λzU2(t) + (U2 ∗ U2) (t) = 2 (d/(2c0))

2 (N ′′
2 (t) −N ′′

z (t))

+ (λ2 − λz) (N2(t) + Nz(t))/2 +
(
(d/(2c0))

2 (N ′′
2 −N ′′

z ) ∗ (N2 + Nz)
)
(t),

(3.22)

and equation (3.12),

2
√
λz − λ1U1(t) + (U1 ∗ U1) (t) = 2 (d/(2c0))

2 (N ′′
z (t) −N ′′

1 (t))

+ (λz − λ1) (Nz(t) + N1(t))/2 +
(
(d/(2c0))

2 (N ′′
z −N ′′

1 ) ∗ (Nz + N1)
)
(t),

(3.23)

where

Nz(t) = λz ((2c0)/d)
2 tH(t)/2 + ((tH) ∗N ′′

z )(t),

and the lower equation (3.13),

tV +
1 (d, t) = it2U1(t) +

(
it2U1(·) ∗ V +

1 (d, ·)
)
(t), (3.24)

equation (3.21) forms a system of temporal Volterra integral equations of the second
kind in four unknown kernels, namely, N ′′

z (t), U2(t), U1(t), and V +
1 (d, t). Such

systems of equations are uniquely solvable in the space of continuous functions, and
the solution depends continuously on (susceptibility) data. In particular, the initial
values are easily obtained from the system of integral equations consisting of (3.21),
(3.22), (3.23), and (3.24):


U2(+0) + iU1(+0) +
(√

λ2 − λz + i
√
λz − λ1

)
V +

1 (d,+0)

=
(√

λ2 − λz + i
√
λz − λ1

)
(U2(+0) − iU1(+0)) /

(√
λ2 − λz − i

√
λz − λ1

)
,√

λ2 − λzU2(+0) = (d/(2c0))
2 (N ′′

2 (+0) −N ′′
z (+0)),√

λz − λ1U1(+0) = (d/(2c0))
2 (N ′′

z (+0) −N ′′
1 (+0)),

V +
1 (d,+0) = 2iU1(+0),

(3.25)
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where the last condition has been obtained by temporal differentiation of both mem-
bers of (3.24). This gives

N ′′
z (+0) =

λz−λ1

λ2−λ1
N ′′

2 (+0) +
(

λ2−λz

λ2−λ1
+
√
λ2 − λz

)
N ′′

1 (+0)

1 +
√
λ2 − λz

from which the other initial values readily follow.
In order to obtain the fields in an arbitrary point y, some of equations (3.13)

and (3.11) can be employed, depending on whether |y| < d/2 or |y| > d/2. The
kernel N ′

z(t) is obtained from N ′′
z (t) and N ′

z(+0) in a straightforward manner by
integration, see (3.10). Having obtained this kernel, the solution to the propagation
problem in the z-direction is obtained by solving the temporal Volterra integral
equations of the second kind (3.3) for the propagator kernels P∓(z, t). Solving these
equations determines thoroughly each mode of propagation for arbitrary excitation
f(z = 0, t) = Ez(y = 0, z = 0, t).

3.5.2 Odd longitudinal TM modes

For odd longitudinal TM solutions, Ez(0, z, t) = 0, and the solution in the inner
region becomes

Ez(y, z, t) = Z1K−1

1

√
K2

z −K2
1 sin

(
y
√
K2

z −K2
1

)
f(z, t)

η0Hx(y, z, t) = cos

(
y
√

K2
z −K2

1

)
f(z, t)

(|y| < d/2),

where f(z, t) = η0Hx(0, z, t) is a real function. Insertion in the condition for finite
outer solutions (3.15) gives an equation that determines the modes of propagation:

Z1K−1
1

√
K2

z −K2
1 tan

(
d/2

√
K2

z −K2
1

)
f = Z2K−1

2

√
K2

2 −K2
zf. (3.26)

The condition (3.15) shows that the outer solution is

Ez(y, z, t) = sgn(y) exp

(
− (|y| − d/2)

√
K2

2 −K2
z

)
Ez(d/2, z, t)

η0Hx(y, z, t) = exp

(
− (|y| − d/2)

√
K2

2 −K2
z

)
η0Hx(d/2, z, t)

(|y| > d/2).

Since the principal parts of both members of equation (3.26) must agree, one
obtains √

λz − λ1 tan
(√

λz − λ1

)
=

√
λ2 − λz, (3.27)

where the λ’s are given by (3.19).



15

1 2 3 4 5 6 7 8 9 10 11 12
-1

0

1

2

3

4

5

6

7

8

9

Figure 3: The functions
√
λz − λ1 tan

(√
λz − λ1

)
and

√
λ2 − λz restricted to

λ1 ≤ λz ≤ λ2 in case λ1 = 1 and λ2 = 12. There are two points of intersection,
namely, approximately at λz = 2.5 and at λz = 11.8.

Equation (3.27) shows that the inequalities (3.6) hold: for if N ′
z(+0) > N ′

2(+0),
then the right-hand side of equation (3.27) becomes purely imaginary, which can
never be the case for the left-hand side, and, moreover, if N ′

1(+0) > N ′
z(+0), then

equation (3.27) reads

0 > −
√
λ1 − λz tanh

(√
λ1 − λz

)
=

√
λ2 − λz > 0,

which, since the members are of opposite signs, leads to a contradiction. Further-
more, the equation√

λz − λ1 tan
(√

λz − λ1

)
=

√
λ2 − λz (λ1 ≤ λz ≤ λ2), (3.28)

has at least one zero and at most a finite number of zeros for given values of λ1, λ2.
This is so because the right-hand side is positive and strictly decreasing, whereas
the left-hand side (extended to all λz > λ1) is strictly increasing from the value 0 to
the value +∞ in the interval 0 ≤ λz − λ1 ≤ (π/2)2 and strictly increasing from the
value −∞ to the value +∞ in the interval ((n+ 1/2)π)2 ≤ λz − λ1 ≤ ((n+ 3/2)π)2

for n = 0, 1, 2, 3, · · · . The situation when λ1 = 1 and λ2 = 12 is depicted in Figure 3.
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For each possible value of λz, the dispersion equation becomes(
ε2

√
K2

z −K2
1 − iε1

√
K2

2 −K2
z

)
exp

(
id

√
K2

z −K2
1

)

= ε2

√
K2

z −K2
1 + iε1

√
K2

2 −K2
z.

Since, due to (3.28),(√
λz − λ1 − i

√
λ2 − λz

)
exp

(
i2

√
λz − λ1

)
=

√
λz − λ1 + i

√
λ2 − λz,

this identity reduces to the temporal Volterra integral equation of the second kind(
U1 +

√
λz − λ1χ

e
2 + U1 ∗ χe

2 − iU2 − i
√
λ2 − λzχ

e
1 − iU2 ∗ χe

1

)
(t)

+
((

U1 +
√
λz − λ1χ

e
2 + U1 ∗ χe

2 − iU2 − i
√
λ2 − λzχ

e
1

− iU2 ∗ χe
1

)
(·) ∗ V +

1 (d, ·)
)
(t)

+
(√

λz − λ1 − i
√
λ2 − λz

)
V +

1 (d, t)

= c
(
U1 +

√
λz − λ1χ

e
2 + U1 ∗ χe

2 + iU2 + i
√
λ2 − λzχ

e
1 + iU2 ∗ χe

1

)
(t),

(3.29)

where

c = exp
(
−i2

√
λz − λ1

)
=

√
λz − λ1 − i

√
λ2 − λz√

λz − λ1 + i
√
λ2 − λz

.

Together with equations (3.22), (3.23), and (3.24), (3.29) forms a system of tempo-
ral Volterra integral equations of the second kind in unknown kernels: N ′′

z (t), U2(t),
U1(t), and V +

1 (d, t). The complete modes are obtained just as in section 3.5.1.

3.6 TE modes

Since the situation for TE modes is quite analogous to the one in the TM case, only
the main equations are given. For transverse electric modes,(

Qz

Qx

)
=

1

2

(
−iZ 0

0 1

) (
η0Hz

Ex

)

and, consequently, (
η0Hz

Ex

)
= 2

(
iY 0
0 1

) (
Qz

Qx

)
.

The propagator for the vector (η0Hz, Ex) is therefore
 cos

(
y
√
∂2

z −K2
)

−YK−1
√
∂2

z −K2 sin
(
y
√
∂2

z −K2
)

ZK
(√

∂2
z −K2

)−1

sin
(
y
√
∂2

z −K2
)

cos
(
y
√
∂2

z −K2
)
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or, equivalently, the sum of the independent propagators

1

2

(
1 ∓YK−1

√
K2 − ∂2

z

∓ZK
(√

K2 − ∂2
z

)−1

1

)
exp

(
∓y

√
K2 − ∂2

z

)
. (3.30)

In the outer region, the propagators (3.30) apply. In order to obtain finite-energy
solutions in each transverse plane, one has to demand that

η0Hz(d/2, z, t) = −Y2K−1
2

√
K2

2 − ∂2
zEx(d/2, z, t), (3.31)

in view of the results presented in section 3.4.

3.6.1 Even longitudinal TE modes

For even longitudinal TE solutions, Ex(0, z, t) = 0. The solution in the inner region
is given by


η0Hz(y, z, t) = cos

(
y
√

K2
z −K2

1

)
f(z, t)

Ex(y, z, t) = Z1K1

(√
K2

z −K2
1

)−1

sin

(
y
√
K2

z −K2
1

)
f(z, t)

(|y| < d/2),

where f(z, t) = η0Hz(0, z, t) is a real function. Combination with the condition for
finite outer solutions (3.31) gives the Volterra integral equation of the second kind

−Y1K−1
1

√
K2

z −K2
1 cot

(
d/2

√
K2

z −K2
1

)
f = Y2K−1

2

√
K2

2 −K2
zf

or, equivalently, since f is arbitrary, the temporal integral operator identity(
µ1

√
K2

2 −K2
z + iµ2

√
K2

z −K2
1

)
exp

(
id

√
K2

z −K2
1

)

= µ1

√
K2

2 −K2
z − iµ2

√
K2

z −K2
1,

which determines the possible longitudinal refractive indices, Nz, i.e., the modes of
propagation. Condition (3.31) shows that, for a fixed mode, the outer solution is

η0Hz(y, z, t) = exp

(
− (|y| − d/2)

√
K2

2 −K2
z

)
η0Hz(d/2, z, t)

Ex(y, z, t) = sgn(y) exp

(
− (|y| − d/2)

√
K2

2 −K2
z

)
Ex(d/2, z, t)

(|y| > d/2).

Clearly, the same λz’s as for even longitudinal TM modes are obtained. The complete
even longitudinal TE modes are obtained analogously to the even longitudinal TM
modes.
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3.6.2 Odd longitudinal TE modes

For odd longitudinal TE solutions, η0Hz(0, z, t) = 0, and the solution in the inner
region becomes


η0Hz(y, z, t) = −Y1K−1

1

√
K2

z −K2
1 sin

(
y
√

K2
z −K2

1

)
f(z, t)

Ex(y, z, t) = cos

(
y
√
K2

z −K2
1

)
f(z, t)

(|y| < d/2),

where f(z, t) = Ex(0, z, t) is a real function. Insertion in the condition for finite
outer solutions (3.31) gives an equation that determines the modes of propagation:

Y1K−1
1

√
K2

z −K2
1 tan

(
d/2

√
K2

z −K2
1

)
f = Y2K−1

2

√
K2

2 −K2
zf.

The condition (3.31) shows that the outer solution is

η0Hz(y, z, t) = sgn(y) exp

(
− (|y| − d/2)

√
K2

2 −K2
z

)
η0Hz(d/2, z, t)

Ex(y, z, t) = exp

(
− (|y| − d/2)

√
K2

2 −K2
z

)
Ex(d/2, z, t)

(|y| > d/2).

Clearly, the same λz’s as for odd longitudinal TM modes are obtained. The complete
odd longitudinal TE modes are obtained analogously to odd longitudinal TM modes.

4 Discussion

The main result presented in this paper is the condition (3.8) for existence of prop-
agating pulse modes in the slab waveguide:

N ′
1(+0) < N ′

2(+0). (4.1)

The corresponding condition for propagating time-harmonic modes of angular fre-
quency ω is (in the lossless case) well known, see, e.g., Cheng [2]:

n2(ω) < n1(ω), (4.2)

where the index of refraction ni(ω) is the Fourier transform of the distribution
δ(t) +Ni(t), where δ(t) is the Dirac delta function (i = 1, 2). A natural question to
ask is whether these two expressions are connected in some way.

To answer this question, let us restrict ourselves to non-magnetic media and
to single-resonance Lorentz models (2.2) (in the lossless case v = 0) in both core
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(subscript 1) and cladding (subscript 2), and denote the natural frequencies by ω0,i

and the plasma frequencies by ωp,i (i = 1, 2). If now ω >> max (ω0,1, ω0,2), then

ni(ω) =

√
1 −

ω2
p,i

ω2
(i = 1, 2)

and, consequently, (4.2) becomes ω2
p,1 < ω2

p,2. This is precisely condition (4.1).
This simple example indicates that condition (4.1) has to be fulfilled in order

that high-frequency components propagate. For electric and magnetic susceptibility
kernels that are linear combinations of Lorentz kernels, condition (4.1) becomes∑

i

ω2
p,1,i <

∑
j

ω2
p,2,j,

where i and j run over the number of (electric and magnetic) Lorentz processes in
the core (subscript 1) and in the cladding (subscript 2), respectively, and ωp,1,i and
ωp,2,j are the corresponding plasma frequencies.
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