
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Parallelism in Constraint Programming

Rolf, Carl Christian

2011

Link to publication

Citation for published version (APA):
Rolf, C. C. (2011). Parallelism in Constraint Programming. [Doctoral Thesis (compilation), Department of
Computer Science].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/8ec4717e-5583-4c0d-bc2d-3dd919ceebe2

Parallelism in Constraint Programming

Carl Christian Rolf

This research work was funded in part by CUGS,
the National Graduate School of Computer Science, Sweden

ISBN 978-91-7473-154-5
ISSN 1404-1219
Dissertation 35, 2011
LU-CS-DISS:2011-02

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: Carl_Christian.Rolf@cs.lth.se
Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2011

c© 2011 Carl Christian Rolf

ABSTRACT

Writing efficient parallel programs is the biggest challenge of the software
industry for the foreseeable future. We are currently in a time when par-
allel computers are the norm, not the exception. Soon, parallel processors
will be standard even in cell phones. Without drastic changes in hardware
development, all software must be parallelized to its fullest extent.

Parallelism can increase performance and reduce power consumption
at the same time. Many programs will execute faster on a dual-core pro-
cessor than a single core processor running at twice the speed. Halving the
speed of a processor can reduce the power consumption up to four times.
Hence, parallelism gives more performance per unit of power to efficient
programs.

In order to make use of parallel hardware, we need to overcome the
difficulties of parallel programming. To many programmers, it is easier to
learn a handful of small domain-specific programming languages than to
learn efficient parallel programming. The frameworks for these languages
can then automatically parallelize the program. Automatically paralleliz-
ing traditional programs is usually much more difficult.

In this thesis, we study and present parallelism in constraint program-
ming (CP). We have developed the first constraint framework that auto-
matically parallelizes both the consistency and the search of the solving
process. This allows programmers to avoid the difficult issues of parallel
programming. We also study distributed CP with independent agents and
propose solutions to this problem.

Our results show that automatic parallelism in CP can provide very
good performance. Our parallel consistency scales very well for problems
with many large constraints. We also manage to combine parallel con-
sistency and parallel search with a performance increase. The communi-
cation and load-balancing schemes we developed increase the scalability
of parallel search. Our model for distributed CP is orders of magnitude
faster than traditional approaches. As far as we know, it is the first to solve
standard benchmark scheduling problems.

ACKNOWLEDGEMENTS

Shall I this autumn day express my thanks
To all of you who helped? I do, I will.
I hope this sonnet covers all my flanks!
Let me begin with sound of love and thrill

To Bina, sweet and smart, for edits good,
For vastly better life, with swallow’s touch.
My thanks to mom and dad and sis, I should
Communicate; advice of theirs means much.

Friends old, new and on rocks all earn my thanks
For no man is an island bound by blue.
’Tack tack’ to Kris and the department ranks;
Without colleagues - no thesis: it is true.

Last I thank those forgot; my memory
Cannot cope with par’lell consistency!

PAPERS

The following papers are included in this thesis.

• Parallel Consistency in Constraint Programming, The International
Conference on Parallel and Distributed Processing Techniques and
Applications: SDMAS workshop, 2009.

• Combining Parallel Search and Parallel Consistency in Constraint
Programming, International Conference on Principles and Practice
of Constraint Programming: TRICS workshop, 2010.

• Load-Balancing Methods for Parallel and Distributed Constraint
Solving, IEEE International Conference on Cluster Computing,
2008.

• State-Copying and Recomputation in Parallel Constraint Program-
ming with Global Constraints, Euromicro Conference on Parallel,
Distributed and Network-Based Processing, 2008.

• Distributed Constraint Programming with Agents, International
Conference on Adaptive and Intelligent Systems, 2011.

Other papers, not included in this thesis.

• Load-Balancing Methods for Parallel Constraint Solving, Interna-
tional Conference on Principles and Practice of Constraint Pro-
gramming: Doctoral Program, 2008.

• Task Parallelism in Constraint Programming: Parallel Consistency,
CORS-INFORMS International Meeting, 2009.

• Parallel Consistency in Constraint Programming, Second Swedish
Workshop on Multi-Core Computing, 2009.

• Parallel Solving in Constraint Programming, Third Swedish Work-
shop on Multi-Core Computing, 2010.

POPULAR SCIENCE SUMMARY

At our workplace, at home, and on the road, we rely on software. It has
become one of the central technologies on which we base our society. Yet,
software is perhaps the major technology that is understood the least by
the general population.

Most software today is written in languages that requires the program-
mer to specify not only what is to be achieved, but also how. This is a
major limitation, since the best way to do things depends on the hardware.

The older the software code is, the more the computer architectures
are likely to have changed. Today, many companies still run software
written in the seventies. While this code is likely to be all but bug free, the
performance of these systems is lacking.

In the past decade, the hardware development has moved more and
more towards parallelism. The reason is that processors can no longer
become faster while still remaining reasonably easy to cool. This situation
will continue unless some drastically different materials or technologies
emerge.

Every day, we become more reliant on constant access to high perfor-
mance software and software based services, such as online banks. This
increases the performance requirements of almost all software. Previously
this was not a major problem, as faster processors would automatically run
all programs faster. However, today, the increase in hardware capability
comes in the form of more potential parallelism.

Thus, the performance needs of tomorrow’s users can only be satisfied
by embracing parallelism.

Writing efficient parallel programs is the biggest challenge of the soft-
ware industry for the foreseeable future. We are currently in a time when
parallel computers are the norm, not the exception. Soon, parallel proces-
sors will be standard in cell phones. Without drastic changes in hardware
development, all software must be parallelized to its fullest extent.

x

Parallelism can increase performance and reduce power consumption
at the same time. Many programs will execute faster on a dual-core pro-
cessor than a single core processor running at twice the speed. Halving the
speed of a processor can reduce the power consumption up to four times.
Hence, parallelism can give more performance per unit of power.

In the high-performance computing industry, energy efficiency is a pri-
mary concern. The majority of the total cost of a supercomputer today,
during its lifetime, often comes from cooling and power consumption.
More parallelism can both reduce the cost and the environmental impact
of the software services we rely on.

In order to make use of parallel hardware, we need to overcome the
difficulties of parallel programming. To many programmers, it is easier to
learn a handful of small domain-specific programming languages than to
learn efficient parallel programming. The frameworks for these languages
can then automatically parallelize the program. Automatically paralleliz-
ing traditional programs is usually much more difficult.

There are many programming paradigms in use today for solving dif-
ficult problems, such as scheduling. For instance, constraint programming
(CP), integer programming (IP), and satisfiability programming (SAT). Of
all these paradigms, CP is usually considered to be closest to the holy grail
of programming: the user states the problem, and the computer solves it.

In this thesis, we study and present parallelism in constraint program-
ming. We have developed the first constraint framework that automatically
parallelizes both the consistency and the search of the solving process.
This allows programmers to avoid the difficult issues of parallel program-
ming. We also study distributed CP with independent agents and propose
solutions to this problem.

Our results show that automatic parallelism in CP can provide very
good performance. Our parallel consistency scales very well for problems
with many large constraints. We also manage to combine parallel con-
sistency and parallel search with a performance increase. The communi-
cation and load-balancing schemes we developed increase the scalability
of parallel search. Our model for distributed CP is orders of magnitude
faster than traditional approaches. As far as we know, it is the first to solve
standard benchmark scheduling problems.

xi

One of the main uses of CP today is air-crew scheduling, that is, cre-
ating work schedules for pilots and air hostesses. Providing even slightly
better schedules can lead to savings in the order of millions of dollars an-
nually.

By using parallel solving, better schedules can be found for many
problems. Depending on the industry, this can lead to major reductions in
fuel use, increased production speed, or less over-production, all of which
are important for competitiveness and the environment.

CONTENTS

I Introduction 1
1 Constraint Programming 2
2 Parallelism . 4
3 Parallelism in Constraint Programming 5
4 The Future . 6

II Background 9
1 Constraint Programming 9
2 Parallelism . 17

III Parallelism in Constraint Programming 23
1 Modeling for Parallelism and Distribution 23
2 Parallel Consistency . 25
3 Parallel Search . 28
4 Parallelism in Distributed Constraint Programming 33
5 The Future . 35

IV Contributions 37
1 Parallel Consistency . 38
2 Combining Parallel Consistency and Parallel Search 39
3 Relative-Measured Load-Balancing for Parallel Search . . 39
4 Dynamic Trade-off to Balance the Costs of Communica-

tion and Computation . 42
5 Distributed Constraint Programming with Agents 42

V Conclusions 45

xiv CONTENTS

Included Papers 57

I Parallel Consistency in Constraint Programming 59

II Combining Parallel Search and Parallel Consistency in Con-
straint Programming 85

III Load-Balancing Methods for Parallel and Distributed Constraint
Solving 113

IV State-Copying and Recomputation in Parallel Constraint Pro-
gramming with Global Constraints 135

V Distributed Constraint Programming with Agents 159

Appendix 183

A Controlling the Parallelism 185
1 Controlling the Parallel Consistency 186
2 Controlling the Parallel Search 187

CHAPTER I

INTRODUCTION

Efficient parallel programming is necessitated by current hardware devel-
opment. Unless a drastic change in hardware design occurs, all programs
need to be parallelized. Software must become parallel either because
of performance requirements, or to offer more functionality with retained
performance.

Constraint programming (CP) is one of the paradigms closest to the
holy grail of computing: the user states the problem and the computer
solves it [17]. Similar approaches such as satisfiability programming and
integer programming, rarely offer as intuitive modeling. The declarative
nature of CP creates opportunities for parallelization of CP programs.

In this thesis, we study and present parallelism in constraint program-
ming. We have developed the first constraint framework that automatically
parallelizes both the consistency and the search of the solving process.
This allows programmers to avoid the difficult issues of parallel program-
ming. Solving these issues is the greatest software challenge of the fore-
seeable future. We also study distributed CP with independent agents and
propose solutions to this problem.

In the following chapters, we present constraint programming and par-
allelism. We describe ways to parallelize constraint programs and meth-
ods to increase performance. We then summarize the contributions of this
thesis. Finally, we present our conclusions and the future.

2 Introduction

1 Constraint Programming
Constraint programming first started to appear in the late 1960’s [31]. In
the beginning it mostly consisted of logic programming extensions to tra-
ditional programming languages that allowed the programmer to use con-
straint relations. These extensions, however, were not appealing enough
since they relied on fairly simple methods that could rarely be used out-
side specific contexts. Later came languages such as Prolog, which used
a declarative syntax that allowed the programmer to let a powerful solver
take care of the complex operations.

A quick and simple example of constraint programming is the send
more money-problem, where the digits 0 to 9 are assigned to the letters in
a way that solves the equation below.

S E N D
+ M O R E
= M O N E Y

1 send_more_money(Digits) :-
2 Digits = [S,E,N,D,M,O,R,Y],
3 Digits :: [0..9],
4 alldifferent(Digits),
5 S #\= 0,
6 M #\= 0,
7 1000*S + 100*E + 10*N + D
8 + 1000*M + 100*O + 10*R + E
9 #= 10000*M + 1000*O + 100*N + 10*E + Y,

10 labeling(Digits).

Figure 1.1: Send more money-problem modeled in Eclipse Prolog.

The program in Figure 1.1 models the send more money-problem in
Eclipse Prolog. The capital letters are variables that can assume any nu-
meric value. The global constraint on line 3 constrains the variables to
only hold a value between 0 and 9. On line 4 it is declared that all the

1 Constraint Programming 3

variables must have different values. On line 5 and 6 the variables repre-
senting the first digits in the problem numbers are set to not be equal to
zero. On the last three lines the relationships between the values are de-
fined. The actual search for a valid solution is started on line 10. During
the labeling process all the constraints are checked for consistency and the
variables are assigned values.

Large industry relevant problems can be modeled quite easily in CP.
Today, one of the main uses of CP is air crew rostering, in which the
schedules of pilots and stewards are created for the coming weeks. This
is a very difficult problem, as there are thousands of employees, each re-
quiring a variable in the problem. Integer programming is popular for air
crew rostering, but, e.g., modeling that two employees cannot work with
one another is quite inefficient and complex. In CP, this can be modeled
by a single inequality constraint.

When we try to solve a constraint problem, we usually have to search
through combinations of assignments. For instance, we can start by as-
signing value 1 to S in the problem in Figure 1.1. Then, we can remove
this value from all other variables. This removal is performed by consis-
tency algorithms in the constraints. Then, if all constraints hold, we con-
tinue searching by assigning a value to the next variable and so on. This
search progresses until all variables have been assigned a value, giving us
a solution to the problem. If a constraint is violated, we have to undo the
last assignments and try a new value for that variable.

Solving constraint problems is very difficult. It falls into the category
called NP-complete problems, which are very likely to require massive
computing power to solve. Even a small instance of an NP-complete prob-
lem can in some cases take years of computing power to solve.

Constraint programming allows many heuristics to be used in order to
minimize the time needed for solving. These heuristics carry no guarantee
of improving performance. In practice, however, using the CP heuristics
often reduce the solving time by several orders of magnitude compared to
not using any heuristic.

4 Introduction

2 Parallelism

For many decades Moore’s law has held. It dictates that the number of
transistors on a given surface will double every 2 years [38]. Previously,
this density increase has been accompanied by roughly a doubling in pro-
cessor speed. However, in the past few years this connection has fallen
apart.

It is no longer feasible to increase the processor speed as we have done
in the past. The main reason is the heat produced by the processor. Un-
less drastically different materials emerge, a doubling in processor speed
means the heat output increases fourfold. The limit at which it is feasible
to cool away the heat has already been reached [3].

Moore’s law still holds. Today, however, the doubling comes in the
form of putting several processor cores on the same chip. This happens
while the processor speed is held constant. Instead of doubling the clock
frequency, as before, we double the number of cores. This means that we
will be able to run twice as many programs in parallel.

Making programs parallel is necessary in order to harness the power
of the current hardware architectures. As long as putting more processor
cores on the same chip is the cheapest way to improve performance, more
parallelism is needed in all high-performance software.

The main challenge of modern hardware is writing parallel programs.
In imperative languages, the programmer has to specify not only what is to
be achieved, but also how. Parallel programming in imperative languages,
such as Java and C, is entirely different from sequential programming. In
parallel programs, several software modules can modify the exact same
data at the exact same time. This might create non-deterministic behavior.

In order to write parallel programs in imperative languages, we some-
times need to give software modules exclusive access to data. In other
words, we need to prevent all other program modules from reading or
writing the locked data. However, the larger the parts to which we grant
exclusive access, the more parallelism we lose.

Reducing the need for exclusive access is necessary to maximize per-
formance. Sometimes, allowing one tenth of your program remain non-
parallel severely limits the performance [2]. For example, assume the fol-

3 Parallelism in Constraint Programming 5

lowing: we have a house with ten rooms, only one person is allowed in a
room at any time, and each room takes the same amount of time to paint.
Then, if one person can paint the house in ten hours, ten people can paint
the house in one hour. But if you have ten people and eleven rooms, it will
take twice as long.

Imperative languages place a too heavy burden on the programmer.
Minimizing exclusive access is difficult and bug prone. Declarative lan-
guages, such as CP, can in principle automatically parallelize difficult
problems. For many programmers it is probably easier to learn a handful
of domain specific declarative languages than to learn high performance
parallel programming in imperative languages.

3 Parallelism in Constraint Programming
When we automatically parallelize a constraint program, we divide the
work needed to solve the problem between several constraint solvers.
These solvers are either run on their own processor cores or on separate
computers. Depending on the hardware used, communication either takes
place in main memory or over a network.

One way of parallelizing the program in Figure 1.1 is to evaluate the
constraints in parallel. This is called parallel consistency. It means that
we run the consistency algorithm of each constraint in parallel. This can
be very useful if the consistency is time consuming.

Another way to parallelize constraint programs is to split the possible
assignments of the variable between computers. This is called parallel
search, since the search takes place on several solvers at the same time.
An example of such a split is depicted in Figure 1.2. After the split, both
solvers can work independently of each other. The theoretical maximum
performance gain usually scales super-linearly with the number of solvers
used. However, due to hardware and software limitations, the real world
scalability is typically much lower.

The kind of splitting depicted in Figure 1.2 is the most common way of
parallelizing constraint programs. In this thesis we will also study parallel
consistency, and how to combine it with parallel search. As far as we
know, this is the first time this combination has ever been studied.

6 Introduction

Solver A

S ∈ {0..4}
[E,N,D,M,O,R,Y] ∈ {0..9}

Solver B

S ∈ {5..9}
[E,N,D,M,O,R,Y] ∈ {0..9}

Solver A

S ∈ {0..9}
[E,N,D,M,O,R,Y] ∈ {0..9}

Split

Figure 1.2: Splitting in the send more money problem.

4 The Future

It is always hard to predict the future, but some trends are clear. If the cur-
rent hardware development continues towards more parallelism, all pro-
grams will have to be written to make the most of the hardware. This is
especially important for high performance programs.

Another major trend in software development is a move towards more
abstraction and the use of domain specific languages. More abstract rep-
resentation makes the software more portable between different computer
architectures and reduces maintenance costs. Domain specific languages
allow complex software problems to be described in a more human read-
able way, this shortens development time and reduces costs.

Constraint programming offers a way to write programs with a high
level of abstraction. CP is also suitable for complex problems that require
a lot of processing power to solve. Furthermore, the solving of these prob-
lems can be automatically parallelized to make use of the latest hardware.
Once, the problem model is written, it can easily be moved to other con-
straint solvers in order to maximize performance.

4 The Future 7

In industry, integer programming (IP) is much more prevalent than CP.
IP has both benefits and drawbacks. Satisfiability programming (SAT) is
overtaking CP with regard to performance for specific classes of problems,
but the modeling is more complex. In the future, CP, IP, and SAT will
move closer so that problem models can be split between these different
solving methods to make the most of each paradigm. In fact, this is already
happening to some extent [62]. Parallelism is likely to be a key component
in the solving whichever way CP/IP/SAT are mixed.

CHAPTER II

BACKGROUND

This chapter introduces the basics of constraint programming and paral-
lelism.

1 Constraint Programming

Constraint programming has been used with great success to tackle many
NP-complete problems such as graph coloring and scheduling [31, 55].
Problems modeled in CP are called constraint satisfaction problems (CSP).

Formally, we define a CSP as a 3-tuple P = (X,D,C), called a con-
straint store, with the following properties.

• X is a set of variables;

• D is a set of finite domains;

• C is a set of binary constraints; and

• cij is a relation between xi and xj

Solving a CSP means finding assignments to all variables in X , such
that the value of xi belongs to di, while all the constraints are satisfied.
Solving a CSP is NP-complete [55].

There are two main parts that make up constraint programming, mod-
eling and solving. The modeling typically uses a declarative language,
such as MiniZinc [39]. The solving is performed by a constraint frame-
work that performs consistency and search.

10 Background

Figure 2.1 depicts a simple example of a CSP. We have three variables,
X , Y , and Z. They all have to assume different values. This is modeled
using 6= constraints.

All the variables in the example can assume values between 0 and 9.
Since the domains are not singletons, finding a solution requires search.
We do this by picking a variable and assigning it one of its possible val-
ues. In this case, we pick X and assign it the value 0. By running the
consistency algorithm of X 6= Y and X 6= Z, we can remove the value
0 from the domains of Y and Z. Since some domains are still not single-
tons, we have to continue our search. We pick Y , and assign it the value
1. Now the consistency can remove 1 from the domain of Z. In the last
search step, we pick Z and assign it the value 2. Now all variable domains
in our problem are singletons and all constraints are satisfied. Hence, we
are finished and have found a solution.

X ∈ {0..9}

X ≠ Y Y ≠ Z

X ≠ Z

Z ∈ {0..9}

Y ∈ {0..9}

Figure 2.1: Model of a simple CSP.

1.1 Modeling
Modeling a problem in CP is quite simple. Students in the courses we
teach usually pick up the basics within two or three weeks. For example,
Figure 2.2 shows how to model sudoku as a constraint problem. This is
the entire code needed to solve a 9x9 sudoku using MiniZinc [39].

Thanks to its declarative nature, constraint programming does not re-
quire the programmer to deal with how the actual solving takes place.
Furthermore, given a programmer-friendly constraint framework, no sig-
nificant changes need to be made to the problem declaration in order to
solve the problem using parallelism. This means that synchronization and
other difficult aspects of parallel programming can be left entirely to the
creator of the constraint framework.

1 Constraint Programming 11

1 % includes the AllDifferent constraint in the program
2 include "all_different.mzn";
3 % creates 81 variables with values between 1 and 9
4 array [1..9, 1..9] of var 1..9: sudoku;
5

6 % creates one AllDifferent for each row
7 constraint
8 forall (row in 1..9)
9 (all_different (col in 1..9) (sudoku[row, col]));

10 % creates one AllDifferent for each column
11 constraint
12 forall (col in 1..9)
13 (all_different (row in 1..9) (sudoku[row, col]));
14 % creates one AllDifferent for each box
15 constraint
16 forall (row, col in {0, 3, 6})
17 (all_different (i, j in 1..3) (sudoku[row+i, col+j]));
18

19 solve satisfy; % starts the search for one solution
20 output [show(sudoku)]; % prints the solution

Figure 2.2: Sudoku modeled in constraint programming.

In the model depicted in Figure 2.2 we use global constraints. These
encompass several of the variables in the store. All such constraints can
be translated into a purely binary form [55]. However, this would reduce
the efficiency of the consistency.

Modifying our earlier definition to allow global constraints, we get the
3-tuple P = (X,D,C) with the following properties.

• X is a set of n variables;

• D is a set of n finite domains;

• C is a set of n-ary constraints; and

• cK is a relation over the set of variables {xi, i ∈ {0..n} | xi ∈ X}.

12 Background

1.2 Consistency

Consistency is used to remove values that cannot be part of a solution.
Whenever the domain of a variable changes, all the constraints containing
that variable will be evaluated for consistency. Due to time complexity
issues, consistency is rarely complete [13]. Hence, the domains may con-
tain values that are locally consistent, but cannot be part of a solution. The
process of removing inconsistent values is called pruning.

More formally, consistency can be described as follows. We start with
the store P = (X,D,C). Assume D0 = D, then D1 is the set of finite
domains representing the values for X that remained after the pruning of
the consistency methods of the constraints in C. We apply the consistency
methods of the constraints in C iteratively until DN = DN−1, i.e., we
have reached a fixpoint. Then, if ∃d′i = ∅ the store is inconsistent and we
have no solutions starting from D. In this case we have to undo assign-
ments in the search.

One of the most efficient ways of improving the performance of the
solving process is to use constraints that maximize the pruning. The most
powerful constraints, referred to as global constraints, include several or
all of the variables in the problem. If a global constraint containing all
variables is satisfied, finding a solution is often quite simple. The down-
side of global constraints is that they are computationally more expensive
in the average case, since they often implement algorithms of rather high
computational complexity [13].

Representing a global constraint with a set of binary constraints re-
duces the pruning power, but only the constraints whose variables change
need to be recomputed, reducing the average time-complexity.

The model of sudoku in Figure 2.2 uses the AllDifferent constraint.
This is a global constraint taking a list of variables and ensuring that they
all have different values. The pruning algorithm for this constraint relies
either on finding Hall intervals and has a time complexity of O(nlog(n))
[43] or bipartite graph matching [46].

All problem models can be reduced to one using only binary con-
straints. But this usually comes at the cost of greatly reduced pruning,
and therefore, much longer execution times.

1 Constraint Programming 13

Typically, consistency methods of constraints are monotonic [61].
Hence, most constraints never increase the size of the domains of the vari-
ables they contain. In order to achieve consistency, we run all constraints
whose variables have changed until there is no change from one iteration
to the next. When no changes occur, we have reached a fixpoint.

If all the consistency algorithms used are monotonic, the order in which
they are executed is irrelevant for correctness. Hence, such consistency
can be automatically parallelized. Depending on the hardware architec-
ture, there may be data dependencies that need to be handled if two con-
straints want to prune the same domain. In this case, all prunings can be
collected and enforced at the same time. No changes need to be made to
the problem model in order to use parallel consistency.

1 // set of constraints containing changed variables Cchanged

2 // the constraint store Store
3

4 consistency() {
5 while Cchanged 6= ∅
6 c← selectConstraint(Cchanged)
7 Cchanged ← Cchanged \ {c}
8 ci.enforceConsistency(Store)
9 if not c.consistent

10 return false
11 else
12 for each Variable v ∈ c
13 if v.changed
14 Cchanged ← Cchanged ∪ v.constraints
15 v.changed = false
16 return true
17 }

Figure 2.3: The basic algorithm for consistency.

14 Background

Figure 2.3 depicts the basic algorithm for consistency. Every time a
variable changes, we have to re-evaluate all the constraints that it partici-
pates in. If all consistency algorithms are monotonic, we will eventually
reach a fixpoint where no more changes will be performed between itera-
tions. Then we are ready to return to the search.

1.3 Search

In order to find solutions to a CSP we perform search, usually depth-first
search (DFS) [31]. Typically, in each search node, we pick a variable and
then assign a value to it. The order in which the variables are chosen is
decided by a heuristic that guides the search. Typically first-fail gives good
performance. This heuristic always picks the variable with the smallest
domain. This often leads to a smaller search space [55].

More formally, if we have a store P = (X,D,C) as defined in Sec-
tion 1.1. We take a variable xi from X so that X ′ = X \ {xi}, assign it
a value k from di by setting d′i = {k}. If applying consistency does not
result in inconsistency, we progress recursively by picking another vari-
able. When X ′ = ∅, we have found a solution. If an inconsistency was
found, we backtrack by setting di = di \ {d′i}. If this leads to di = ∅, we
backtrack to the previously chosen variable and reset di to contain all the
values we had when we chose xi.

The depth-first search algorithm in CP is depicted in Figure 2.4. Once
a variable has been selected, the solver will pick a value to assign. How
this value is chosen is controlled by another heuristic. When searching for
a minimal solution, it is typically good to select the smallest value in the
domain of the chosen variable.

There are no guarantees that the order in which the variables are as-
signed is optimal [55]. The order of values assigned carries no guarantee
either. Minimizing the execution time for solving a particular problem of-
ten comes down to finding especially good ways to order the variables and
values that the search will explore.

1 Constraint Programming 15

1 // variables to be labeled X, with FDV xi ∈ X
2 // domain of xi is di
3

4 search() {
5 if X 6= ∅
6 if not consistency()
7 return false
8 else
9 xi ← selectVariable(X)

10 X ← X \ {xi}
11 k ← selectValue(di)
12 xi ← k
13 if search()
14 return true
15 else
16 di ← di \ {k}
17 X ← X ∪ xi

18 if search()
19 return true
20 else // backtrack
21 di ← di ∪ k
22 return false
23 else
24 if consistency()
25 printSolution
26 return true
27 else
28 return false
29 }

Figure 2.4: The search algorithm for a single solution.

In constraint satisfaction problems, each branch of the search tree is
independent of the other branches. If we are trying to find the optimal
solution, the only relation between branches is in how the cost of the solu-
tions are communicated.

16 Background

Since the branches are independent, they are easy to parallelize. Au-
tomatically parallelizing the search process is simply a matter of sending
part of the domain of the last selected variable to another instance of the
constraint solver. The two instances can then work independently of each
other. The problem model need not be changed to use parallel search.

1.4 Distributed Constraint Problems
Distributed constraint satisfaction problems (DisCSP) are quite similar to
CSP. DisCSP can be defined with the 4-tuple P = (A,X,D,C), where
A is a set of agents and X is a set of variables so that xi is controlled
by ai [55]. D is a set of finite domains, and C is a set of sets of binary
constraints. Each variable xi has a finite domain di, and each agent ai has
a set of binary constraints ci. The constraints act as connections between
the agents. Furthermore, each variable is controlled by exactly one agent.
Lastly, the set of constraints between agents ai and aj are given by the
intersection cij = ci ∩ cj .

Figure 2.5 depicts a simple DisCSP. Each agent holds only one vari-
able, and we have binary constraints between the agents. Any changes to
a variable that is in a constraint between two agents are communicated.
Typically the communication is done by sending one value at a time dur-
ing search and the receiving agent answers with either a Good or NoGood
message [55].

Agent 1
X ∈ {0..9}

X ≠ Z Y ≠ Z

X ≠ Y

Agent 3
Z ∈ {0..9}

Agent 2
Y ∈ {0..9}

Figure 2.5: Model of a DisCSP, where each agent holds one variable.

2 Parallelism 17

DisCSP have a number of motivations [55]. The two main motivations
are robustness and privacy. Robustness is improved since there are several
independent agents running. This will guarantee that at least part of the
problem will be solved even if some agents stop working. With regard to
privacy, not all data needs to be shared between computers during solving.
This is useful during, for instance, negotiations about schedules, where the
parties do not want to say why they are not available at certain times.

Almost all work on DisCSP focuses on the scenario of each agent
holding a single variable and only binary constraints exist between the
agents [59]. These problems are typically solved with an asynchronous
search, where consistency is enforced between the connected agents [69].
The asynchronous search is parallel in nature, and could potentially give
an increase in performance.

The main difference between CSP and traditional DisCSP, as defined
above, is to eliminate the possibility of global constraints. As mentioned
previously, global constraints are central to gain good performance. Hence,
DisCSP has yet to mature to the point of being used in industry. Our work
on distributed constraint programming (DCP) largely remedies these prob-
lems, allowing DCP to run large problems with acceptable performance.

2 Parallelism

2.1 SMP and Clusters

In this thesis, we deal with two types of parallel architectures, symmetric
multiprocessing (SMP) and cluster computing. We will often refer to the
former as shared-memory and the latter as distribution. The reason is that
the SMP-machine we used had two four core processors, all communicat-
ing to the same memory. In contrast, the cluster we used had a separate
memory for every processor core, i.e., all communication between cores
took place over a network.

Figure 2.6 depicts the two architectures we used in this thesis. There
are other architectures which bridge the gap between shared-memory and
distribution. However, we did not have access to such machines during our
work, hence we leave the curious reader with the following reference [25].

18 Background

Main memory

Core 1

Cache

Main memory

Core N

Cache

Network

...

Main memory

Core 1

Cache

Core N...

Figure 2.6: The two types of parallel architectures we used in this thesis.
SMP on the left, cluster on the right.

Depending on the middleware, there may be no difference to the pro-
grammer what the underlying architecture is. In this thesis we developed
our own middleware in order to facilitate detailed testing and optimization.

One main difference between SMP and clusters is the processor cache.
Caching is central to good sequential performance. However, running sev-
eral processes on the same cache, as in the SMP-machine we used, will
make the cache dirty. This means that one thread overwrites the cache
which that thread wants. Hence, there will be more cache misses, reduc-
ing performance. Depending on the programming language, there may be
ways to avoid this. However, Java offers little in the ways of avoiding the
invalidation of cache lines used by other processes.

Performance of parallel programs is best measured by absolute speed-
up [37]. This means that the fastest sequential execution time is divided
by the fastest parallel execution time. This contrasts to relative speed-up,
where the fastest parallel execution time, when run on one processor core,
is divided by the fastest parallel execution time. Often, the speed-up is
limited to sub-linear [2]. However, super-linear speed-up is possible for
depth-first search algorithms [45].

Although the sequential performance of some programs may be better,
it is not necessarily relevant to compare parallel performance to them. For
example, say that program A is faster than program B because A has more
efficient memory handling, rather than better pruning. Then, comparing
the execution time of consistency between A and B makes little sense.

2 Parallelism 19

2.2 Communication

The main difference between distribution and shared-memory lies in the
communication. In distribution, we have to use a network in order to com-
municate between solvers. In shared-memory, on the other hand, we can
simply send a reference to an object allocated in memory. The latter is
much faster, although the number of processor cores of an SMP-machine
is usually more limited than the number of processors in a cluster.

Communication is a major bottleneck for the performance of parallel
programs. When we have a shared-memory, communication is faster since
the bandwidth is much higher and with lower latency. On the other hand,
the memory bus can quickly become saturated. Reducing the communica-
tion is one of the simplest ways of improving the performance of parallel
programs.

The communication on an SMP-machine is simply a matter of handing
over reference to memory allocated by the sending process. Reducing
communication in this case is therefore largely a question of minimizing
the memory usage of the program. On the architecture we used, the more
memory a program uses, the more it dirties the shared cache. This makes
the benefit of reducing the memory usage even greater.

Communication on a cluster is usually done over a fast ethernet net-
work. The communication often uses the TCP/IP protocol, which is what
we have used in our work. Hence, there is little to be done on the protocol
level to reduce the size of communication. Instead, working on a higher
level to improve encoding and compression can increase performance.

Reducing the size of communication through compression increases
the execution time on both the sending and the receiving end. Hence, we
want to have an adaptable way of communication. Compressing the com-
munication makes no sense if there is lots of free bandwidth. It may take
more time to compress, send, and uncompress, than to skip the compres-
sion altogether.

20 Background

2.3 Load-Balancing

Load-balancing is perhaps the most important way to improve the perfor-
mance of parallel programs. Ideally, all processes should have the exact
same amount of work to perform so that they all finish at the same time.
Otherwise, some processes will have to wait for others to finish. If the wait
time becomes long, we lose lots of performance.

Unless we can calculate exactly how much work we have, we cannot
expect to split the work perfectly between processes. Hence, we need to
be able to send more work to the processes that become idle. In this way,
load-balancing is related to communication. Ideally, the work we send
will require much more processing time than the time it takes to send it to
another process. If the communication is costly, we will lose performance
by sending many small pieces of work.

For NP-complete problems, such as those we have studied in this the-
sis, one cannot efficiently calculate the exact size of the work. We can
construct elaborate measurements, such as [10], but they remain rough
estimates. Where it is infeasible to calculate the absolute size of work,
it makes sense to use relative measures. Simple relative measures from
many machines can increase the accuracy of the estimates.

It should be noted that the ultimate goal of load-balancing is not to
maximize the processor utilization. If the processor usage increases com-
munication, we may get reduced performance with very high loads. This
will be the case for all architectures where the communication is a bottle-
neck, which is quite common.

Several methods of load-balancing have been developed for parallel
DFS [20]. Two of the most well-known methods are random polling and
round-robin. Random polling is often more efficient than round-robin for
parallel DFS [28, 29], but neither method was designed with CSP solving
in mind.

2 Parallelism 21

There are two main communication principles for load-balancing,
work-stealing and work-sharing [20]. In the former, idle processes try
to steal work from busy processes. In the latter, busy computers try to find
idle ones to send work to. On many architectures work-stealing is more
efficient [4], since the idle processes are not doing any useful work. How-
ever, on a cluster there is little difference between the two principles since
both machines have to perform work for communication [36].

When using either work-stealing or work-sharing, the order in which
work is shared may be important. For instance, if all processes try to send
work to others in the same order, lots of time will be wasted. Using a
unique ordering for each process will avoid this scenario. However, as
shown in [47], random polling works well for all but the largest architec-
tures.

CHAPTER III

PARALLELISM IN CONSTRAINT
PROGRAMMING

There is increasing interest in work on parallelism in declarative languages.
In this thesis we look at parallelism in constraint programming. Paral-
lelism in logic programming is somewhat related, but falls outside the
scope of this thesis. Instead, we refer the curious reader to the excellent
summary in [22].

Today, parallelism is offered by several constraint solvers. Our solver,
JaCoP [27], offers both parallel search and parallel consistency on SMP
and clusters. Gecode [18] has parallel search for SMP architectures. Comet
[12] offers parallel solving on both SMP and clusters.

1 Modeling for Parallelism and Distribution
One great advantage of declarative programming, when compared to im-
perative programming, is its potential for automatic parallelism. Since
the solving method details are left unspecified, the CP framework can
choose freely how to search for solutions. This is a much simpler approach
than trying to automatically rewrite imperative code, e.g., by parallelizing
loops [66].

Automatically parallelizing the search process does not require any
change to the problem model. Only the call to the solver needs to be mod-
ified. Figure 3.1 depicts the code for solving Sudoku. The code is written
in Java for the JaCoP solver [27], version 1.5. The only change needed to
run with parallelism is to change the search method new SearchOne() on
line 29 to new SMPSearchOne().

24 Parallelism in Constraint Programming

1 class Sudoku {
2 public static void main(String args[]) {
3 boolean res = false;
4 int[] step = {0, 3, 6, 27, 30, 33, 54, 57, 60};
5 ArrayList<FDV> fdvs = new ArrayList<FDV>(81);
6 FDstore store = new FDstore();
7 for (int i = 0; i < 81; i++)
8 fdvs.add(new FDV(store, "var" + i, 1, 9));
9 for (int i = 0; i < 9; i++) {

10 FDV[] row = new FDV[9];
11 FDV[] col = new FDV[9];
12 FDV[] block = new FDV[9];
13 for (int j = 0; j < 9; j++) {
14 fdvs.add(new FDV(store, "v" + (i + j),
15 1, 9));
16 row[j] = fdvs.get(i * 9 + j);
17 col[j] = fdvs.get(i + j * 9);
18 block[j] = fdvs.get((j % 3) + (j / 3)
19 * 9 + step[i]);
20 }
21 store.impose(new Alldiff(row));
22 store.impose(new Alldiff(col));
23 store.impose(new Alldiff(block));
24 }
25 res = JaCoP.Solver.searchOne(store, fdvs,
26 new SearchOne(), new IndomainRandom(),
27 new Delete(new FirstFail()));
28

29 System.out.println("Solution found = " + res);
30 }
31 }

Figure 3.1: The Sudoku problem written for JaCoP 1.5.

2 Parallel Consistency 25

Most parallel CP solvers such as [10, 34] use a modeling approach
similar to ours. The main design trade-off is between ease of use and per-
formance. By providing the programmer with a more configurable search,
higher performance can sometimes be achieved. Unfortunately, this may
make the constraint framework harder for novices to use. This issue is
discussed further in Appendix A.

If the parallel solving takes place on a cluster, complications arise for
the creator of the constraint framework. In this scenario, the solvers have
to be set up before the search can begin. This means that an instance of the
constraint framework must be started on all the computers that will take
part in the solving. This initialization phase can be automated, as depicted
in Figure 3.6.

Even though a lot of work takes place behind the scenes, the differ-
ence between modeling for a cluster, compared to modeling for SMP or
sequential execution, is negligible. For cluster computing in our solver, the
programmer simply changes the search method on line 29 of Figure 3.1
from new SearchOne() to new ClusterSearchOne().

2 Parallel Consistency

In this thesis, we will often refer to parallel search as data parallelism,
and parallel consistency as task parallelism. While this may not be ab-
solutely correct terminology in the strictest sense, it is useful to illustrate
the inherently different nature of these two types of parallelism. Also, this
terminology is used later in the included papers.

Figure 3.2 presents the model of parallel consistency in constraint pro-
gramming used in this thesis. In the example, the search process is se-
quential but the enforcement of consistency is performed in parallel. Con-
straints C1, C2, and C3 can be evaluated independently of each other on
different processor cores. Depending on the architecture and constraint
framework, the prunings that the constraints perform may need to be syn-
chronized.

26 Parallelism in Constraint Programming

X ∈ {0..9}

Y ∈ {0..9}

C2C1

P1

C2C1

C3

C3

P2 P3

Start

Figure 3.2: Parallel consistency in constraint programming.

Task parallelism is the most realistic type of parallelism for problems
where the time needed for search is insignificant compared to that for en-
forcing consistency. This can happen when the consistency algorithms
prunes almost all the inconsistent values. Such strong pruning is partic-
ularly expensive and demands more parallelism. The advantage of these
large constraints over a massively parallel search is that the execution time
will be more predictable.

Parallel consistency in CP means that several constraints will be eval-
uated in parallel. On most architectures, constraints that contain the same
variables have data dependencies, and therefore their pruning must be
synchronized. However, since the pruning is monotonic, the order in
which the data is modified does not affect the correctness. This is because
well-behaved constraint propagators must be both decreasing and mono-
tonic [61]. In our solver this is guaranteed by the consistency method
implemented in our solver. The solver takes the intersection of the old
domain and that given by the consistency algorithm. The result is written
back as a new domain. Hence, the domain size will never increase.

2 Parallel Consistency 27

Constraint Program

search

Slave 1 Slave 2

start consistency

get constraints

get constraints

inconsistent

backtrack

Figure 3.3: Model of parallel consistency with two consistency threads.
The dashed line indicates the final return to the constraint program. In this
example it leads to a backtrack of the search procedure.

Consistency enforcement is iterative. When the solvers are ready, the
constraint queue is divided between them. Then one iteration of consis-
tency can begin. This procedure will be repeated until the constraints no
longer change the domain of any variable. The constraints containing vari-
ables that have changes will be added to the constraint queue after the
updates have been performed.

The order in which constraints are processed is very important for per-
formance [65]. Hence, the best way to divide the constraint queue is to
give each consistency thread a set of high-priority constraints to handle.
We then distribute the low priority constraints evenly. The variables we
use to control the parallel consistency are explained in Appendix A.

2.1 Related Work

Parallel consistency in CP has received very little attention compared to
parallel search. Parallel consistency bears some similarity to the AND-
parallelism of logic programming studied in, e.g., [8,22,26,42]. However,
logic programming is based on rather different assumptions than CP.

28 Parallelism in Constraint Programming

Parallel consistency in CP has previously been studied in [40, 57, 58].
However, these papers only investigate arc-consistency, which usually pre-
cludes the use of global constraints. Without global constraints, it is very
difficult for CP solvers to handle large industry-relevant problems.

As far as we know, parallel consistency with global constraints has
only been studied in our work [52,53]. Earlier work uses models that allow
global constraints, but these constraints are not used and no experimental
results are given for them [57, 58]. In fact, [57] explicitly mentions the
need for global constraints in order to make parallel consistency scale well.

Parallel consistency algorithms for specific global constraints are emer-
ging [5]. However, this is a different approach from parallel consistency,
since only one constraint is processed at a time. Nevertheless, such algo-
rithms can be used to extend the scalability of parallel consistency.

We are not aware of any work but our own that combines parallel con-
sistency with parallel search [53].

3 Parallel Search
Parallel search is the most studied form of parallelism in CP [10]. It is intu-
itive to let a solver split the domain of each variable and let another solver
handle those possible assignments. A good speed-up can be achieved with
a rather small modification to the original solver. For a pure SMP version,
only about 1 000 lines of code were required to extend our solver. This
constitutes small part of the roughly 100 000 lines of the latest version of
JaCoP.

Figure 3.4 depicts a small search tree with parallel search. Paralleliz-
ing search in CP can be done by splitting data between solvers. For ex-
ample, one could create a decision point for a selected variable Xi so
that one computer handles Xi < min(Xi)+max(Xi)

2 and another handles
Xi ≥ min(Xi)+max(Xi)

2 . The different possible assignments are explored
by the solvers running on processors P1, P2, and P3. Clearly, we are not
fully utilizing all three processors in this example. At the first level of the
search tree, only two out of three processors are active. The procedure for
how we control the splitting is explained in Appendix A.

3 Parallel Search 29

X ∈ {5..9}X ∈ {0..4}

Y ∈ {0..4}

P1

P2

Y ∈ {0..2}
X ∈ {5..9}
Y ∈ {2..4}

P3

Start

Figure 3.4: Parallel search in constraint programming.

The downside of parallel search is that the search tree below the split-
point may be small. The smaller this search space is, the less work is
performed in the receiving and sending solvers. Eventually we will reach
the point where communicating the work takes more time than exploring
both search trees on a single processor.

The algorithm for parallel search is depicted in Figure 3.5. In this
algorithm we use work-sharing. If an idle solver is found, we send half
of the current domain to that processor. There are several optimizations
that can make the splitting more efficient, for instance, sending all but one
value for the current variable.

We use work-sharing, although work-stealing is often more efficient on
an SMP [4]. However, the difference is rather small when only using eight
cores. When running on a cluster, the difference between work-stealing
and work-sharing is almost non existent [36]. The busy computer still has
to handle all the communication and serialization involved in transmitting
work to other computers.

30 Parallelism in Constraint Programming

1 // variables to be labeled X, with FDV xi ∈ X
2 // domain of xi is di; set of constraint solvers S
3

4 search() {
5 if X 6= ∅
6 if not consistency()
7 return false
8 else
9 xi ← selectVariable(X)

10 X ← X \ {xi}
11 for each Solver s in S
12 if s.notBusy
13 dremote ← getHalfDomain(di)
14 sendWork(s, dremote)
15 di ← di \ dremote

16 di.splitDomain ← dremote

17 break
18 k ← selectValue(di)
19 xi ← k
20 if search()
21 return true
22 else
23 di ← di \ {k}
24 X ← X ∪ xi

25 if search()
26 return true
27 else // backtrack
28 di ← di ∪ k ∪ di.splitDomain
29 di.splitDomain ← ∅
30 return false
31 else
32 if consistency()
33 printSolution
34 return true
35 else
36 return false
37 }

Figure 3.5: The parallel search algorithm.

3 Parallel Search 31

Figure 3.6 illustrates the execution of solving on a cluster. First the
servers are initialized on the cluster. Once all the slave solvers are running,
the search phase can begin. The work is split between slaves in order to
achieve an even processor load. Finally, when the master runs out of work,
the termination phase starts. This phase lets all the slaves finish, using
a termination detection similar to the one described in [9]. Lastly, the
master returns the result to the model program. To utilize the cluster more
efficiently, a slave solver can be started on the machine that the master was
using before it ran out of work.

Phase Constraint Program

create

Master

create create create

Slave1 Slave2 . . . SlaveN

Initialization:

start search

split

send work

send work
send work

broadcast solution

Search:

wait for
slaves

finished

finished
finished

return result

Termination:

Figure 3.6: The parallel search on a cluster.

3.1 Related Work
Most research on parallelism in CP has focused on parallel search [60].
Parallel search is similar to OR-parallelism in logic programming [22],
which has been studied in, among others, [11, 15, 64]. The systems de-
veloped in these papers are interesting, but logic programming solvers are
based on quite different assumptions than CP solvers.

32 Parallelism in Constraint Programming

In [33], parallel local search was studied. This search is very different
from the one we have used in all papers presented in this thesis. Hence,
the only features of the paper which are relevant to our work are the pos-
sibility of using a heterogenous cluster, and the somewhat similar model
of parallelism. However, our first study of distribution, [49], was finished
well before [33] was published. Furthermore, in [49] and subsequently
in [50, 51], we evaluated the performance on eight times as many proces-
sors, thereby testing the scalability of our solver much further.

In [68] communication for parallel search in CP was studied. Our work
in [51] is somewhat similar in that we also moved beyond the copying used
in most previous work, such as [23,47,56]. However, unlike [68], we made
a study of both binary problem models and problems that use global con-
straints, thereby investigating how pruning affects communication needs.

Another major novelty of [51] was our algorithm for switching be-
tween communication modes during search in order to increase perfor-
mance. This was not studied at all in [68]. As far as we know, [51] is
the first and only example of dynamically adaptable communication for
parallel search in CP.

In [34], transparent parallelization of constraint programs was dis-
cussed. The automatic parallelism in that paper is somewhat similar to our
earlier work in [49]. However, the study in [34] used a rather limited num-
ber of computers, more specifically, a four-machine cluster. In [49–51], we
went much further and tested our solver on a 32-machine cluster. Scalabil-
ity problems barely arise when only using four machines. Hence, the need
for better communication and load-balancing, as introduced in [50, 51],
did not arise in [34].

The work in [10] studies load-balancing for parallel search on SMP.
They achieve a better performance than when using in-order variable se-
lection heuristic, a heuristic which is usually rather weak. Unlike in [10],
in [50] we study the performance against random ordering and without
using a timeout. Random ordering, unlike other ordering heuristics, does
not risk getting caught in unproductive parts of the search tree every time
an experiment is run.

4 Parallelism in Distributed Constraint Programming 33

In [10] an advanced estimate of work-size is used. However, in our
previous work, we showed that simple measurements are often equiva-
lent or even preferable to more advanced ones [50]. Moreover, we tested
our scalability further in [50], as there are rarely any major differences
between load-balancing methods when only using eight processors.

4 Parallelism in Distributed Constraint
Programming

Parallelism is a natural component of DCP. Running each agent on a sep-
arate core allows parallelism of consistency. If using asynchronous search
[69], the search will also be parallel. This makes DCP well suited to il-
lustrate the parallelism in the program, while still letting the constraint
framework handle all the difficult parallel programming aspects.

The limited models and the number of messages sent between solvers
in traditional DisCSP makes it prohibitive for large problems [59]. In our
version of DCP, we use more efficient communication and allow global
constraints.

Figure 3.7 depicts a simplified view of the distributed constraint eval-
uation process and the search we currently use. All time consuming steps
in our solving are parallel. As depicted in Figure 3.7, we evaluate consis-
tency and vote on the next master in parallel. But in order to guarantee
synchronicity, we must wait for all prunings to be finished before we can
move on to selecting the next master. Hence, we move from synchronous
to asynchronous execution of the agents, and back again, with every as-
signment.

4.1 Related Work
Most work on DCP deals with the scenario where each agent holds a sin-
gle variable and only binary constraints exist in the problem model [59].
In [54], we use global constraints. As far as we know, this is the only pa-
per to do so in DCP. Soon, Frodo [30] will be supporting global constraints
through our solver [63].

34 Parallelism in Constraint Programming

X

Z

Y

X

X Z

Z

Y

X

Make
assignment

Run
consistency

Find new
master

Vote on new
master

Make
assignment

Active agents: 1 3 1 3 1

Master Master Master

Figure 3.7: The progress from one assignment to the next. X, Y, and Z are
agents.

Many DCP systems such as [30], model problems using table con-
straints that enumerate all possible assignments. This enumeration is in-
feasible for large problems. In [54] we use a full constraint solver that
evaluates constraints without any need for enumeration of possible assign-
ments. In [16], models could be written using standard constraints. How-
ever, these constraints are then expanded into table form before the solving
begins.

One of the few related works on DCP is [32], in which a similar defini-
tion of the DCP model is used. However, the similarities end there, as [32]
makes no mention of global constraints. Without global constraints, such
as those we use in [54], complex problems modeled in CP can rarely be
solved efficiently.

Perhaps the most related work is [7]. It brings up the advantages of
collecting complex subproblems onto a few agents. These subproblems
can then be solved more efficiently. However, [7] specifically mentions
that global constraints would be very good, but this is never implemented,
tested, or expanded upon.

5 The Future 35

Another major difference between our model and previous work on
DCP, such as [6, 16, 19, 32, 55, 69, 70], is that we communicate entire do-
mains. This is much more efficient than sending one value from a domain
at a time and getting a Good or NoGood message back.

Another contribution of [54] is to introduce advanced search to DCP.
We can add new constraints during search to create an ordering of vari-
ables before we start making assignments. These constraints can be com-
municated to the other solvers. This type of ordering is necessary to solve
complex scheduling problems efficiently using DCP [54]. Ordering like
this is often not possible in other DisCSP solvers.

5 The Future
Lately, a good deal of research has been performed on parallelism in
SAT [21] and parallelism has strong foundations in integer programming
[44]. Work on, e.g., exploration strategies [24], are sure to be developed
for CP as well. We refer the reader to [14] for more information.

In the future, mixes of CP, IP, and SAT are likely to appear. Some
solvers already mix these methods to some extent [62]. Running three
different solving methods in parallel might lead to major performance in-
creases.

Most current work on parallelism in CP is still focused on parallel
search [1, 35, 41, 67]. Many of these papers show a somewhat limited
performance, or have not studied the performance on larger architectures.
This is unfortunate, since it is rarely possible to test scalability when using
few processors.

The increased publication of papers on parallelism in constraint pro-
gramming over the past few years is encouraging. Taking such work fur-
ther will benefit the community. However, as far as we know, few papers
about parallel CP with global constraints have been published in the par-
allelism community apart from ours.

CHAPTER IV

CONTRIBUTIONS

In this thesis, we present the contributions below. In all the included pa-
pers, my supervisor Krzysztof Kuchcinski has helped with the writing and
through discussions. Otherwise, all work has been performed by me. This
includes choice of topic, design and development of software components,
and experimental evaluations.

• Parallel consistency is introduced, implemented and evaluated. We
have designed and developed the first, and so far only, consistency
algorithm that processes global constraints in parallel. Our results
show that very good absolute speed-up is possible for problems with
models that use many similar-sized large global constraints.

• The combination of parallel consistency and parallel search is pre-
sented and studied. This is the first and thus far only time that the
combination of these two types of parallelism has been studied in
constraint programming. Our results indicate that successfully com-
bining them is a difficult problem. We show that a performance
increase is possible, compared to when only having one type of par-
allelism.

• Relative-measured load-balancing for parallel search is developed
and evaluated. We have created a load-balancing where constraint
solvers compete for the right to send work. This competition can
use any per-solver estimate or measure of work size that can be par-
tially ordered. Our results show that, for simple measures, higher
performance can be achieved than with random polling, and that
this benefit increases with the number of solvers.

38 Contributions

• Dynamic trade-off to balance the costs of communication and com-
putation has been implemented and studied. We have created an al-
gorithm that allows the model of communication to be changed dy-
namically depending on an estimate of network load. This allows us
to reduce the bandwidth demands of parallel solving at the expense
of increased computation. It also allows us to reduce the computa-
tional needs at the expense of higher bandwidth requirements. Our
results show that our algorithm can improve the performance and
scalability of both purely binary problem models and problems that
also use global constraints.

• Distributed constraint programming with agents is introduced, im-
plemented and evaluated. We have designed a completely new ar-
chitecture for modeling and solving of distributed constraint pro-
gramming problems. Our architecture allows more memory-efficient
modeling, a greater degree of consistency and faster search. We
have solved scheduling problems that have never been dealt with in
previous work on DisCSP. Our results show that we can efficiently
solve difficult scheduling problems using our model of distributed
constraint programming.

1 Parallel Consistency
Consistency which processes several global constraints in parallel was first
introduced in [52], included in this thesis as Paper I. This paper illustrates
the potential of parallel consistency, and how it behaves for consistent
and inconsistent problems. We achieved an almost linear speed-up for
problems that make heavy use of global constraints.

Our experiments indicate that parallel consistency can give a major
speed-up for problems with regular models. One example is sudoku, which
uses large global constraints that are all of the same size. Other problems
such as n-Queens show a rather lackluster performance increase. The rea-
son is that n-Queens is limited by having only two large constraints which
need to be processed several times.

See Paper I for the full study and evaluation of parallel consistency.

2 Combining Parallel Consistency and Parallel Search 39

2 Combining Parallel Consistency and
Parallel Search

The second contribution of this thesis is to introduce and study the com-
bination of parallel consistency and parallel search. This is a natural de-
velopment of parallel consistency. The idea is simple: run parallel search
with each solver having a set of threads available for processing consis-
tency. This work was first presented in [53], included in this thesis as
Paper II.

Our experiments show that it is difficult to find problems that bene-
fit from having both parallel consistency and parallel search. The reason
is that parallel consistency requires large constraints to pay for the cost
of synchronization, and it is rarely feasible to solve such large problems
completely.

For the complete details and evaluation of the combination of parallel
consistency and parallel search, see Paper II.

3 Relative-Measured Load-Balancing for
Parallel Search

The third contribution of this thesis is relative-measured load-balancing
for parallel search. We are not aware of any previous work on parallel
search in CP that uses competition-based load-balancing. Usually in CP,
we cannot know the exact size of the work a solver can share with other
solvers. However, since processors with work to send often compete for
free recipient solvers, we can say which computer is likely to have the most
work to send.

The motivation for using a relative measure is that solvers always com-
pete for resources. If we had an infinite amount of solvers receiving work,
we would only care about the accuracy of our estimates, and not send work
that is too small. However, we never have an infinite number of machines.

Regardless of the accuracy of an estimate, it may not improve the load-
balancing. For example, as depicted in Figure 4.1, assume we have three

40 Contributions

solvers that are working and one that is idle. If solver A has a lot less
work than solvers B and C, A will probably need less time to estimate the
size of its work than B and C need. Hence, since only solver D is free to
receive work, A will be able to make it busy before the other solvers have
finished estimating their work sizes. This is likely to reduce the overall
performance, as we may decrease the average size of work that is shared.

Solver A Solver B

Solver DSolver C

Try to send work

Try to send work

Try to send
 work

Figure 4.1: An example of competition to send work to a free solver.

During parallel search, competition for sending work to idle solvers
often occurs. By using a relative measure of work size, this competition
works to our benefit. All estimates of work size have a variance from the
correct value. By running a competition between several solvers, we can
eliminate the effects that any systematic error in our estimate may cause.
Thereby, we increase the accuracy of our estimate, relative to not having a
competition.

An example of the procedure for running the competition is shown in
Figure 4.2. First, solvers A, B, and C are busy searching. The solvers will
ask the idle solver D if it is free to receive work. Once D receives the first
busy?-message, it waits for n milliseconds before replying, to let more
work-sending requests arrive. Finally, D tells the solver with the largest
estimate of work size that D is not busy. D replies to all other solvers that
it is busy.

3 Relative-Measured Load-Balancing for Parallel Search 41

Solver A Solver B

Solver DSolver C

Busy?
Work size = 4

Busy?
Work size = 7

Busy?
Work size = 5

(a) Solvers ask D if it is free, telling D what work
size they have estimated. D waits for n millisec-
onds from the first request, to let more work shar-
ing requests arrive.

Solver A Solver B

Solver DSolver C

Yes
Yes

No

(b) D answers Y es to the solver with the
most work, No to all other requesting
solvers

Figure 4.2: The operating sequence for the competition in relative-
measured load-balancing.

Our relative-measured load-balancing works on a higher level than
all load-balancing methods that only use absolute measures to determine
whether the work is large enough to send or not. Our model of the com-
petition can be run on any estimate of work size. This holds, regardless of
if it is simple measurements, as in [50], or complex ones, as in [10]. Our
arbiter can decide that no solver has enough work to be allowed to send,
and tell everyone it is busy.

Our experiments show that an increased performance can be achieved
by using relative-measured load-balancing. Furthermore, in our experi-
ments, the benefit increases with the number of solvers. The more solvers
are used, the more competition there will be. Even though we used sim-
ple measures, we still managed to increase the performance by up to 20 %
compared to random polling.

For the full experimental evaluation of relative-measured
load-balancing, see Paper III.

42 Contributions

4 Dynamic Trade-off to Balance the Costs
of Communication and Computation

The fourth contribution of this thesis is the development and evaluation
of an algorithm that can dynamically balance computation and communi-
cation during parallel search. Parallel search in CP has two main modes
of communication, copying and recomputation. Our algorithm switches
between these two in order to avoid congestion in the communication net-
work. This is somewhat similar to what has been done for sequential solv-
ing with copying and recomputation [48].

We studied both problems with global constraints and problems that
only use binary constraints. Unlike previous work, we also studied op-
timization problems. For all problems, and almost all different numbers
of machines, our dynamic choice of communication mode outperformed
pure copying or recomputation.

The algorithm we have developed allows a higher performance to be
achieved for parallel search in CP on clusters. For many problem in-
stances, we shorten the execution time while lowering the processor load
compared to the best performing alternative. Hence, the cluster can be
used more efficiently to solve several problems at the same time.

Our full study of the trade-off between communication and computa-
tion are presented in Paper IV.

5 Distributed Constraint Programming
with Agents

The fifth contribution of this thesis is the introduction of distributed con-
straint programming (DCP). We contrast this to DisCSP, since our model
equips each agent with a full constraint solver.

Unlike any work we are aware of, we can solve complex standard
scheduling benchmark problems in reasonable time. Previous research has
usually focused on one variable per agent and only binary constraints. We
show that a more complex model, with more powerful agents, is necessary
to solve complex problems.

5 Distributed Constraint Programming with Agents 43

In our comparison, our model of DCP outperforms traditional DisCSP
by orders of magnitude. We have achieved this by empowering our agents
with global constraints and advanced search, something that we have never
seen before in work on distribution with agents in CP.

The full study of DCP with experimental results is presented in
Paper V of this thesis.

CHAPTER V

CONCLUSIONS

The main conclusion of this thesis is that parallelism in constraint pro-
gramming has great potential. The extensions we have implemented in
our solver provide several kinds of parallelism. These are available auto-
matically, with hardly any modification of the problem specification. In
particular, no knowledge of parallel programming is needed to achieve
good parallel performance.

We can also conclude that parallel consistency can provide excellent
performance. This is especially important for problems that do not ben-
efit much from parallel search. Our work is the first to provide parallel
consistency with global constraints, this makes the task granularity more
manageable.

In this thesis we also present the first combination of parallel consis-
tency and parallel search. Our conclusion is that some problems benefit
from using both these types of parallelism. We also conclude that many
problems benefit much more from one type of parallelism than the other.
Letting computing resources switch dynamically between these two types
may provide more robust parallel performance for many problems.

From our work on relative-measured load-balancing, we draw the con-
clusion that the competition for computing resources can be used to in-
crease performance. By letting solvers compete with each other, we can
partly overcome the problem of not knowing the exact size of the work
that solvers send. In our load-balancing, we can use any estimate of work
size that can be partially ordered.

We have developed an algorithm for dynamically choosing the method
of communication depending on the network load. We conclude that this
type of dynamic adaptation can increase performance of parallel solving.

46 Conclusions

Even with simple measures, approximations of bottlenecks can allow the
computing resources to be used more efficiently.

We have presented the first model of distributed constraint program-
ming that uses global constraints and solves complex scheduling prob-
lems. Our model enables performance for these problems that has never
been achieved through traditional approaches to DisCSP. This is partly
because we can run ordering before search, and partly because global con-
straints provide much more efficient pruning. We conclude that our model
of DCP solves many of the inherent issues of DisCSP. This makes our
solution much more viable for solving complex real-world problems.

Future Work
There are several future approaches we would like to see. The first one
is parallel consistency algorithms for global constraints. This is an ap-
proach that may provide more robust speed-up than our parallel consis-
tency. However, these algorithms have to be constraint specific. This
makes such solutions problem specific, something which may reduce the
automaticity of the parallelism.

Another interesting development is the use of different exploration
heuristics. Exploring the same search space with, for example, different
variable ordering sometimes provides a speed-up. This approach has been
quite successful in SAT. Similar use of heuristics is likely to be beneficial
to parallel solving in CP as well. Using SAT to facilitate back-jumping in
CP is already appearing [62].

One major area of future research is dynamic solving that adapts to
the search space during solving. There is much work to be done on, e.g,
dynamically selecting consistency algorithms, changing the type of search,
allocating computing resources to different types of parallelism etc. This
type of adaptation may also include such modifications as switching to
SAT solving for a part of the problem. This would further the integration
of CP, integer programming, and SAT.

BIBLIOGRAPHY

[1] D. Allouche, S. de Givry, and T. Schiex. Towards parallel non serial
dynamic programming for solving hard weighted CSP. In D. Co-
hen, editor, Principles and Practice of Constraint Programming -
CP 2010, volume 6308 of Lecture Notes in Computer Science, pages
53–60. Springer Berlin / Heidelberg, 2010.

[2] G. M. Amdahl. Validity of the single-processor approach to achiev-
ing large scale computing capabilities. AFIPS Conference Proceed-
ings, 30:483–485, 1967.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The landscape of parallel computing research: A
view from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded com-
putations by work stealing. Journal of the ACM, 46:720–748, Sept
1999.

[5] S. Boivin, G. Pessant, and B. Gendron. Parallelizing global con-
straints. CORS-INFORMS International Meeting, June 2009.

[6] I. Brito. Synchronous, asynchronous and hybrid algorithms for
DisCSP. In M. Wallace, editor, Principles and Practice of Constraint
Programming - CP 2004, volume 3258 of Lecture Notes in Computer
Science, pages 791–791. Springer Berlin / Heidelberg, 2004.

48 BIBLIOGRAPHY

[7] D. A. Burke and K. N. Brown. A comparison of approaches to han-
dling complex local problems in DCOP. In Distributed Constraint
Satisfaction Workshop, pages 27–33, 2006.

[8] A. Casas, M. Carro, and M. V. Hermenegildo. A high-level im-
plementation of non-deterministic, unrestricted, independent AND-
parallelism. In Proceedings of the 24th International Conference on
Logic Programming, ICLP ’08, pages 651–666, Berlin, Heidelberg,
2008. Springer-Verlag.

[9] K. M. Chandy and L. Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer
Systems, 3:63–75, Feb 1985.

[10] G. Chu, C. Schulte, and P. Stuckey. Confidence-based work stealing
in parallel constraint programming. In I. Gent, editor, Principles
and Practice of Constraint Programming - CP 2009, volume 5732 of
Lecture Notes in Computer Science, pages 226–241. Springer Berlin
/ Heidelberg, 2009.

[11] K. Clark and S. Gregory. PARLOG: Parallel programming in logic.
ACM Transactions on Programming Languages and Systems, 8:1–
49, January 1986.

[12] Comet. http://www.comet-online.org, 2011.

[13] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

[14] G. Dequen, P. Vander-Swalmen, and M. Krajecki. Toward easy paral-
lel SAT solving. In Proceedings of the 2009 21st IEEE International
Conference on Tools with Artificial Intelligence, ICTAI ’09, pages
425–432, Washington, DC, USA, 2009. IEEE Computer Society.

[15] G. Efthivoulidis, N. Vlassis, P. Tsanakas, and G. Papakonstantinou.
An experiment for truly parallel logic programming. Journal of In-
telligent & Robotic Systems, 16:169–184, 1996.

BIBLIOGRAPHY 49

[16] R. Ezzahir, C. Bessiere, M. Belaissaoui, and E. Bouyakhf. DisChoco:
A platform for distributed constraint programming. In Proceedings
of IJCAI-07 Workshop on Distributed Constraint Reasoning, pages
16–27, 2007.

[17] E. C. Freuder. In pursuit of the holy grail. Constraints, 2:57–61,
1997.

[18] Gecode. http://www.gecode.org, 2011.

[19] A. Gershman, A. Meisels, and R. Zivan. Asynchronous forward
bounding for distributed COPs. Journal of Artificial Intelligence Re-
search, 34:61–88, Feb 2009.

[20] A. Grama and V. Kumar. State of the art in parallel search tech-
niques for discrete optimization problems. IEEE Transactions on
Knowledge and Data Engineering, 11(1):28–35, Jan/Feb 1999.

[21] L. Guo, Y. Hamadi, S. Jabbour, and L. Sais. Diversification and in-
tensification in parallel SAT solving. In D. Cohen, editor, Principles
and Practice of Constraint Programming - CP 2010, volume 6308 of
Lecture Notes in Computer Science, pages 252–265. Springer Berlin
/ Heidelberg, 2010.

[22] G. Gupta, E. Pontelli, K. A. Ali, M. Carlsson, and M. V.
Hermenegildo. Parallel execution of Prolog programs: A sur-
vey. ACM Transactions on Programming Languages and Systems,
23(4):472–602, 2001.

[23] Z. Habbas, F. Herrmann, P.-P. Merel, and D. Singer. Load balancing
strategies for parallel forward search algorithm with conflict based
backjumping. In ICPADS ’97: Proceedings of the 1997 Interna-
tional Conference on Parallel and Distributed Systems, pages 376–
381, Washington, DC, USA, 1997. IEEE Computer Society.

[24] Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: A parallel SAT
solver. Journal on Satisfiability, Boolean Modeling and Computa-
tion, 6(4):245–262, 2009.

50 BIBLIOGRAPHY

[25] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fourth
Edition: A Quantitative Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2006.

[26] M. V. Hermenegildo. An abstract machine based execution model for
computer architecture design and efficient implementation of logic
programs in parallel. PhD thesis, The University of Texas at Austin,
1986.

[27] K. Kuchcinski. Constraints-driven scheduling and resource assign-
ment. ACM Transactions on Design Automation of Electronic Sys-
tems, 8(3):355–383, July 2003.

[28] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to
parallel computing: Design and analysis of algorithms. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994.

[29] V. Kumar, A. Y. Grama, and N. R. Vempaty. Scalable load balanc-
ing techniques for parallel computers. Journal of Parallel and Dis-
tributed Computing, 22:60–79, July 1994.

[30] T. Léauté, B. Ottens, and R. Szymanek. FRODO 2.0: An open-
source framework for distributed constraint optimization. In Pro-
ceedings of IJCAI-09 Workshop on Distributed Constraint Reason-
ing, pages 160–164, Pasadena, California, USA, July 2009.

[31] K. Marriott and P. J. Stuckey. Introduction to Constraint Logic Pro-
gramming. MIT Press, Cambridge, MA, USA, 1998.

[32] A. Meisels and R. Zivan. Asynchronous forward-checking for DisC-
SPs. Constraints, 12:131–150, 2007.

[33] L. Michel, A. See, and P. Van Hentenryck. Distributed constraint-
based local search. In F. Benhamou, editor, Principles and Prac-
tice of Constraint Programming - CP 2006, volume 4204 of Lecture
Notes in Computer Science, pages 344–358. Springer Berlin / Hei-
delberg, 2006.

BIBLIOGRAPHY 51

[34] L. Michel, A. See, and P. Van Hentenryck. Parallelizing constraint
programs transparently. In C. Bessiere, editor, Principles and Prac-
tice of Constraint Programming - CP 2007, volume 4741 of Lecture
Notes in Computer Science, pages 514–528. Springer Berlin / Hei-
delberg, 2007.

[35] L. Michel, A. See, and P. Van Hentenryck. Parallel and distributed lo-
cal search in COMET. Computers & Operations Research, 36:2357–
2375, Aug 2009.

[36] R. Mirchandaney, D. Towsley, and J. A. Stankovic. Analysis of the
effects of delays on load sharing. IEEE Transactions on Computers,
38:1513–1525, Nov 1989.

[37] G. Mitra, I. Hai, and M. T. Hajian. A distributed processing algorithm
for solving integer programs using a cluster of workstations. Parallel
Computing, 23(6):733–753, 1997.

[38] G. Moore. Progress in digital integrated electronics. In 1975 Inter-
national Electron Devices Meeting, volume 21, pages 11–13, 1975.

[39] N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and
G. Tack. MiniZinc: Towards a standard CP modelling language. In
C. Bessiere, editor, Principles and Practice of Constraint Program-
ming - CP 2007, volume 4741 of Lecture Notes in Computer Science,
pages 529–543. Springer Berlin / Heidelberg, 2007.

[40] T. Nguyen and Y. Deville. A distributed arc-consistency algorithm.
Science of Computer Programming, 30(1-2):227–250, 1998.

[41] L. Otten and R. Dechter. Finding most likely haplotypes in general
pedigrees through parallel search with dynamic load balancing. In
Pacific Symposium on Biocomputing, pages 26–37, 2011.

[42] E. Pontelli, G. Gupta, and M. V. Hermenegildo. &ACE: A high-
performance parallel Prolog system. In Proceedings of the 9th Inter-
national Symposium on Parallel Processing, IPPS ’95, pages 564–
571, Washington, DC, USA, 1995. IEEE Computer Society.

52 BIBLIOGRAPHY

[43] J.-F. Puget. A fast algorithm for the bound consistency of alldiff
constraints. In Proceedings of the fifteenth national/tenth conference
on Artificial intelligence/Innovative applications of artificial intelli-
gence, AAAI ’98/IAAI ’98, pages 359–366, Menlo Park, CA, USA,
1998. American Association for Artificial Intelligence.

[44] T. K. Ralphs. Parallel branch and cut. In E.-G. Talbi, editor, Parallel
Combinatorial Optimization, chapter 3, pages 53–101. John Wiley
& Sons, Inc., 2006.

[45] V. Rao and V. Kumar. Superlinear speedup in parallel state-space
search. In K. Nori and S. Kumar, editors, Foundations of Software
Technology and Theoretical Computer Science, volume 338 of Lec-
ture Notes in Computer Science, pages 161–174. Springer Berlin /
Heidelberg, 1988.

[46] J.-C. Régin. A filtering algorithm for constraints of difference in
CSPs. In Proceedings of the twelfth national conference on Artificial
intelligence (vol. 1), AAAI ’94, pages 362–367, Menlo Park, CA,
USA, 1994. American Association for Artificial Intelligence.

[47] A. Reinefeld. Parallel search in discrete optimization problems. Sim-
ulation Practice and Theory, 4(2-3):169–188, 1996.

[48] R. Reischuk, C. Schulte, P. Stuckey, and G. Tack. Maintaining state
in propagation solvers. In I. Gent, editor, Principles and Practice of
Constraint Programming - CP 2009, volume 5732 of Lecture Notes
in Computer Science, pages 692–706. Springer Berlin / Heidelberg,
2009.

[49] C. C. Rolf. Parallel and distributed search in constraint program-
ming. Master Thesis, Department of Computer Science, Lund Uni-
versity, June 2006.

[50] C. C. Rolf and K. Kuchcinski. Load-balancing methods for parallel
and distributed constraint solving. In IEEE International Conference
on Cluster Computing, pages 304–309, Sep/Oct 2008.

BIBLIOGRAPHY 53

[51] C. C. Rolf and K. Kuchcinski. State-copying and recomputation in
parallel constraint programming with global constraints. In Euromi-
cro Conference on Parallel, Distributed and Network-Based Process-
ing, pages 311–317, Feb 2008.

[52] C. C. Rolf and K. Kuchcinski. Parallel consistency in constraint pro-
gramming. In H. R. Arabnia, editor, Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications, volume 2, pages 638–644. CSREA Press, July 2009.

[53] C. C. Rolf and K. Kuchcinski. Combining parallel search and paral-
lel consistency in constraint programming. In International Confer-
ence on Principles and Practice of Constraint Programming: TRICS
workshop, Sept 2010.

[54] C. C. Rolf and K. Kuchcinski. Distributed constraint programming
with agents. In A. Bouchachia, editor, International Conference on
Adaptive and Intelligent Systems - ICAIS ’11, volume 6943 of Lec-
ture Notes in Computer Science, pages 320–331. Springer Berlin /
Heidelberg, 2011.

[55] F. Rossi, P. v. Beek, and T. Walsh. Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence. Elsevier
Science Inc., New York, NY, USA, 2006.

[56] C. Roucairol. Parallel processing for difficult combinatorial op-
timization problems. European Journal of Operational Research,
92(3):573–590, 1996.

[57] A. Ruiz-Andino, L. Araujo, F. Sáenz, and J. Ruz. Parallel execution
models for constraint programming over finite domains. In G. Na-
dathur, editor, Principles and Practice of Declarative Programming,
volume 1702 of Lecture Notes in Computer Science, pages 134–151.
Springer Berlin / Heidelberg, 1999.

[58] A. Ruiz-Andino, L. Araujo, F. Sáenz, and J. J. Ruz. Parallel arc-
consistency for functional constraints. In Implementation Technology
for Programming Languages based on Logic, pages 86–100, 1998.

54 BIBLIOGRAPHY

[59] M. Salido. Distributed CSPs: Why it is assumed a variable per agent?
In I. Miguel and W. Ruml, editors, Abstraction, Reformulation, and
Approximation, volume 4612 of Lecture Notes in Computer Science,
pages 407–408. Springer Berlin / Heidelberg, 2007.

[60] C. Schulte. Parallel search made simple. In N. Beldiceanu, W. Har-
vey, M. Henz, F. Laburthe, E. Monfroy, T. Müller, L. Perron, and
C. Schulte, editors, Proceedings of TRICS: Techniques for Imple-
menting Constraint programming Systems, a post-conference work-
shop of CP 2000, Singapore, Sept 2000.

[61] C. Schulte and M. Carlsson. Finite domain constraint programming
systems. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, Foundations of Artificial Intelligence,
chapter 14, pages 495–526. Elsevier Science Publishers, Amsterdam,
The Netherlands, 2006.

[62] P. Stuckey. Lazy clause generation: Combining the power of SAT
and CP (and MIP?) solving. In A. Lodi, M. Milano, and P. Toth,
editors, Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, volume 6140
of Lecture Notes in Computer Science, pages 5–9. Springer Berlin /
Heidelberg, 2010.

[63] R. Szymanek. Private communication, 2011.

[64] S. Taylor. Parallel logic programming techniques. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1989.

[65] R. J. Wallace and E. C. Freuder. Ordering heuristics for arc consis-
tency algorithms. In Canadian Conference on Artificial Intelligence,
1992.

[66] M. J. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

BIBLIOGRAPHY 55

[67] F. Xie and A. Davenport. Massively parallel constraint program-
ming for supercomputers: Challenges and initial results. In A. Lodi,
M. Milano, and P. Toth, editors, Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Prob-
lems, volume 6140 of Lecture Notes in Computer Science, pages
334–338. Springer Berlin / Heidelberg, 2010.

[68] J. Yang and S. D. Goodwin. High performance constraint satisfaction
problem solving: State-recomputation versus state-copying. In Pro-
ceedings of the 19th International Symposium on High Performance
Computing Systems and Applications, pages 117–123, Washington,
DC, USA, 2005. IEEE Computer Society.

[69] M. Yokoo and K. Hirayama. Algorithms for distributed constraint
satisfaction: A review. Autonomous Agents and Multi-Agent Systems,
3:185–207, 2000.

[70] R. Zivan and A. Meisels. Concurrent search for distributed CSPs.
Artificial Intelligence, 170(4-5):440–461, 2006.

INCLUDED PAPERS

PAPER I

PARALLEL CONSISTENCY IN
CONSTRAINT PROGRAMMING

This paper is a reformatted version of Parallel Consistency in Constraint
Programming, The International Conference on Parallel and Distributed
Processing Techniques and Applications: SDMAS workshop, 2009.

60 Parallel Consistency in Constraint Programming

Parallel Consistency in Constraint
Programming

Carl Christian Rolf and Krzysztof Kuchcinski

Department of Computer Science, Lund University
Carl_Christian.Rolf@cs.lth.se, Krzysztof.Kuchcinski@cs.lth.se

Abstract

Program parallelization becomes increasingly important when
new multi-core architectures provide ways to improve performance.
One of the greatest challenges of this development lies in program-
ming parallel applications. Using declarative languages, such as
constraint programming, can make the transition to parallelism eas-
ier by hiding the parallelization details in a framework.

Automatic parallelization in constraint programming has previ-
ously focused on data parallelism. In this paper, we look at task
parallelism, specifically the case of parallel consistency. We have
developed two models of parallel consistency, one that shares inter-
mediate results and one that does not. We evaluate which model is
better in our experiments. Our results show that parallelizing con-
sistency can provide the programmer with a robust scalability for
regular problems with global constraints.

61

1 Introduction

In this paper, we discuss parallel consistency in constraint programming
(CP) as a means of achieving task parallelism. CP has the advantage of
being declarative. Hence, the programmer does not have to make any
significant changes to the program in order to solve it using parallelism.
This means that the difficult aspects of parallel programming can be left
entirely to the creator of the constraint framework.

Constraint programming has been used with great success to tackle
different instances of NP-complete problems such as graph coloring, sat-
isfiability (SAT), and scheduling [5]. A constraint satisfaction problem
(CSP) can be defined as a 3-tuple P = (X,D,C), where X is a set of
variables, D is a set of finite domains where Di is the domain of Xi, and
C is a set of primitive or global constraints containing between one and all
variables in X . Solving a CSP means finding assignments to X such that
the value of Xi is in Di, while all the constraints are satisfied. The tuple
P is referred to as a constraint store.

Finding a valid assignment to a constraint satisfaction problem is usu-
ally accomplished by combining backtracking search with consistency
checking that prunes inconsistent values. To do this, a variable is assigned
one of the values from its domain in every node of the search tree. Due to
time-complexity issues, the consistency methods are rarely complete [2].
Hence, the domains of the variables will contain values that are locally
consistent, but cannot be part of a solution.

In this paper, we refer to parallel search as data parallelism, and par-
allel consistency as task parallelism. When parallelizing search in CP, the
data is split between solvers. As depicted in Figure 1, data parallelism in
CP can cause major problems. In the figure, we send the rightmost nodes
to another constraint solver running on a different processor core. How-
ever, since there are no solutions in those search nodes, the parallelism
will inevitably lead to a slowdown because of communication overhead.
This problem cannot be avoided, since the consistency algorithms are not
complete. Hence, we cannot predict the amount of work sent to other
processors.

62 Parallel Consistency in Constraint Programming

X ∈ {5..9}X ∈ {0..4}

Y ∈ {5..9}Y ∈ {0..4}

No solutions

No solutions

P1

P2

P3

Figure 1: Parallel search in constraint programming.

Figure 2 presents the model of parallel consistency in constraint pro-
gramming discussed in this paper. In the example, the search process is
sequential, but the enforcement of consistency is performed in parallel.
Constraints C1, C2, and C3 can be evaluated independently of each other
on different processor cores, as long as the changes they try to perform
are synchronized. This type of parallelism does not involve splitting data,
and will never lead to any unnecessary search. We may, however, have to
perform extra iterations of consistency, since the updates to domains are
based on the store from the beginning of each consistency phase.

The problem of performing unnecessary work in parallel constraint
solving is pervasive. Most problems do not scale well when using many
processors. In our previous work [11, 12] we have tried to reduce the cost
distributing work, and reduce the probability of performing unnecessary
work. However, some problems cannot be data-parallelized at all without
causing a severe slowdown, this is true in particular when searching for a
single solution.

63

Data parallelism can be problematic, or even unsuitable, for other rea-
sons. Many problems modeled in CP spend a magnitude more time enforc-
ing consistency than searching. Trying to use data parallelism for these
problems often reduces performance. In these cases, task parallelism is
the only way to take advantage of modern multicore processors.

The rest of this paper is organized as follows. In Section 2 the back-
ground issues are explained, in Section 3 the parallel consistency is de-
scribed in detail. Section 4 introduces the experiments and the results,
Section 5 gathers the conclusions, and Section 6 presents our future work.

X ∈ {0..9}

Y ∈ {0..9}

C2C1

P1

C2C1

C3

C3

P2 P3

Figure 2: Parallel consistency in constraint programming.

64 Parallel Consistency in Constraint Programming

2 Background
Most work on parallelism in CP has dealt with data parallelism [14]. While
this offers the greatest theoretical scalability, it is often limited by a num-
ber of issues. Today, the main one is that processing disjoint data will satu-
rate the memory bus faster than when processing the same data. In theory,
a super-linear performance should be possible for depth-first search algo-
rithms [10]. This, however, has only rarely been reported, and only for
small numbers of processors [6]. The performance-limits placed on data-
parallel constraint solving are especially apparent on modern multi-core
architectures.

Another issue with data parallelism in CP arises for problems modeled
using intervals. This category includes scheduling problems, which are the
most industry-relevant applications of constraint programming. Splitting
an interval in a scheduling problem will reshape the search tree of both the
computer sending work and the one receiving it. Such a change in shape
can lead to bounding solutions not being found in reasonable time. In
the worst case, this can lead to a very large slowdown. Previous work on
data parallelism for scheduling problems has either relied on specialized
splitting [14], or only reported results for limited discrepancy search and
not for depth-first search [8].

Task parallelism is the most realistic type of parallelism for problems
where the time needed for search is insignificant compared to that of en-
forcing consistency. This can happen when the consistency algorithms
prunes almost all the inconsistent values. Such strong pruning is partic-
ularly expensive and in a greater need of parallelism. The advantage of
these large constraints over a massively parallel search is that the execu-
tion time will be more predictable.

Previous work on parallel enforcement of consistency has focused on
parallel arc-consistency algorithms [7, 13]. The downside of such an ap-
proach is that processing one constraint at a time may not allow inconsis-
tencies to be discovered as quickly. If one constraint holds and another
does not, the enforcement of the first one could be cancelled as soon as the
inconsistency of the second constraint is discovered.

65

Perhaps the greatest downside of parallel arc-consistency is that it is
not applicable to global constraints. These constraints encompass several,
or all, of the variables in a problem. This allows them to achieve a much
better pruning than primitive constraints that can only establish simple
relations between variables, such as X + Y ≤ Z.

3 Parallel Consistency
Parallel consistency in CP means that several constraints will be evalu-
ated in parallel. Constraints that contain the same variables have data de-
pendencies, and therefore their pruning must be synchronized. However,
since the pruning is monotonic, the order in which the data is modified
does not affect the correctness. This follows from that well-behaved con-
straint propagators must be both decreasing and monotonic [15]. In our
solver this is guaranteed by the consistency method implemented in our
solver. It makes the intersection of the old domain and the one given by
the consistency algorithm. The result is written back as a new domain.
Hence, the domain size will never increase.

Our model of parallel consistency is depicted in Figure 3. The pseudo-
code for our model is presented in Figure 4 and Figure 5. At each level
of the search, consistency is enforced. This is done by waking the consis-
tency threads available to the constraint program. These threads will then
retrieve constraints from the queue of constraints whose variables have
changed. In order to reduce synchronization, each thread will take several
constraints out of the queue at the same time. When all the constraints
that were in the queue at the beginning of the consistency phase have been
processed, all prunings are committed to the constraint store. If there were
no changes to any variable, the consistency has reached a fix-point and the
constraint program resumes the search. If an inconsistency is discovered,
the other consistency threads are notified and they all enter the waiting
state after informing the constraint program that it needs to backtrack.

As depicted in Figure 6, we have to stop all thread in order to enforce
updates. The reason is that most constraints cannot operate on a partially
updated store. However, speculative execution of the constraints already
in the queue could reduce the idle time for some threads.

66 Parallel Consistency in Constraint Programming

Constraint Program

search

Slave 1 Slave 2

start consistency

get constraints

get constraints

inconsistent

backtrack

Figure 3: Model of parallel consistency with two consistency threads. The
dashed line indicates the final return to the constraint program. In this
example it leads to a backtrack of the search procedure.

Consistency enforcement is iterative. When the threads are ready, the
constraint queue is split between them. Then one iteration of consistency
can begin. This procedure will be repeated until the constraints no longer
change the domain of any variable. The constraints containing variables
that have changes will be added to the constraint queue after the updates
have been performed.

The greatest challenge in parallel consistency lies in distributing the
work evenly between the threads. This load-balancing requires a tradeoff
between synchronization overhead and an uneven load. The best balance
is when each thread has its own local constraint queue, that receives a
number of the constraints from the global queue. If a thread runs out of
work, it can perform work stealing from another thread without having to
lock the global constraint queue.

67

// variables to be labeled V , with FDV xi ∈ V
// domain of xi is di, list of slave computers S

while V 6= ∅
V ← V \ xi

select value a from di
xi ← a
for each slave s in S

s.enforceConsistency
wait //wait for all slaves to stop
if Inconsistent

di ← di \ a
V ← V ∪ xi

return solution

Figure 4: The constraint program of parallel depth-first search algorithm.

One of the main implementation issues of parallel consistency is the
overhead for synchronization. If this overhead is too high, compared to the
time needed to enforce consistency, there will be no speed-up. Further-
more, when starting the consistency, there is additional synchronization
needed for waking the threads in the thread pool from the waiting state.

The issue of load-balancing is related to the model in the constraint
program. Global constraints usually have consistency algorithms with a
time complexity of at least O(nlog n). Primitive constraints, however,
typically have a constant running time with regard to the number of vari-
ables. While a good load-balancing can alleviate this problem, some prob-
lems may simply have too few global constraints to motivate the cost of
synchronization in parallel consistency.

There are two variations of the model that we have presented. The dif-
ference lies in how the intermediate domains used for updates are handled.
The two variations are:

• Shared intermediate domains, which requires synchronization of
changes to variables. This variant is described in section 3.1.

• Thread local intermediate domains, which does not require changes
to be synchronized, described in section 3.2.

68 Parallel Consistency in Constraint Programming

// set of constraints to be processed PC
// set of constraints processed in this slave SC
// returns result to the constraint program

while PC 6= ∅
PC ← PC \ SC
while SC 6= ∅

SC ← SC \ c
c.consistency
if c.inconsistent
for each slave s in S

s.stop
return Inconsistent

if all other slaves waiting
perform updates
for each changed constraint cd

PC ← PC ∪ cd
for each slave s in S

s.wake
else
wait //wait for updates

return Consistent

Figure 5: The slave program of parallel depth-first search algorithm.

The domain that is used during update at the barrier in Figure 6 is
the intersection of all intermediate domains given by the constraints. If
a shared intermediate domain is used, the intersection will be calculated
each time a constraint changes a variable. If the intermediate domains are
thread local, the intersection will be calculated at the barrier.

3.1 Shared Intermediate Domains
Using shared intermediate domains requires changes to be synchronized.
This inevitably reduces the scalability of the parallel consistency. The
entire calculation of the domain intersection has to be synchronized, oth-

69

erwise intervals in the domain could be modified concurrently. Hence, the
shared domains cannot be made lock-free, unless the entire domain fits
into an architecture-atomic data type.

The advantage of shared intermediate domains, is that inconsistencies
will be discovered earlier. The domain used at the update barrier is the in-
tersection of the intermediate domains given by the constraints. Hence, an
empty intermediate domain means that the constraint store is inconsistent.
If any constraint leads to an empty intermediate domain, we can cancel the
enforcement of all other constraints, as the pruning is monotonic.

3.2 Thread Local Intermediate Domains
The principle behind thread local intermediate domains is shown in Fig-
ure 7. The downside of using separate intermediate domains is that we will
not be able to detect all inconsistencies before the update barrier. Often,
inconsistency is reached when the combined changes of two constraints
lead to an empty intermediate domain. If we are using thread local in-
termediate domains, we will only detect such inconsistencies if the two
incompatible constraints are enforced by the same thread.

Constraint
Queue

Thread 1 Thread 2 Thread 3

Barrier

Done, waiting
Done, waiting

Perform updates

Add changed constraints to queue

Figure 6: The execution model for parallel consistency.

70 Parallel Consistency in Constraint Programming

Constraint
Queue

Thread 1 Thread 2 Thread 3

Barrier

Done, waiting
Done, waiting

X > Y X > Z X > Q

X1 > Y X2 > Z X3 > Q

X ∈ X1 ∩ X2 ∩ X3

Figure 7: The model of thread local updates.

Thread local variables do not require synchronization, this increases
the scalability. In the case of thread local intermediate domains, the only
concern is ensuring visibility at the update barrier. This may add extra
cost of synchronization depending on which thread performs the actual
updates.

If the constraint store is consistent, thread local intermediate domains
are preferable. Since there is less synchronization, the scalability will be
better, especially when using many consistency threads. However, if the
store is inconsistent, we may have to enforce many more constraints since
we cannot see the changes caused by the other threads. Inconsistency will
therefore be detected later, possibly not until the update barrier is reached.

4 Experimental Results
We used the JaCoP solver [3] in our experiments. The experiments were
run on a Mac Pro with two 3.2 GHz quad-core Intel Xeon processors run-
ning Mac OS X 10.5. The parallel version of our solver is described in
detail in [11].

71

4.1 Problem Set
We used three problems in our experiments: n-Sudoku, which gives an
n× n Sudoku if the square root of n is an integer, LA31 which is a well-
known 30×10 jobshop scheduling problem [4], and n-Queens which con-
sists in finding a placement of n queens on a chessboard so that no queen
can strike another. The presented results are the absolute speed-ups of en-
forcing consistency of all constraints before the search. For Sudoku we
used n = 1024 and for Queens we used n = 40 000.

The characteristics of the problems are shown in Table 1. n-Sudoku is
very regular when modeled in CP, it uses 3 × n alldiff constraints. Our
implementation of alldiff uses the O(n2) algorithm for bounds consis-
tency [9]. LA31 was formulated using ten cumulative constraints, which
also have a time complexity of O(n2) [1]. However, this problem also con-
tains a number of primitive constraints for task precedence. Queens was
formulated using three alldiff constraints, combined with a large number
of primitive constraints to calculate the diagonals of each queen.

Table 1: Characteristics of the problems.

Problem Variables Primitive Constraints Global Constraints

Sudoku 1048576 0 3072
LA31 632 301 10
Queens 119998 79998 3

4.2 Results for a Consistent Store
We performed experiments on both variations of parallel consistency. The
results for shared intermediate domains are presented in Table 2 and Fig-
ure 8. The results for thread local intermediate domains are presented in
Table 3 and Figure 9. From the tables we can see that the scheduling prob-
lem of LA31 is quite small compared to Queens and Sudoku. However,
we wanted to use a standardized test for this industry-relevant problem
instead of generating a new one.

72 Parallel Consistency in Constraint Programming

Table 2: Execution times in milliseconds for shared intermediate domains.

Threads
Problem 1 2 4 8

Sudoku 10991 5524 3108 1843
LA31 84.66 50.92 32.44 27.22
Queens 33428 19419 14928 14420

Table 3: Execution times in milliseconds for thread local intermediate do-
mains.

Threads
Problem 1 2 4 8

Sudoku 10991 5541 3161 1897
LA31 84.66 47.05 33.22 26.98
Queens 33428 18413 14729 14477

Figure 8 and Figure 9 show that Sudoku is the problem that scales
the best by far. This is because it is very regular. The constraints used
in this problem are all of the same size, which makes it easy to achieve
a good load-balancing. Moreover, all constraints contain 1024 variables,
making them very expensive to compute. In contrast, the other problems
use combinations of large and small constraints, which makes it difficult
to distribute the load evenly.

The scheduling problem of LA31 does not scale as well as Sudoku.
The two main reasons are problem size and a lack of large constraints. The
short execution time of enforcing consistency increases the relative cost
of synchronization. Furthermore, the global constraints in LA31 contain
much fewer variables than the ones in Sudoku.

Clearly Queens does not scale well at all, but as we can see in Tables 2
and 3, this is not because of problem size. The low scalability is instead
caused by the constraints. There are only three global constraints used in
this problem. The rest are small, primitive constraints that finish quickly.

73

1 2 4 8
0

1

2

3

4

5

6

7

Sudoku LA31 Queens

Number of Threads

A
b
s
o
lu
te
 S
p
e
e
d
-u
p

Figure 8: Absolute speed-up when using shared intermediate domains.

Hence, we will have at most three threads running heavy consistency al-
gorithms. LA31 scales better than Queens, despite its short running time,
since it contains more global constraints.

The lack of speed-up for Queens compared to Sudoku relates not only
to the load-balancing during consistency, but also the consistency itera-
tions. Since the three global constraints in Queens are much larger than
the ones in Sudoku, it would not be unreasonable to expect a speed-up
of about three for Queens. However, the updates caused by primitive
constraints, require the global constraints to be enforced a second time.
Hence, the pruning pattern of a problem can have a large negative impact
on performance.

The small difference between using shared and thread local intermedi-
ate domains is noteworthy. The minimal differences suggests that most of
the locks are uncontended. The cases where shared domains are faster are
probably caused by the operating system scheduler.

74 Parallel Consistency in Constraint Programming

1 2 4 8
0

1

2

3

4

5

6

7

Sudoku LA31 Queens

Number of Threads

A
b
s
o
lu
te
 S
p
e
e
d
-u
p

Figure 9: Absolute speed-up when using thread local intermediate do-
mains.

Clearly it does not matter which model of parallel consistency is cho-
sen when the store is consistent. The closer the store is to global con-
sistency, the less pruning there will be. The less pruning, the fewer the
dependencies are caused by the update of intermediate domains, reducing
lock contention.

4.3 Results for an Inconsistent Store
During search, the store is likely to become inconsistent more often than
consistent. Hence, we also performed experiments on an inconsistent
store. In order to make the store inconsistent, we made two incompati-
ble assignments and then enforced consistency.

The execution times in milliseconds of the two models are presented in
Table 4 and Table 5. The absolute speed-ups are depicted in Figure 10 and
Figure 11. Clearly, the scalability of parallel consistency is not as good if
the store is inconsistent.

75

Table 4: Execution times in milliseconds for shared intermediate domains.

Threads
Problem 1 2 4 8

Sudoku 7342 5503 3018 1703
LA31 69 58 38 36
Queens 9709 5442 5127 5312

Table 5: Execution times in milliseconds for thread local intermediate do-
mains.

Threads
Problem 1 2 4 8

Sudoku 7342 5599 2994 1875
LA31 69 59 41 37
Queens 9709 5750 5370 5547

Table 6 and Table 7 present the behavior of the two model variations.
As expected, many more constraints are evaluated when using parallel
consistency. Furthermore, the performance is completely determined by
the order in which the constraints are evaluated. Ideally the constraints
should be ordered by the probability of causing an inconsistency.

Table 6: Constraints evaluated by the shared intermediate domains.

Threads
Problem 1 2 4 8

Sudoku 2049 3073 3073 3073
LA31 1749 2941 2941 2941
Queens 3 80002 16610 14873

76 Parallel Consistency in Constraint Programming

Table 7: Constraints evaluated by the thread local intermediate domains.

Threads
Problem 1 2 4 8

Sudoku 2049 3072 3072 3072
LA31 1749 2981 2981 2981
Queens 3 80001 12310 14041

1 2 4 8
0

1

2

3

4

5

Sudoku LA31 Queens

Number of Threads

A
b
s
o
lu
te
 S
p
e
e
d
-u
p

Figure 10: Absolute speed-up when using shared intermediate domains.

The reason why the scalability is lower when the store is inconsistent is
that we base our computations on the store at the beginning of the consis-
tency phase. Hence, even with shared intermediate domains, the pruning
will not be as strong per consistency iteration as when using sequential
consistency.

77

1 2 4 8
0

1

2

3

4

5

Sudoku LA31 Queens

Number of Threads

A
b
s
o
lu
te
 S
p
e
e
d
-u
p

Figure 11: Absolute speed-up when using thread local intermediate do-
mains.

4.4 Processor Load
As depicted in Figures 12 to 14, the processor loads for the three problems
are quite different. The biggest difference is that the problems need a
different amount of consistency iterations. Sudoku performs no pruning
and needs only one iteration of consistency. LA31 needs 12 iterations,
hence the heavily varying curve in Figure 13. Queens needs two iterations,
which is the cause of the spike in Figure 14.

The average load of the problems is presented in Table 8. The load of
LA31 is quite low despite the fact that there are more global constraints
than available threads. The main cause is the large number of consistency
iterations. In order to enforce the updates, we have to perform twelve
barrier synchronizations, at which no consistency threads are active.

78 Parallel Consistency in Constraint Programming

0

2

4

6

8
A

c
ti
v
e

 T
h

re
a

d
s

Execution Progress

Figure 12: The processor load of Sudoku using eight threads.

The reason why Queens has such a low load is that there are few global
constraints. Given the time complexity, the three alldiff constraints will
take several orders of magnitude longer to compute than the combined
time for the primitive constraints. In the second iteration of consistency,
the load comes from the two alldiff constraints used to calculate the diag-
onals.

Table 8: Average load when using eight threads.

Problem Average Load Percentage of Maximum

Sudoku 6.77 0.85
LA31 2.13 0.27
Queens 1.71 0.21

From the average load it is clear that the performance of parallel con-
sistency depends heavily on achieving a good load distribution. Unfor-
tunately, the problem structure may not allow for the load to be shared
using only task parallelism. In the case of Queens, a parallel consistency
algorithm for alldiff would be necessary to improve the scalability.

79

0

2

4

6

8
A

c
ti
v
e

 T
h

re
a

d
s

Execution Progress

Figure 13: The processor load of LA31 using eight threads.

0

2

4

6

8

A
c
ti
v
e

 T
h

re
a

d
s

Execution Progress

Figure 14: The processor load of Queens using eight threads.

80 Parallel Consistency in Constraint Programming

5 Conclusions
The main conclusion of this paper is that task parallelism, in the form of
parallel consistency, can offer great improvements in performance. The
prerequisite is that the problem is formulated using many global con-
straints. For problems that consist mainly of primitive constraints, that
are easily enforced, the scalability can be severely limited.

Depending on the load-balancing used in the consistency threads, the
regularity of the problem has a large impact on the scalability. The more
regular the problem, the less of an issue load-balancing becomes. Sudoku
is an example of a problem that is both regular and consists only of global
constraints. Hence, this problem illustrates the upper bound of the scala-
bility of parallel consistency.

The synchronization cost limits which problems can benefit from par-
allel consistency. Problems that mostly consist of small constraints will
not scale well since even the locking in a thread pool is to costly com-
pared to the performance benefits.

Clearly there is little difference between the two variations of our
model of parallel consistency. Reducing synchronization by using thread
local intermediate domains will most likely give a better scalability when
using many threads. However, which model is better depends on the prob-
lem, and how often the constraint store becomes inconsistent.

6 Future Work
In our future work we hope to investigate the possibility of speculative
execution. The last iteration of consistency will not make changes to any
domain. Hence, speculative execution of the last iteration will always be
successful.

We also hope to improve the load-balancing by implementing work
stealing. This will alleviate some of the issues that occur for problems
with irregular constraints. However, this may not prevent the extra updates
caused by the primitive constraints.

81

The problems that show poor scalability in our experiments are those
that often need a greater amount of search. Such problems would benefit
primarily from data parallelism. However, parallel consistency could be
used to increase the scalability when the memory bus starts to get con-
gested.

References
[1] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Schedul-

ing. Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[2] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

[3] K. Kuchcinski. Constraints-driven scheduling and resource assign-
ment. ACM Transactions on Design Automation of Electronic Sys-
tems, 8(3):355–383, July 2003.

[4] S. R. Lawrence. Resource-constrained project scheduling: An ex-
perimental investigation of heuristic scheduling techniques. Gradu-
ate School of Industrial Administration, Carnegie-Mellon University,
Pittsburgh PA, 1984.

[5] K. Marriott and P. J. Stuckey. Introduction to Constraint Logic Pro-
gramming. MIT Press, Cambridge, MA, USA, 1998.

[6] L. Michel, A. See, and P. Van Hentenryck. Parallelizing constraint
programs transparently. In C. Bessiere, editor, Principles and Prac-
tice of Constraint Programming - CP 2007, volume 4741 of Lecture
Notes in Computer Science, pages 514–528. Springer Berlin / Hei-
delberg, 2007.

[7] T. Nguyen and Y. Deville. A distributed arc-consistency algorithm.
Science of Computer Programming, 30(1-2):227–250, 1998.

82 Parallel Consistency in Constraint Programming

[8] L. Perron. Search procedures and parallelism in constraint program-
ming. In J. Jaffar, editor, Principles and Practice of Constraint Pro-
gramming - CP 1999, volume 1713 of Lecture Notes in Computer
Science, pages 346–360. Springer Berlin / Heidelberg, 1999.

[9] J.-F. Puget. A fast algorithm for the bound consistency of alldiff
constraints. In Proceedings of the fifteenth national/tenth conference
on Artificial intelligence/Innovative applications of artificial intelli-
gence, AAAI ’98/IAAI ’98, pages 359–366, Menlo Park, CA, USA,
1998. American Association for Artificial Intelligence.

[10] V. Rao and V. Kumar. Superlinear speedup in parallel state-space
search. In K. Nori and S. Kumar, editors, Foundations of Software
Technology and Theoretical Computer Science, volume 338 of Lec-
ture Notes in Computer Science, pages 161–174. Springer Berlin /
Heidelberg, 1988.

[11] C. C. Rolf and K. Kuchcinski. Load-balancing methods for parallel
and distributed constraint solving. In IEEE International Conference
on Cluster Computing, pages 304–309, Sep/Oct 2008.

[12] C. C. Rolf and K. Kuchcinski. State-copying and recomputation in
parallel constraint programming with global constraints. In Euromi-
cro Conference on Parallel, Distributed and Network-Based Process-
ing, pages 311–317, Feb 2008.

[13] A. Ruiz-Andino, L. Araujo, F. Sáenz, and J. J. Ruz. Parallel arc-
consistency for functional constraints. In Implementation Technology
for Programming Languages based on Logic, pages 86–100, 1998.

[14] C. Schulte. Parallel search made simple. In N. Beldiceanu, W. Har-
vey, M. Henz, F. Laburthe, E. Monfroy, T. Müller, L. Perron, and
C. Schulte, editors, Proceedings of TRICS: Techniques for Imple-
menting Constraint programming Systems, a post-conference work-
shop of CP 2000, Singapore, Sept 2000.

[15] C. Schulte and M. Carlsson. Finite domain constraint programming
systems. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook

83

of Constraint Programming, Foundations of Artificial Intelligence,
chapter 14, pages 495–526. Elsevier Science Publishers, Amsterdam,
The Netherlands, 2006.

84 Parallel Consistency in Constraint Programming

PAPER II

COMBINING PARALLEL
SEARCH AND PARALLEL

CONSISTENCY IN CONSTRAINT
PROGRAMMING

This paper is a reformatted version of Combining Parallel Search and Par-
allel Consistency in Constraint Programming, International Conference
on Principles and Practice of Constraint Programming: TRICS workshop,
2010.

86 Combining Parallel Search and Parallel Consistency in . . .

Combining Parallel Search and Parallel
Consistency in Constraint Programming

Carl Christian Rolf and Krzysztof Kuchcinski

Department of Computer Science, Lund University
Carl_Christian.Rolf@cs.lth.se, Krzysztof.Kuchcinski@cs.lth.se

Abstract

Program parallelization becomes increasingly important when
new multi-core architectures provide ways to improve performance.
One of the greatest challenges of this development lies in program-
ming parallel applications. Declarative languages, such as constraint
programming, can make the transition to parallelism easier by hiding
the parallelization details in a framework.

Automatic parallelization in constraint programming has mostly
focused on parallel search. While search and consistency are in-
trinsically linked, the consistency part of the solving process is often
more time-consuming. We have previously looked at parallel consis-
tency and found it to be quite promising. In this paper we investigate
how to combine parallel search with parallel consistency. We evalu-
ate which problems are suitable and which are not. Our results show
that parallelizing the entire solving process in constraint program-
ming is a major challenge as parallel search and parallel consistency
typically suit different types of problems.

87

1 Introduction
In this paper, we discuss the combination of parallel search and paral-
lel consistency in constraint programming (CP). CP has the advantage of
being declarative. Hence, the programmer does not have to make any sig-
nificant changes to the program in order to solve it using parallelism. This
means that the difficult aspects of parallel programming can be left entirely
to the creator of the constraint framework.

Constraint programming has been used with great success to tackle
different instances of NP-complete problems such as graph coloring, sat-
isfiability (SAT), and scheduling [4]. A constraint satisfaction problem
(CSP) can be defined as a 3-tuple P = (X,D,C), where X is a set of
variables, D is a set of finite domains where Di is the domain of Xi, and
C is a set of primitive or global constraints containing several of the vari-
ables in X . Solving a CSP means finding assignments to X such that the
value of Xi is in Di, while all the constraints are satisfied. The tuple P is
referred to as a constraint store.

Finding a valid assignment to a constraint satisfaction problem is usu-
ally accomplished by combining backtracking search with consistency
checking that prunes inconsistent values. In every node of the search
tree, a variable is assigned one of the values from its domain. Due to
time-complexity issues, the consistency methods are rarely complete [2].
Hence, the domains will contain values that are locally consistent, i.e.,
they will not be part of a solution, but we cannot prove this yet.

Figure 1 illustrates the problem of parallelism in CP. We use three
processors: P1, P2, and P3 to find the solution. We assign the different
parts of the search tree to processors as in the figure. The solution we are
searching for is in the leftmost part of the search tree in Figure 1(a) and will
be found by processor P1. Any work performed by processor P2 and P3
will therefore prove unnecessary and will only have added communication
overhead. In this case, using P2 and P3 for parallel consistency will be
much more fruitful. On the other hand, in Figure 1(b), the solution is in
the rightmost part of the tree. Hence, parallel search can reduce the total
amount of nodes explored to less than a third. In this situation, parallel
consistency can still be used to further increase the performance.

88 Combining Parallel Search and Parallel Consistency in . . .

P1 P2 P3

(a)

P1 P2 P3

(b)

Figure 1: The position of the solution in a search tree affects the benefit of
parallelism.

In this paper, we refer to parallel search (OR-parallelism) as data par-
allelism and parallel consistency (AND-parallelism) as task parallelism.
Parallelizing search in CP can be done by splitting data between solvers,
e.g., create a decision point for a selected variable Xi so that one com-
puter handles Xi <

min(Xi)+max(Xi)
2 and another computer handles Xi≥

min(Xi)+max(Xi)
2 . An example of such data parallelism in CP is depicted

in Figure 2. The different possible assignments are explored by processors
P1, P2, and P3. Clearly, we are not fully utilizing all three processors in
this example. At the first level of the search tree, only two out of three
processors are active. Near the leafs of the search tree, communication
cost outweighs the benefit of parallelism. Hence, we often have a low
processor load in later part of the search.

Figure 3 presents the model of parallel consistency in constraint pro-
gramming which we will partly discus in this paper. In the example, the
search process is sequential, but the enforcement of consistency is per-
formed in parallel. Constraints C1, C2, and C3 can be evaluated indepen-
dently of each other on different processors, as long as their pruning is syn-
chronized. We do not share data during the pruning, hence, we may have
to perform extra iterations of consistency. The cause of this implicit data
dependency is that global constraint often rely on internal data-structures
that become incoherent if variables are modified during consistency.

89

X ∈ {5..9}X ∈ {0..4}

Y ∈ {0..4}

P1

P2

Y ∈ {0..2}
X ∈ {5..9}
Y ∈ {2..4}

P3

Start

Figure 2: Parallel search in constraint programming.

The problem of idle processors during the latter parts of the search is
pervasive [9, 1]. Regardless of the problem, the communication cost will
eventually become too big.

Data parallelism can be problematic, or even unsuitable, for other rea-
sons. Many problems modeled in CP spend a magnitude more time enforc-
ing consistency than searching. Using data parallelism for these problems
often reduces performance. In these cases, task parallelism is the only way
to take advantage of multicore processors.

By combining parallel consistency with parallel search, we can further
boost the performance of constraint programming.

The rest of this paper is organized as follows. In Section 2 the back-
ground issues are explained, in Section 3 the parallel consistency is de-
scribed. Section 4 details how we combine parallel search and parallel
consistency. Section 5 describes the experiments and the results, Section 6
gathers our conclusions.

90 Combining Parallel Search and Parallel Consistency in . . .

X ∈ {0..9}

Y ∈ {0..9}

C2C1

P1

C2C1

C3

C3

P2 P3

Start

Figure 3: Parallel consistency in constraint programming.

2 Background
Most work on parallelism in CP has dealt with parallel search [12, 5].
While this offers the greatest theoretical scalability, it is often limited by
a number of issues. Today, the main one is that processing disjoint data
will saturate the memory bus faster than when processing the same data.
In theory, a super-linear performance should be possible for depth-first
search algorithms [8]. This, however, has only rarely been reported, and
only for small numbers of processors [5]. The performance-limits of data
parallelism in memory intense applications, such as CP, are especially ap-
parent on modern multi-core architectures [14].

Task parallelism is the most realistic type of parallelism for problems
where the time needed for search is insignificant compared to that of en-
forcing consistency. This happens when the consistency algorithms prune
almost all of the inconsistent values. Such strong pruning is particularly
expensive and in a greater need of parallelism. The advantage of these

91

large constraints over a massively parallel search is that the execution time
may become more predictable. For instance, speed-up when searching for
one solution often has a high variance when parallelizing search since the
performance is highly dependent on which domains are split.

Previous work on parallel enforcement of consistency has mostly fo-
cused on parallel arc-consistency algorithms [6, 11]. The downside of
such an approach is that processing one constraint at a time may not al-
low inconsistencies to be discovered as quickly as when processing many
constraints in parallel. If one constraint holds and another does not, the
enforcement of the first one can be cancelled as soon as the inconsistency
of the second constraint is discovered.

The greatest downside of parallel arc-consistency is that it is not appli-
cable to global constraints. These global constraints encompass several,
or all, of the variables in a problem. This allows them to achieve a much
better pruning than primitive constraints, which can only establish simple
relations between variables, such as X + Y ≤ Z.

We only know of one paper on parallel consistency with global con-
straints [10]. That paper reported a speed-up for problems that can be
modeled so that load-balancing is not a big issue. For example, Sudoku
gave a near-linear speed-up. However, in this paper we go further by look-
ing at combining parallel search with parallel consistency.

3 Parallel Consistency
Parallel consistency in CP means that several constraints will be evaluated
in parallel. Constraints that contain the same variables have data depen-
dencies, and therefore their pruning must be synchronized. However, since
the pruning is monotonic, the order in which the data is modified does not
affect the correctness. This follows from the property that well-behaved
constraint propagators must be both decreasing and monotonic [13]. In our
finite domain solver this is guaranteed since the implementation makes the
intersection of the old domain and the one given by the consistency algo-
rithm. The result is written back as a new domain. Hence, the domain size
will never increase.

92 Combining Parallel Search and Parallel Consistency in . . .

Our model of parallel consistency is depicted in Figure 4, this model
is described in greater detail in [10], in Figure 6 and Figure 7. At each
level of the search, consistency is enforced. This is done by waking the
consistency threads available to the constraint program. These threads
will then retrieve work from the queue of constraints whose variables have
changed. In order to reduce synchronization, each thread will take several
constraints out of the queue at the same time. When all the constraints
that were in the queue at the beginning of the consistency phase have been
processed, all prunings are committed to the constraint store as the solver
performs updates. If there were no changes to any variable, the consistency
has reached a fix-point and the constraint program resumes the search. If
an inconsistency is discovered, the other consistency threads are notified
and they all enter the waiting state after informing the constraint program
that it needs to backtrack.

Constraint
Queue

Thread 1 Thread 2 Thread 3

Barrier

Done, waiting
Done, waiting

Perform updates

Add changed constraints to queue

Figure 4: The execution model for parallel consistency.

Consistency enforcement is iterative. When the threads are ready, the
constraint queue is split between them, and one iteration of consistency
can begin. This procedure will be repeated until we reach a fixpoint, i.e.,
the constraints no longer change the domain of any variable. The con-
straints containing variables that have changes will be added to the con-
straint queue after the updates have been performed.

93

One of the main concerns in parallel consistency is visibility. Global
constraints usually maintain an internal state that may become incoherent
if some variables are changed while the consistency algorithm is running.
If we perform the pruning in parallel, the changes will only be visible to
the other constraints after the barrier. This reduces the pruning achieved
per consistency iteration. Hence, in parallel consistency, we will usually
perform several more iterations than in sequential consistency before we
reach the fixpoint.

4 Combining Parallel Search and Parallel
Consistency

The idea when combining parallel search and parallel consistency is to as-
sociate every search thread several consistency threads. A simple example
is depicted in Figure 5. First the data is split from processor P1 and sent
to processor P2. Then the search running on P1 will perform consistency
by evaluating constraints C1 and C2 on processors P1 and P3 respectively.
The search running on P2 will, completely independently, run consistency
using processors P2 and P4. Each search has its own store, hence, con-
straints C1 and C2 can be evaluated by the two searches without any syn-
chronization.

P1 P3 P2 P4

Start

X ∈ {5..9}X ∈ {0..4}

P1

P2

C2C1C2C1

Figure 5: An example of combining parallel search and parallel consis-
tency.

94 Combining Parallel Search and Parallel Consistency in . . .

More formally, the execution of the combined search and consistency
in CP proceeds as follows. We begin with a constraint store P =(X,D,C)
as defined earlier. This gives us a search space to explore, which can be
represented as a tree. The children of the root node represent the values
in Di. In these nodes, we assign Xi one of its possible values and remove
Xi from X . For example, assigning X0 the value 5 gives a node n with
Pn = (X \ X0, D ∪ D0 ∩ {5}, C). After each assignment, we apply
the the function enforceConsistency, which runs the consistency meth-
ods of C, changing our store to (X ′, D′, C) where X ′ = X \ Xi. D′ is
the set of finite domains representing the possible values for X ′ that were
not marked as impossible by the consistency methods of C. The method
enforceConsistency is applied iteratively until D′′ = D′. Now there are
two possibilities: either ∃D′

i = ∅, in which case we have a failure, mean-
ing that there are no solutions reachable from this node, or we progress
with the search. In the latter case, we have two sub-states. Either X ′ = ∅,
in which case we have found a solution, or we need to continue recursively
by picking a new Xi.

Parallel search means that we divide Di into subsets and assign them
to different processors. Each branch of the search tree starting in a node is
independent of all other branches. Hence, there is no data dependency be-
tween the different parts of the search space. Parallel consistency means
parallelizing the enforceConsistency method. This is achieved by par-
titioning C into subsets, each handled by a different processor.

The pseudo code for our model is presented in Figure 6 and Figure 7.
When a search thread makes an assignment it needs to perform consistency
before progressing to the next level in the search tree. Hence, processors
P1 and P2 in the example are available to aid in the consistency enforce-
ment. The consistency threads are idle while the search thread works. If
we only allocate one consistency thread per processor a lot of processors
will be idle as we are waiting to perform the assignment. Hence, it is a
good idea to make sure that the total number of consistency threads ex-
ceeds the number of processors.

As Figure 6 and Figure 7 show, the parallel search threads will remove
a search node and explore it. In our model, a search node represents a set of
possible values for a variable. The thread that removes this set guarantees

95

that all values will be explored. If the set is very large, the search thread
can split the set to allow other threads to aid in the exploration. When
there are no more search nodes to explore, the entire search space has
been explored.

Since we have to wait for the different threads, some parts of the al-
gorithm are, by necessity, synchronized. In Figure 6, line 15 requires
synchronization while we wait for the consistency threads to finish. In
Figure 7, lines 15 to 22, which represent the barrier, are synchronized.
However, each thread may use its own lock for waiting. Hence, there is
little lock contention. Furthermore, line 13 has to be synchronized in order
to halt the other threads when we have discovered an inconsistency. De-
pending on the data structure, lines 6 and 7 may have to be synchronized.

1 // search nodes to be explored N
2 // variables to be labeled V , with FDV xi ∈ V
3 // domain of xi is di, list of slave computers S
4

5 while N 6= ∅
6 Node← N.first
7 N ← N \Node
8 V ← Node.unlabeledV ariables
9 while V 6= ∅

10 V ← V \ xi

11 select value a from di
12 xi ← a
13 for each slave s in S
14 s.enforceConsistency
15 wait //wait for all slaves to stop
16 if Inconsistent
17 di ← di \ a
18 V ← V ∪ xi

19 end while
20 store solution
21 end while

Figure 6: The depth-first search of the combined parallel search and par-
allel consistency.

96 Combining Parallel Search and Parallel Consistency in . . .

1 // set of constraints to be processed PC
2 // set of constraints processed in this slave SC
3 // returns result to the constraint program
4

5 boolean enforceConsistency
6 while PC 6= ∅
7 PC ← PC \ SC
8 while SC 6= ∅
9 SC ← SC \ c

10 c.consistency
11 if c.inconsistent
12 for each slave s in S
13 s.stop
14 return Inconsistent
15 if all other slaves waiting
16 perform updates
17 for each changed constraint cd
18 PC ← PC ∪ cd
19 for each slave s in S
20 s.wake
21 else
22 wait //wait for updates
23 end while
24 end while
25 return Consistent

Figure 7: The slave program for parallel consistency of the combined par-
allel search and parallel consistency algorithm.

4.1 Discussion
An alternative way to combine parallel search and consistency is to use a
shared work-queue for both types of jobs. Threads that become idle could
get new work from the queue, whether it was running consistency for a
constraint or exploring a search space. However, the performance of such
an approach would be heavily dependent on the priority given to the dif-

97

ferent types of work. If the priorities were just slightly incorrect, it would
hurt the performance of the other threads. For instance, a thread wanting
help with consistency might never get it because the idle threads are pick-
ing up search jobs instead. It might be possible to solve this problem using
adaptive priorities. However, this is outside the scope of this paper

By combining parallel search and parallel consistency, we hope to
achieve a better scalability. Unlike data parallelism for depth-first search,
the splitting of data poses a problem in constraint programming. The rea-
son is that the split will affect the domains of the variables that have not
yet been assigned a value. In the example in Figure 2, with a constraint
such as X > Y the consistency will change the shape of the search tree
by removing the value 4 from the domain of Y for processor P1. For more
complex problems, the shape of both search trees may be affected in un-
predictable ways. Since the consistency methods are not complete, there
is no way to efficiently estimate the size and shape of the search trees after
a split. Parallel consistency allows us to use the hardware more efficiently
when parallel search runs into these kinds of problems.

In [10] we showed that parallel consistency scales best on very large
problems consisting of many global constraints. Solving such problems
is a daunting task, which makes it hard to combine parallel search with
parallel consistency. Furthermore, finding just one solution to a problem
often leads to non-deterministic speed-ups.

The biggest obstacle we faced when developing a scalable version of
parallel consistency was the cost of synchronization. The problem comes
from global constraints, these typically use internal data structures. For in-
stance, the bounds consistency for AllDifferent constraint uses a list where
the order of variables is given by Hall intervals [7]. If pruning is per-
formed instantly by other threads, instead of being stored until a barrier,
the integrity of these data structures may be compromised. Eliminating
barrier synchronization would greatly increase the performance of parallel
consistency.

98 Combining Parallel Search and Parallel Consistency in . . .

5 Experimental Results
We used the JaCoP solver [3] in our experiments. The experiments were
run on a Mac Pro with two 3.2 GHz quad-core Intel Xeon processors run-
ning Mac OS X 10.6.2 with Java 6. These two processors have a common
cache and memory bus for each of its four cores. The parallel version of
our solver is described in detail in [9].

5.1 Experiment Setup
We used two problems in our experiments: n-Sudoku, which gives an
n × n Sudoku if the square root of n is an integer and n-Queens which
consists in finding a placement of n queens on a chessboard so that no
queen can strike another. Both problems use the AllDifferent constraint
with bounds consistency [7], chosen since it is the global constraint most
well spread in constraint solvers. The characteristics of the problems are
presented in Table 1.

The results are the absolute speed-ups when searching for a limited
number of solutions to n-Sudoku and one solution to n-Queens. For Su-
doku we used n = 100 with 85 % of values set and searched for 200 and
5 000 solutions. For Queens we used n = 550 and searched for a single
solution. We picked these problems in order to illustrate how the size of
the search space affects the behavior when combining parallel search with
parallel consistency, while still having a reasonable execution time.

For each problem we used between one and eight search threads. For
each search thread we used between one and eight consistency threads. We
used depth-first search with in-order variable selection for both problems.
The sequential performance of our solver is lower than that of some others.
However, this overhead largely comes from the higher memory usage of
a Java based solver. On a multicore system this is a downside since the
memory bus is shared. Hence, lower sequential performance does not
necessarily make it simpler to achieve a high speed-up.

99

Table 1: Characteristics of the problems.

Problem Variables Primitive Constraints Global Constraints

Sudoku 10 000 0 300
Queens 1 648 1 098 3

5.2 Results for Sudoku
The results for 100-Sudoku is presented in Table 2 and Table 3, the speed-
ups are depicted in Figure 8 and Figure 9. The bold number in the table
indicates the fastest time and the gray background marks the times slower
than sequential. The results show that there is a clear difference in behav-
ior as the search space increases. When we have to explore a larger search
space, parallel search is better than parallel consistency. However, if we
have a more even balance between search and consistency, combining the
two types of parallelism increases the performance.

From the diagrams, we can see that it is good to use more consistency
threads than there are processor cores. However, using many more threads
is not beneficial, especially when there are several search threads.

It is noteworthy that there is little overhead for using parallel consis-
tency when only running one search thread. Search for 200 solutions even
increases the performance somewhat. This is important because it means
that parallel consistency can be successful when it is difficult to extract
data parallelism from the problem.

The reduction in performance when adding parallel consistency to the
search for 5 000 solutions comes to some extent from synchronization
costs. Synchronization in Java automatically invalidates cache lines that
may contain data useful to other threads. With more precise control over
cache invalidation, the execution time overhead added by the parallel con-
sistency can be reduced.

Using too many threads will cause an undesirable amount of task-
switching and saturation of the memory bus. We measured and analyzed
how the number of active threads, and their type, affects performance. The
average number of active threads when running two search threads and

100 Combining Parallel Search and Parallel Consistency in . . .

four consistency threads per search thread for 200 solutions to n-Sudoku
was 5.5. This is the average over the entire execution time. The same
number for the slowest instance, eight by eight threads, was 59 active
threads. The first case achieves a rather good balance given that it is hard
to extract useful data parallelism for the search threads. The number of
active threads for the search threads alone was 1.5 when using two search
threads, and 7.1 when using eight search threads.

The main bottleneck for the performance is the increased workload
to enforce consistency. The total number of times constraints are eval-
uated per explored search node is depicted in Figure 10 and Figure 11.
Clearly, using parallel consistency increases the number of times we have
to evaluate the constraints. This is because we cannot share data between
constraints during their execution.

Table 2: Execution times in seconds when searching for 200 solutions to
100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 176 125 122 145
2 176 124 143 177
4 158 110 142 210
8 162 127 192 269

Table 3: Execution times in seconds when searching for 5 000 solutions to
100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 3 663 1 882 1 720 1 649
2 3 931 2 293 2 565 2 782
4 3 995 2 161 3 224 2 735
8 4 254 2 556 3 997 3 192

101

1 2 4 8
0

0.5

1

1.5

2

1 2 4 8Consistency Threads per Search Thread
A

b
s
o

lu
te

 S
p
e
e
d

-u
p

Search Threads

Figure 8: Speed-up when searching for 200 solutions to 100-Sudoku.

1 2 4 8
0

0.5

1

1.5

2

2.5

1 2 4 8Consistency Threads per Search Thread

A
b

s
o

lu
te

 S
p
e
e
d

-u
p

Search Threads

Figure 9: Speed-up when searching for 5 000 solutions to 100-Sudoku.

102 Combining Parallel Search and Parallel Consistency in . . .

The second bottleneck for the performance of parallel consistency is
synchronization. In our solution, we have several points of synchroniza-
tion. The barrier before updates is particularly costly as the slowest con-
sistency thread determines the speed.

The third bottleneck is the speed of the memory bus. Parallel search
can quickly saturate the bus. Adding parallel consistency will worsen the
performance. The performance clearly drops off towards the lower right
hand corner of Table 2 and to the left of Table 3. This problem can to some
extent be avoided by having a shared queue of tasks and a fix amount of
threads in the program. These threads could then switch between perform-
ing consistency and search in order to adapt to the memory bus load.

The only way to fruitfully combine parallel search with parallel con-
sistency is if we reduce the number of search nodes more than we increase
their computational weight. The inherent problem in doing this is clear
from the differences in results between Table 4 and Table 5. As shown
by Figure 10, when the problem is small there is an almost linear increase
in the number of consistency checks per search node as we add search
threads. On the other hand, Figure 11 shows that the number of consis-
tency checks varies a lot depending on the number of consistency threads.
The reason is that when we have to explore a large search space we will
run into more inconsistencies, which can be detected faster when using
parallel consistency. However, inconsistent nodes have less computational
weight. In conclusion, when parallel search starts to become useful, par-
allel consistency cannot pay off the computational overhead it causes.

Table 4: Number of times consistency was called for the constraints in
100-Sudoku when searching for 200 solutions.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 23 475 47 487 122 587 217 339
2 36 585 73 017 171 613 243 754
4 36 585 72 833 169 849 231 745
8 36 585 73 369 160 696 242 317

103

Table 5: Number of times consistency was called for the constraints in
100-Sudoku when searching for 5 000 solutions.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 364 718 435 524 1 102 162 1 613 385
2 721 723 933 104 2 453 025 1 604 395
4 720 976 925 494 2 089 093 1 571 044
8 720 980 920 276 1 731 205 1 470 914

Table 6: Number of search nodes explored when searching for 200 solu-
tions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 35 953 34 914 44 473 52 382
2 35 953 35 394 41 669 45 467
4 35 953 35 358 41 785 45 380
8 35 953 35 296 40 949 45 832

Table 7: Number of search nodes explored when searching for 5 000 solu-
tions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 763 827 784 204 958 969 1 002 032
2 763 827 784 980 920 223 881 475
4 763 827 785 547 915 305 894 489
8 763 827 784 443 923 470 886 828

104 Combining Parallel Search and Parallel Consistency in . . .

1 2 4 8
0

1

2

3

4

5

6

1 2 4 8Consistency Threads per Search Thread

C
o
n

s
is

te
n

c
ie

s
 p

e
r

S
e
a

rc
h

 N
o

d
e

Search Threads

Figure 10: Consistency enforcements per search node when searching for
200 solutions to Sudoku.

1 2 4 8
0

1

2

3

1 2 4 8Consistency Threads per Search Thread

C
o
n

s
is

te
n

c
ie

s
 p

e
r

S
e
a

rc
h

 N
o

d
e

Search Threads

Figure 11: Consistency enforcements per search node when searching for
5 000 solutions to Sudoku.

105

5.3 Results for Queens
It is much harder to achieve an even load-balance for Queens than for Su-
doku. The structure of Queens is quite different from Sudoku. In Sudoku
we only have global constraints with a high time complexity. In Queens,
there are lots of small constraints to calculate the diagonals. Hence, for
most of the execution, we have a very low processor load if we only use
parallel consistency [10].

We used Queens in order to illustrate how parallel consistency can be
useful when parallel search is not. Problems with little need for paral-
lel consistency have more room for the parallel search threads to execute.
However, Queens is a highly constrained problem. Even with 550 queens,
there are very few search nodes that need to be explored. Hence, parallel
search will usually only add overhead. However, adding parallel consis-
tency can compensate for the performance loss.

As shown in Table 8 and Figure 12, parallel search reduces perfor-
mance. However, parallel consistency gives a speed-up even when we
loose performance because of parallel search. We can also see that adding
search threads can lead to sudden performance drops. This is largely be-
cause we end up overloading the memory bus and the processor cache. For
eight search threads the performance increases compared to four threads.
The reason is that we find a solution in a more easily explored part of the
search tree.

Table 9, Table 10, and Figure 13 all support our earlier observation
that the workload increases heavily if we use barrier synchronization. The
results come from that we have to evaluate the simple constraints many
more times if we do not share data between them and the alldifferent con-
straints. The reason why we still get a speed-up is that the alldifferent
constraints totally dominate the execution time and do not have to be run
that much more often in parallel consistency.

106 Combining Parallel Search and Parallel Consistency in . . .

Table 8: Execution times in seconds when searching for one solution to
550-Queens.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 107 109 464 325
2 95 101 454 191
4 77 82 405 213
8 77 82 426 215

Table 9: Number of times consistency was called for the constraints in
550-Queens when searching for one solution.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 322 415 662 392 2 475 709 2 560 781
2 772 585 1 566 891 5 551 542 6 159 671
4 771 537 1 554 595 5 182 159 6 153 881
8 769 972 1 543 778 5 014 605 6 152 789

Table 10: Number of search nodes explored when searching for one solu-
tion to 550-Queens.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 1 246 2 624 20 866 11 200
2 1 246 2 787 23 114 10 193
4 1 246 2 735 22 072 10 292
8 1 246 2 834 23 025 10 591

107

1 2 4 8
0

0.5

1

1.5

1 2 4 8Consistency Threads per Search Thread

A
b

s
o

lu
te

 S
p
e
e
d

-u
p

Search Threads

Figure 12: Speed-up when searching for one solution to 550-Queens.

1 2 4 8
0

100

200

300

400

500

600

1 2 4 8Consistency Threads per Search Thread

C
o
n

s
is

te
n

c
ie

s
 p

e
r

S
e
a

rc
h

 N
o

d
e

Search Threads

Figure 13: Consistency enforcements per search node when searching for
one solution to Queens.

108 Combining Parallel Search and Parallel Consistency in . . .

6 Conclusions
The main conclusion is that it is possible to successfully combine parallel
search and parallel consistency. However, it is very hard to do so. The
properties of a problem, and size of the search space determines whether
parallelism is useful or not. When trying to add two different types of
parallelism, these factors become doubly important.

In general, if a problem is highly constrained, there is little room to add
parallel search. If it is not constrained enough, there will be too many in-
consistent branches for successfully adding parallel consistency. Finally,
if a problem is reasonably constrained, the size of the search space, the
uniformity of constraints, and the time complexity of the consistency algo-
rithms determine whether fruitfully combining parallel search and parallel
consistency is feasible.

In order to make sure that parallel consistency becomes less problem
dependent, the need for synchronization must be reduced. This requires
data to be shareable between global constraints during their execution.
Since pruning is monotonic, this should be possible. However, it depends
on the internal data structures used by the consistency algorithms. Hence,
parallel consistency algorithms for each constraints may be a better direc-
tion of future research. Another interesting aspect is how much the order
in which the constraints are evaluated matter to the performance. This is
especially important for inconsistent states.

References
[1] G. Chu, C. Schulte, and P. Stuckey. Confidence-based work stealing

in parallel constraint programming. In I. Gent, editor, Principles
and Practice of Constraint Programming - CP 2009, volume 5732 of
Lecture Notes in Computer Science, pages 226–241. Springer Berlin
/ Heidelberg, 2009.

[2] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

109

[3] K. Kuchcinski. Constraints-driven scheduling and resource assign-
ment. ACM Transactions on Design Automation of Electronic Sys-
tems, 8(3):355–383, July 2003.

[4] K. Marriott and P. J. Stuckey. Introduction to Constraint Logic Pro-
gramming. MIT Press, Cambridge, MA, USA, 1998.

[5] L. Michel, A. See, and P. Van Hentenryck. Parallelizing constraint
programs transparently. In C. Bessiere, editor, Principles and Prac-
tice of Constraint Programming - CP 2007, volume 4741 of Lecture
Notes in Computer Science, pages 514–528. Springer Berlin / Hei-
delberg, 2007.

[6] T. Nguyen and Y. Deville. A distributed arc-consistency algorithm.
Science of Computer Programming, 30(1-2):227–250, 1998.

[7] J.-F. Puget. A fast algorithm for the bound consistency of alldiff
constraints. In Proceedings of the fifteenth national/tenth conference
on Artificial intelligence/Innovative applications of artificial intelli-
gence, AAAI ’98/IAAI ’98, pages 359–366, Menlo Park, CA, USA,
1998. American Association for Artificial Intelligence.

[8] V. Rao and V. Kumar. Superlinear speedup in parallel state-space
search. In K. Nori and S. Kumar, editors, Foundations of Software
Technology and Theoretical Computer Science, volume 338 of Lec-
ture Notes in Computer Science, pages 161–174. Springer Berlin /
Heidelberg, 1988.

[9] C. C. Rolf and K. Kuchcinski. Load-balancing methods for parallel
and distributed constraint solving. In IEEE International Conference
on Cluster Computing, pages 304–309, Sep/Oct 2008.

[10] C. C. Rolf and K. Kuchcinski. Parallel consistency in constraint pro-
gramming. In H. R. Arabnia, editor, Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications, volume 2, pages 638–644. CSREA Press, July 2009.

110 Combining Parallel Search and Parallel Consistency in . . .

[11] A. Ruiz-Andino, L. Araujo, F. Sáenz, and J. J. Ruz. Parallel arc-
consistency for functional constraints. In Implementation Technology
for Programming Languages based on Logic, pages 86–100, 1998.

[12] C. Schulte. Parallel search made simple. In N. Beldiceanu, W. Har-
vey, M. Henz, F. Laburthe, E. Monfroy, T. Müller, L. Perron, and
C. Schulte, editors, Proceedings of TRICS: Techniques for Imple-
menting Constraint programming Systems, a post-conference work-
shop of CP 2000, Singapore, Sept 2000.

[13] C. Schulte and M. Carlsson. Finite domain constraint programming
systems. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, Foundations of Artificial Intelligence,
chapter 14, pages 495–526. Elsevier Science Publishers, Amsterdam,
The Netherlands, 2006.

[14] X.-H. Sun and Y. Chen. Reevaluating Amdahl’s law in the multicore
era. Journal of Parallel and Distributed Computing, 70(2):183–188,
2010.

111

PAPER III

LOAD-BALANCING METHODS
FOR PARALLEL AND

DISTRIBUTED CONSTRAINT
SOLVING

This paper is a reformatted version of Load-Balancing Methods for Paral-
lel and Distributed Constraint Solving, IEEE International Conference on
Cluster Computing, 2008.

114 Load-Balancing Methods for Parallel and Distributed . . .

Load-Balancing Methods for Parallel and
Distributed Constraint Solving

Carl Christian Rolf and Krzysztof Kuchcinski

Department of Computer Science, Lund University
Carl_Christian.Rolf@cs.lth.se, Krzysztof.Kuchcinski@cs.lth.se

Abstract

Program parallelization and distribution becomes increasingly
important when new multi-core architectures and cheaper cluster
technology provide ways to improve performance. Using declara-
tive languages, such as constraint programming, can make the tran-
sition to parallelism easier for the programmer. In this paper, we
address parallel and distributed search in constraint programming
(CP) by proposing several load-balancing methods. We show how
these methods improve the execution-time scalability of constraint
programs. Scalability is the greatest challenge of parallelism and
it is particularly an issue in constraint programming, where load-
balancing is difficult. We address this problem by proposing CP-
specific load-balancing methods and evaluating them on a cluster by
using benchmark problems. Our experimental results show that the
methods behave differently well depending on the type of problem
and the type of search. This gives the programmer the opportunity
to optimize the performance for a particular problem.

115

1 Introduction
In this paper, we discuss load-balancing methods for parallel and dis-
tributed solving of problems modeled in a constraint programming (CP)
framework. CP has the advantage of being declarative [7]. Hence, the
programmer does not have to make any significant changes to the problem
declaration in order to solve it using parallelism. This means that the dif-
ficult aspects of parallel and distributed programming can be left entirely
to the creator of the constraint solving framework.

Constraint programming has been used with great success to tackle
different instances of NP-complete problems such as graph coloring, sat-
isfiability (SAT), and scheduling [7]. A constraint satisfaction problem
(CSP) can be defined as a 3-tuple P = (X,D,C), where X is a set of
variables, D is a set of finite domains where Di is the domain of Xi, and
C is a set of binary constraints where Ci,j is a relation between Xi and
Xj . Solving a CSP means finding assignments to X such that the value of
Xi is in Di, while all the constraints are satisfied. The tuple P is referred
to as a constraint store.

Finding a valid assignment to a CSP is usually accomplished by com-
bining backtracking search with consistency checking that prunes incon-
sistent values. To accomplish this, a variable is assigned one of the values
from its domain in every node of the search tree. Due to time-complexity
issues, the consistency methods are rarely complete [1]. Hence, the do-
mains of the variables will contain values that are locally consistent, but
cannot be part of a solution. This makes it difficult, if not impossible, to
predict how much work remains in a search tree. In this paper, we discuss
how CP-specific load-balancing methods can be used to address this.

The downside of parallelizing programs automatically is the difficulty
of providing a good scalability. This problem is particularly complex in
CP, since the pruning of values makes the work sizes hard to predict. For
ordinary parallel search, it is often possible to estimate how much work
the current process has to carry out. This makes it easier to efficiently split
the workload between processes. In CP, however, the more inconsistent
values are pruned, the harder it becomes to predict the size of the work.
The reason is that the efficiency of the pruning changes as the domains are

116 Load-Balancing Methods for Parallel and Distributed . . .

split into smaller intervals. Hence, the change in work size depends on the
depth in the search tree, the previous pruning, and the number of values
and intervals in the domains.

One of the most efficient ways of improving the performance of the
sequential solving process is to use constraints that maximize the pruning.
The most powerful constraints, referred to as global constraints, include
several or all of the variables in the problem. If a global constraint contain-
ing all variables is satisfied, finding a solution can often be quite simple.
The downside for parallel search is that the pruning becomes even harder
to predict.

In order to improve the scalability of parallel constraint programming,
we present and evaluate several load-balancing methods designed specif-
ically to suit CP. Most work on parallelism in constraint programming,
e.g. [8], uses load-balancing methods designed for ordinary parallel search.
While this works well for few processors, scalability problems become ap-
parent when using many processors, especially in clusters where commu-
nication is more expensive. In our previous work [11], we tried to address
this issue by achieving a better balance between communication and com-
putation. However, the main issue is that in CP we cannot predict how
much work is sent to another solver. Hence, work that is so small that it
would be better to process locally will be sent unnecessarily. The more
processors are used, the more of these instances of small work will be
sent. By using load-balancing methods that utilize information available
in the constraint solver, we are able to improve the scalability over general
methods designed for ordinary parallel search.

Our research shows that the proposed CP-specific load-balancing meth-
ods improve the scalability of parallel constraint solving. In particular, our
experiments show that methods taking the amount of labeled variables into
account outperform naive methods such as random polling and fairness-
based methods similar to round-robin.

The rest of this paper is organized as follows. In Section 2 the problem
background is described, in Section 3 the related work is presented. Sec-
tion 4 describes how the parallelism is achieved in our solver. Section 5
describes the different load-balancing techniques, Section 6 introduces the
experiments and the results, and Section 7 gathers the conclusions.

117

2 Background
Most research on parallel search in CP has dealt with data-parallelism,
since this is the most natural choice. It is easy to find split-points when
variables can only assume a finite number of discrete values. The splitting
of the work is independent of whether we use a cluster or a shared-memory
machine.

As illustrated in Figure 1, splitting work in CP means that part of a
domain will be sent to another processor. In the example, half the domain
of X is sent from Processor 1 to Processor 2, together with the other vari-
ables and domains. After the data has been received, Processor 1 and 2
can explore their search trees independently of each other. The domains
that have not been split will be sent intact to ensure that all possible as-
signments will be explored.

Processor 1 Processor 2

X ∈
Y ∈ {0..9}

{0..4} split {5..9}

X ∈ {0..4}
Y ∈ {0..9}

X ∈ {5..9}
Y ∈ {0..9}

Figure 1: Example of a split, where half the domain of X is sent from
Processor 1 to Processor 2.

There are two main principles of domain-splitting for parallel search:
either split off a certain percentage of a domain at pre-defined points, or
split off some part of the search tree whenever possible. Both [2] and [10]
show that the latter approach is more effective. These methods can be
quite efficient for depth-first search (DFS), but the unpredictability of the
work size in CP makes them harder to use efficiently.

118 Load-Balancing Methods for Parallel and Distributed . . .

Unlike data-parallelism for DFS, the splitting of data between pro-
cesses poses a problem in constraint programming. The reason is that the
split will affect the domains of potentially all the variables that have not
yet been assigned a value. In the example in Figure 2, with the constraint
Y > X , the consistency methods can remove the value 0 from the domain
of Y in Processor 1. In Processor 2, the consistency can remove values
0 to 5 from Y and the value 9 from the domain of X . This means that
after splitting the work in CP, the search tree is likely to change shape.
Since consistency methods are usually not complete, there is no way to ef-
ficiently calculate the sizes and the shapes of the search trees after a split.

Processor 1 Processor 2

X ∈ {0..4}
Y ∈ {0..9}

X ∈ {5..9}
Y ∈ {0..9}

Y > X

X ∈ {0..4}
Y ∈ {1..9}

X ∈ {5..8}
Y ∈ {6..9}

Consistency Consistency

Figure 2: Example of consistency being performed with the constraint
Y > X .

In conclusion, splitting work to achieve a good scalability is not trivial
in constraint programming. While it is easy to find out where to split the
work, it is hard to determine which computer should be allowed to do so. A
lot of performance can be lost if, for example, computers with small work
sizes get to send work more often than those with large work sizes. This
is especially an issue for automatic parallelism where the programmer has
not specified when and how the work should be split.

119

3 Related Work
Load-balancing is one of the most important aspects of parallelism. Sev-
eral methods have been developed for parallel search [2]. Two of the
most well-known methods are random polling and round-robin. Random
polling is often more efficient than round-robin for parallel DFS [4, 5], but
neither method was designed with CP problems in mind.

Previous work on parallelism and distribution in CP, e.g. [8, 11, 13],
has relied on non-CP-specific methods such as random polling to decide
which processor or computer is allowed to split its workload. These meth-
ods can be efficient for ordinary parallel search, or when only using few
processors. However, the information available in a constraint solver can
be used to create more advanced load-balancing methods. While the size
of the work cannot be efficiently calculated, we can, for instance, let the
computer that has labeled the fewest variables send work first. Such a
method would not introduce a large overhead. No advanced computations
are needed since the information is already available in the solver.

Automatic parallelism in constraint programming has been receiving
increasing attention [8]. The reason is that the hardware development is
moving quickly towards multi-core architectures. Lower cost technolo-
gies, such as clusters, are also likely to become interesting to CP. In this
paper we try to improve the scalability of parallelism in CP by introduc-
ing several load-balancing methods for parallel and distributed constraint
solving. In order to evaluate the performance we test these methods on a
cluster.

4 Automatic Parallelism and Distribution
In our work we use the constraint solver JaCoP [3]. This solver is written
entirely in Java, which makes it easy to add multithreading and distribution
over network sockets. Figure 3 describes in detail how the parallelism
works in JaCoP. The execution is split into three phases: initialization,
search, and termination. The initialization prepares the solvers so that
they can receive work. The search is a data-parallel depth-first search, and

120 Load-Balancing Methods for Parallel and Distributed . . .

Phase Constraint Program

create

Master

create create create

Slave1 Slave2 . . . SlaveN

Initialization:

start search

split

send work

send work
send work

broadcast solution

Search:

wait for
slaves

finished

finished
finished

return result

Termination:

Figure 3: Model of the parallel solving in JaCoP.

the termination phase detects whether the search has finished. The only
major simplification in Figure 3 is that the data is also split in the slaves
when they send work. The user of the framework does not have to care
about what goes on outside of the constraint program.

It is important to note that the model depicted in Figure 3 also applies
to distributed search on a cluster. The main difference is the termination
detection, which is more difficult on a non-shared memory architecture.
When using distribution, the slaves report that they have finished to all
other slaves as well as to the master. Furthermore, the creation of the
slaves is not performed by the master.

In effect, the automatic parallelism and distribution acts as a middle-
ware for transparently parallelizing constraint programs. The only change
required to the original constraint code is replacing a single reference to
the search object type. All other aspects of the parallel solving is left to the
CP-framework. In the case of distributed search, like on a cluster, chang-

121

ing the search object type is enough. However, the programmer can select
which load-balancing methods and communication models to use in order
to tweak the performance for a particular problem.

We define the search phase to begin when all slaves are ready to receive
work. The termination phase is defined to begin when the master is out
of work. This is the most intuitive definition, since that process cannot
receive work from the slaves in the distributed case.

The length of each phase depends on the problem. For small problems,
the initialization can take longer time than the other phases combined.
Problems with uneven search trees can spend most of their time in the
termination phase. However, large problems spend most of their time in
the search phase.

In both the parallel and the distributed case we use work sharing with-
out a central controller. All the slaves can send work to each other and the
master can send work to all slaves. The fact that the master cannot receive
more work than it had from the start is not a significant limitation. In the
parallel case, the master thread will be replaced by another slave when it
runs out of work.

The solver is written in Java, hence, the parallelism was achieved using
the built-in thread support. All processes hold a separate copy of the con-
straint store, this minimizes synchronization between the threads. In the
distributed case, all computers have a copy of the store and communicate
using TCP/IP sockets.

Communication between solvers can be performed by sending an en-
tire copy of the store every time. However, sometimes it is preferable to
send the store before the search begins and then communicate only a list
of assignments. The downside of sending only the assignments is that the
receiving computer needs to recompute consistency. As shown in [11] the
scalability can be improved when choosing the model of communication
that is preferable given the network load and expected time for recompu-
tation.

122 Load-Balancing Methods for Parallel and Distributed . . .

5 Load-Balancing Methods
In order to use different load-balancing methods, each slave collects work-
sending requests from other processors and then decides which one should
be granted. If only one request is made within the specified timeout, that
request will automatically be granted. Our heuristic load-balancing meth-
ods are presented below, and more formally in Table 1.

Table 1: Formal definitions of the load-balancing methods. Computer i is
allowed to send work.

Method Definition

Least Labeled First
∃i∀j |Li| ≤ |Lj |, where Lx is the list of labeled
variables on computer x

Most Labeled First
∃i∀j |Li| ≥ |Lj |, where Lx is the list of labeled
variables on computer x

Largest Domain First
∃i∀j |Di| ≥ |Dj |, where Dx is the domain to be
split by computer x

Smallest Domain First
∃i∀j |Di| ≤ |Dj |, where Dx is the domain to be
split by computer x

Least Pruning First
∃i∀jPi ≤ Pj , where Px is the sum of percentages
of pruned values divided by |Lx|

Most Pruning First
∃i∀jPi ≥ Pj , where Px is the sum of percentages
of pruned values divided by |Lx|

Least Sent First
∃i∀jSi ≤ Sj , where Sx is the number of times
computer x has sent work

Random Polling
∃i∃jRij , where Rxy is a granted request from
computer x to randomly selected computer y, x 6= y

Least Labeled First: This method allows the computer that has la-
beled the fewest variables to send work. The assumption is that the more
variables are left to label, the more work there is left. This is not necessar-
ily true, but it acts as a heuristic since the actual size of the work is hard to
estimate.

123

Most Labeled First: This method is the opposite of Least Labeled
First. While it may seem unintuitive, it could be better if reaching solutions
quickly is important.

Largest Domain First: By allowing the computer with the largest
current domain to send work we try to ensure that every computer has as
little work as possible to process. This method will distribute the work
more evenly across the solving processes.

Smallest Domain First: This is the opposite of Largest Domain First,
here the computer with the smallest domain is selected. By prioritiz-
ing computers with narrow search trees, we may widen the search fron-
tier. Thus reducing the probability of getting stuck in bad branches of the
search tree.

Least Pruning First: This method prioritizes the computer that has
achieved the least pruning during its labeling. The lower percentage of
values that a computer can prune, the larger its search tree is likely to be.
The pruning-measurement is the average percentage of values removed in
the previous labeling.

Most Pruning First: This method prioritizes the computer with the
highest amount of pruning. The argument for this method is similar to
that of Smallest Domain First, quickly eliminating small branches can in-
crease performance. Furthermore, the work that can be sent, despite good
pruning, is more likely to need search.

Least Sent First: This is an approximation of round-robin. We did not
implement the full round-robin algorithm, since it is usually slower than
random polling [4, 5]. The measurement we use is the amount of times a
computer has sent work in the past. This ensures that all computers that
can send work will eventually get to do so.

Random Polling: This method is the standard random polling method,
it does not use a timeout for the request. The first request to an idle ma-
chine will always be granted. Comparing our methods to Random Polling
and Least Sent First first allows us to determine the benefit of CP-specific
load-balancing methods.

124 Load-Balancing Methods for Parallel and Distributed . . .

5.1 Discussion of the Methods
Some of the load-balancing methods we introduce in this paper may seem
unintuitive or unsuitable for depth-first search. For instance, Most Labeled
First lets the computer that has the highest search depth to send work.
Clearly this is unsuitable in regular DFS when exploring the entire search
tree. However, if we have an optimization problem, we can prune many
branches of the search tree for every solution that we find. Hence, finding
good solutions fast can lead to a much better performance than trying to
explore the entire search tree as fast as possible.

The load-balancing methods we present in this paper can serve to in-
crease the performance in more ways than just sharing the work more
efficiently. In constraint programming, heuristics are often used to opti-
mize the performance. One common heuristic is first-fail, which picks
the variable with the smallest domain to be the next node in the search
tree. This may serve to reduce the overall size of the search tree. A CP-
specific load-balancing method can operate in a similar way, especially
when searching for one, or the optimal, solution. The programmer can
pick a load-balancing method that finds solutions fast, or a method that
shares the work more evenly. This affect the shape and size of the total
search tree that is explored during the parallel search.

6 Experimental Results

6.1 Problem Set
In order to evaluate the performance we used two standard benchmark
problems in constraint programming. The first problem is the n-Queens
problem, which is the task of finding all possible ways to place n num-
ber of queens on an n × n chessboard. This task is interesting because
the number of solutions is very large. Since, it is easy to find a solution,
the difficulty is instead to minimize the backtracking by maximizing the
pruning. The pruning is most easily improved by using the global alldiff
constraint. The alldiff constraint takes an array of variables and applies a
bounds consistency algorithm [6], which removes all inconsistent values in

125

the beginning and end of the domains of the variables in the array. Our im-
plementation of alldiff uses the O(n2) algorithm, which is faster for small
instances than the O(nlog(n)) algorithm [9]. In total we use three alld-
iff constraints, one for the columns and rows, and one for each diagonal.
Thanks to the alldiff constraints for the diagonals, some of the inconsistent
values inside the domains will also be pruned. Since the search is for all
solutions, we will explore every consistent branch of the search tree. In
our experiments we used n = 15.

The second problem is to find and prove the optimality of an Optimal
Golomb Ruler. Golomb rulers are defined as a set of n positive integer
values where the differences between every pair of variables are unique.
The optimality is defined by the total size of the ruler, i.e., the largest
number in the set. This optimization problem is interesting because it can
be formulated using an alldiff constraint, ensuring the uniqueness of the
differences. This constraint will then achieve the same level of pruning
as an alldistinct constraint [12]. For this problem we used n = 12 in our
experiments.

6.2 Experiment Setup
In our experiments we used the JaCoP solver [3], described in Section 4.
The solver is written entirely in Java. The distribution was performed
using TCP/IP sockets for the communication. We used a sender-initiated
work-sharing without a central controller.

The experiments were performed on a cluster of AMD Opteron 148
processors with a clock frequency of 2.2 GHz and 1 MB of second level
cache, each computer had a main memory of 1 GB. The operating system
was CentOS Linux 4.4, and the machines were connected via a gigabit
ethernet network. All tests were run 20 times, the presented results are the
absolute speed-ups. The slaves use a timeout of 50 ms for the requests.

126 Load-Balancing Methods for Parallel and Distributed . . .

6.3 Results
The results are presented in Tables 2–5. The speed-up is sub-linear when
using more than eight processors. Since this is also true for random polling,
it is not caused by the request timeout but rather by the communication
costs and unpredictable work sizes. The fastest method for 32 processors
is marked in bold text and the slowest in italic.

Table 2: Execution times in seconds for n-Queens.

Processors
Load-Balancing Method 1 4 8 16 32

Least Labeled First 4125 1433 644 319 177
Most Labeled First 4125 1474 670 341 186
Largest Domain First 4125 1473 662 339 188
Smallest Domain First 4125 1418 670 322 189
Least Pruning First 4125 1435 740 367 219
Most Pruning First 4125 1486 648 318 180
Least Sent First 4125 1378 662 322 183
Random Polling 4125 1458 668 326 188

Table 3: Absolute speed-ups for n-Queens.

Processors
Load-Balancing Method 4 8 16 32

Least Labeled First 2.9 6.4 12.9 23.3
Most Labeled First 2.8 6.2 12.1 22.2
Largest Domain First 2.8 6.2 12.2 21.9
Smallest Domain First 2.9 6.2 12.8 21.8
Least Pruning First 2.9 5.6 11.2 18.8
Most Pruning First 2.8 6.4 13.0 22.9
Least Sent First 3.0 6.2 12.8 22.5
Random Polling 2.8 6.2 12.7 21.9

127

Table 4: Execution times in seconds for Golomb.

Processors
Load-Balancing Method 1 4 8 16 32

Least Labeled First 2144 623 448 291 190
Most Labeled First 2144 610 428 229 135
Largest Domain First 2144 620 461 274 161
Smallest Domain First 2144 657 399 261 175
Least Pruning First 2144 684 466 277 149
Most Pruning First 2144 618 409 267 173
Least Sent First 2144 685 494 322 177
Random Polling 2144 594 440 255 165

Least Labeled First is the fastest method for Queens, i.e., finding all
solutions and exploring the entire search tree. This supports our assump-
tion that computers with more variables left to label has more remaining
work. When comparing the other methods, those that aim to eliminate
small branches of the search tree have a slightly better performance than
those trying to share the work more evenly.

As illustrated in Tables 2–5, there are some noteworthy differences be-
tween Queens and Golomb. In optimization problems, such as Golomb,
we can bound the search tree by the best solution we have found. Hence, it
may be more important to find solutions quickly than to explore the entire
search tree as fast as possible. Since the pruning in Golomb is particu-
larly good [12], it is better to measure the remaining work by the level of
pruning rather than the size of the current domain.

Depending on the type of search we are performing, the search tree
will have a different shape. The parallelization of the search will affect
the shape further. Hence, we can use load-balancing techniques that fit the
shape of the search tree better. In constraint programming the programmer
can pick a heuristic used to select which variable should be next in the
search tree. The CP-specific load-balancing methods we present here can
act to amplify the benefits of these heuristics. This is in part why there
are such large performance differences depending on the problem and the
load-balancing method.

128 Load-Balancing Methods for Parallel and Distributed . . .

Table 5: Absolute speed-ups for Golomb.

Processors
Load-Balancing Method 4 8 16 32

Least Labeled First 3.4 4.8 7.4 11.3
Most Labeled First 3.5 5.0 9.4 15.9
Largest Domain First 3.5 4.6 7.8 13.3
Smallest Domain First 3.3 5.4 8.2 12.2
Least Pruning First 3.1 4.6 7.7 14.4
Most Pruning First 3.5 5.2 8.0 12.4
Least Sent First 3.1 4.3 6.7 12.1
Random Polling 3.6 4.9 8.4 13.0

Which method is best at approximating the size of the remaining work
depends on the problem. If the pruning depends strongly on the number
of labeled variables, Least Labeled First and Most Labeled First are more
likely to be preferable.

Table 6 and Table 7 depict the performance advantage, or disadvan-
tage, of the models compared to Random Polling. The differences can
be significant even when only using few processors. For example, Small-
est Domain First is 10.4 % faster than Random Polling for Golomb when
using eight processors.

The fastest and slowest method compared to Random Polling are de-
picted in Figure 4 and Figure 5. As the graphs show, the difference in
speed-up between the slowest and the fastest method is quite large. Fur-
thermore, the model that is fastest for 32 computers is faster than the
slowest method, regardless of how many computers are used. Lastly, we
can see that the performance difference between Random Polling and the
fastest and slowest methods increases the more computers are used.

129

Table 6: Performance change in percent compared to random polling for
n-Queens.

Processors
Load-Balancing Method 4 8 16 32

Least Labeled First 1.7% 3.7% 2.2% 6.0%
Most Labeled First -1.1% -0.4% -4.6% 1.0%
Largest Domain First -1.0% 1.0% -3.8% -0.1%
Smallest Domain First 2.8% -0.3% 1.2% -0.6%
Least Pruning First 1.6% -9.7% -11.3% -14.2%
Most Pruning First -1.9% 3.0% 2.3% 4.2%
Least Sent First 5.8% 0.9% 1.0% 2.8%

4 8 16 32
0

2

4

6

8

10

12

14

16

18

20

22

24

Random
Polling

Least Pruning
First

Least
Labeled First

Number of Computers

S
p
e
e
d
-u

p

Figure 4: Speed-up of the fastest and slowest method for n-Queens com-
pared to Random Polling.

130 Load-Balancing Methods for Parallel and Distributed . . .

Table 7: Performance change in percent compared to random polling for
Golomb.

Processors
Load-Balancing Method 4 8 16 32

Least Labeled First -4.6% -1.7% -12.2% -13.0%
Most Labeled First -2.5% 2.8% 11.4% 22.4%
Largest Domain First -4.1% -4.6% -6.9% 2.7%
Smallest Domain First -9.5% 10.4% -2.1% -5.8%
Least Pruning First -13.1% -5.5% -7.8% 10.9%
Most Pruning First -3.8% 7.7% -4.5% -4.8%
Least Sent First -13.2% -10.9% -20.7% -6.8%

4 8 16 32
0

2

4

6

8

10

12

14

16

18

20

22

24

Random
Polling

Least Labeled
First

Most Labeled
First

Number of Computers

S
p
e
e
d
-u

p

Figure 5: Speed-up of the fastest and slowest method for Golomb com-
pared to Random Polling.

131

7 Conclusions
The main conclusion of this paper is that load-balancing methods spe-
cific to constraint programming improve scalability. Different methods
are good for optimization problems and search for all solutions. Hence,
the programmer can select a method that is likely to suit the problem, thus
increasing the performance by up to 20 %.

Which load-balancing method is best depends on both the problem and
the type of search that is performed. These factors will affect the shape of
the search tree, which in turn determines how efficient a particular load-
balancing method will be.

Selecting a load-balancing method only requires the change of a single
object reference in the problem declaration. However, the best approach
for automatic parallelism would be to let the solver determine which model
is best during the search. In future work, an adaptive load-balancing
method could pick which method to apply depending on the current shape
of the search tree and the network load.

References
[1] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2003.

[2] A. Grama and V. Kumar. State of the art in parallel search tech-
niques for discrete optimization problems. IEEE Transactions on
Knowledge and Data Engineering, 11(1):28–35, Jan/Feb 1999.

[3] K. Kuchcinski. Constraints-driven scheduling and resource assign-
ment. ACM Transactions on Design Automation of Electronic Sys-
tems, 8(3):355–383, July 2003.

[4] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to
parallel computing: Design and analysis of algorithms. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994.

132 Load-Balancing Methods for Parallel and Distributed . . .

[5] V. Kumar, A. Y. Grama, and N. R. Vempaty. Scalable load balanc-
ing techniques for parallel computers. Journal of Parallel and Dis-
tributed Computing, 22:60–79, July 1994.

[6] A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast
and simple algorithm for bounds consistency of the alldifferent con-
straint. In G. Gottlob and T. Walsh, editors, IJCAI, pages 245–250.
Morgan Kaufmann, 2003.

[7] K. Marriott and P. J. Stuckey. Introduction to Constraint Logic Pro-
gramming. MIT Press, Cambridge, MA, USA, 1998.

[8] L. Michel, A. See, and P. Van Hentenryck. Parallelizing constraint
programs transparently. In C. Bessiere, editor, Principles and Prac-
tice of Constraint Programming - CP 2007, volume 4741 of Lecture
Notes in Computer Science, pages 514–528. Springer Berlin / Hei-
delberg, 2007.

[9] J.-F. Puget. A fast algorithm for the bound consistency of alldiff
constraints. In Proceedings of the fifteenth national/tenth conference
on Artificial intelligence/Innovative applications of artificial intelli-
gence, AAAI ’98/IAAI ’98, pages 359–366, Menlo Park, CA, USA,
1998. American Association for Artificial Intelligence.

[10] A. Reinefeld. Parallel search in discrete optimization problems. Sim-
ulation Practice and Theory, 4(2-3):169–188, 1996.

[11] C. C. Rolf and K. Kuchcinski. State-copying and recomputation in
parallel constraint programming with global constraints. In Euromi-
cro Conference on Parallel, Distributed and Network-Based Process-
ing, pages 311–317, Feb 2008.

[12] C. Schulte and P. J. Stuckey. When do bounds and domain propaga-
tion lead to the same search space? ACM Transactions on Program-
ming Languages and Systems, 27:388–425, May 2005.

133

[13] J. Yang and S. D. Goodwin. High performance constraint satisfaction
problem solving: State-recomputation versus state-copying. In Pro-
ceedings of the 19th International Symposium on High Performance
Computing Systems and Applications, pages 117–123, Washington,
DC, USA, 2005. IEEE Computer Society.

134 Load-Balancing Methods for Parallel and Distributed . . .

PAPER IV

STATE-COPYING AND
RECOMPUTATION IN PARALLEL

CONSTRAINT PROGRAMMING
WITH GLOBAL CONSTRAINTS

This paper is a reformatted version of State-Copying and Recomputation
in Parallel Constraint Programming with Global Constraints, Euromi-
cro Conference on Parallel, Distributed and Network-Based Processing,
2008.

136 State-Copying and Recomputation in Parallel Constraint . . .

State-Copying and Recomputation in
Parallel Constraint Programming with

Global Constraints

Carl Christian Rolf and Krzysztof Kuchcinski

Department of Computer Science, Lund University
Carl_Christian.Rolf@cs.lth.se, Krzysztof.Kuchcinski@cs.lth.se

Abstract

In this paper we discuss parallelization and distribution of prob-
lems modeled in a constraint programming (CP) framework. We
focus on parallelization of depth-first search methods, since search
is the most time-consuming task in CP. The current hardware de-
velopment is moving towards multi-core processors and the cost of
building distributed systems is shrinking. Hence, parallelization and
distribution of constraint solvers is of increasing interest when trying
to improve performance.

One of the most important issues that arises in parallel computing
is load-balancing, which requires a trade-off between processor load
and communication. In this paper we present how reduced commu-
nication, at the cost of increased computation, can improve perfor-
mance. Our experiments include global constraints, which are more
powerful than binary constraints, but significantly more expensive
to recompute in the average case. Our results show that recomput-
ing data, rather than copying it, is sometimes faster even for prob-
lems that use global constraints. Given that copying is sometimes
the better choice, we also present a method for combining copying
and recomputation to create an even more powerful model of com-
munication.

137

1 Introduction
In this paper we discuss parallelization and distribution of problems mod-
eled in a constraint programming (CP) framework. We focus on paral-
lelization of depth-first search (DFS) methods, since search is the most
time-consuming task in CP. By parallelization we mean that the explo-
ration of the search space is performed in parallel by several communi-
cating constraint solvers. In our experiments we have achieved this by
using distribution on a non-shared memory architecture, i.e., by running
one solver per computer where inter-solver communication is performed
via a network.

Constraint programming has been used with great success to solve
many NP-complete problems such as graph coloring, satisfiability (SAT),
and scheduling [9]. A constraint satisfaction problem (CSP) can be de-
fined as a 3-tuple P = (X,D,C), where X is a set of variables, D is a set
of finite domains where Di is the domain of Xi, and C is a set of binary
constraints where Ci,j is a relation between Xi and Xj . Solving a CSP
means finding assignments to X such that the value of Xi is in Di, while
all the constraints are satisfied.

The most common method for finding a solution to a constraint prob-
lem is through a simple depth-first search that backtracks whenever an
inconsistency has been found, i.e., when some constraint is violated. The
search algorithm looks for a valid solution by organizing the search space
as a search tree. In every node of the tree, a variable Xi is selected from X
and assigned one of the values from Di. The constraints are then recom-
puted, and any possible value in Dj that violates a constraint between Xi

and Xj is removed. The process of removing inconsistent values is called
pruning.

Due to time complexity issues, consistency in binary constraint net-
works is usually only performed between pairs of variables [2]. Hence,
the domains may contain values that are locally consistent, but cannot be
part of a solution.

One of the most efficient ways of improving the performance of the
solving process is to use constraints that maximize the pruning. The most
powerful constraints, referred to as global constraints, include several or

138 State-Copying and Recomputation in Parallel Constraint . . .

all of the variables in the problem. If a global constraint containing all
variables is satisfied, finding a solution is often quite simple. The down-
side of global constraints is that they are computationally more expensive
in the average case, since they often implement algorithms of rather high
computational complexity [2]. Representing a global constraint with a set
of binary constraints reduces the pruning power, but only the constraints
whose variables change need to be recomputed, reducing the average time-
complexity.

In this paper we use both the purely binary representation of problems
and their description using global constraints. This provides us with an
opportunity to relate our conclusions to previous studies, such as [18], that
have focused on purely binary constraint problems.

Because of its declarative nature, constraint programming does not re-
quire the programmer to deal with how the actual solving takes place.
Furthermore, given a programmer-friendly constraint framework, no sig-
nificant changes need to be made to the problem declaration in order to
solve the problem using parallelism. This means that synchronization and
other difficult aspects of parallel programming can be left entirely to the
creator of the constraint solving framework.

Parallelizing the solver, without changes to the problem specification,
is not the only approach to parallel constraint programming. For instance,
Mozart-Oz [16] or Parallel Prolog [1] lets the programmer specify in more
detail how the parallelism should occur. This is useful when tuning the
performance for a specific problem, but it does not help the programmer
avoid the difficult aspects of parallelism. We use a Java framework that
makes it possible for the programmer to run a parallel or distributed solv-
ing process by simply changing the search object type. This approach is
similar to the work in [10], and our previous work [14].

The most studied form of parallelism in constraint programming is
data-parallelism. This means that in a search tree node a certain amount
of values in the domain of a variable are sent together with this variable
to another solver, along with the domains of the previous nodes in the
tree. This can be done in different ways. The most effective one is to
always send a part of the domain from the current node in the search tree
[13]. Parallel DFS has been studied quite extensively, but the pruning of

139

domains in CSP solving means that there is no way to usefully estimate
how big the subtrees will be after the next assignment. This makes it very
difficult to design an efficient load-balancing for CSP solving that takes
the domain size into account. Instead, one can try to look at the depth of
the search tree or the pruning.

Sending information over a network is much slower than, e.g., copying
information in memory. This puts a strong limit on how much speed-
up can be achieved. Speed-up is defined as the time needed for serial
execution divided by the time for parallel execution [11]. Asymptotically,
the maximum speed-up that can be achieved is sub-linear, i.e., when using
n processors the program runs less than n times faster. The reason is that
communication between processes is inherently serial.

Most studies on the performance of constraint solvers focus on ran-
domly generated binary CSPs. These are generated using four variables
n,m, p1, and p2. Where n is the number of variables, m is the domain
size, p1 is the density of constraints, and p2 is the tightness of the con-
straints [3]. The advantage of using random problems is that the solution
cannot be tweaked to suit the problem. The downside is that one leaves
out one of the most important performance enhancing features: global
constraints. In contrast to previous studies, we look at problems that use
global constraints, and try to relate them to the binary representations.
Given the difficulty of generating random global CSPs we will look at
some standard benchmark problems.

Our contribution to the research is threefold. We perform a study of
whether problems using only binary constraints can be used to draw con-
clusions about parallel constraint solving in general. We also present and
evaluate a combined communications model based on an algorithm for de-
termining which model of communication should be used during solving,
something that has been lacking in previous studies. Finally we determine
which model of communication is faster for some common problems and
if this holds for global constraints as well as for binary CSPs.

The rest of this paper is organized as follows. In Section 2 the related
work is presented, in Section 3 state-copying and state-recomputation are
described in detail. Section 4 introduces the experiments and the results,
and Section 5 gathers the conclusions.

140 State-Copying and Recomputation in Parallel Constraint . . .

2 Related Work
Most of the research on parallel search in CSP solving has dealt with data-
parallelism. Other methods of parallelism are certainly possible, but split-
ting the work based on data is the most natural choice when dealing with
depth-first search, especially when the variables can only assume a finite
number of discrete values.

As seen in Figure 1, splitting of domains means that a part of a domain
will be sent to another processor. In the example, half the domain of X
is sent from Processor 1 to Processor 2. After the data has been received,
Processor 1 and Processor 2 can explore their subtrees independently of
each other. The domains that have not been split will be sent intact to en-
sure that all possible assignments will be explored. There are two main
principles of domain-splitting: either split off a certain percentage of a
domain at pre-defined points, or split off some part of the tree whenever
possible. Both [5] and [13] show that the latter approach is the more effec-
tive. Using the more static method of splitting at predefined points of the
tree can be quite efficient for DFS, but the pruning in constraint solving
makes it difficult or even impossible to efficiently estimate the size of a
particular subtree. Instead one has to use a dynamic way to split the work
so that computers that become idle can find new work. The worst case sit-
uation is when one part of the tree dominates all other parts. As [6] shows,
the simplest way to reduce the probability of this is to split off parts of the
tree at the first levels of the search, this will be done automatically when
splitting whenever possible. We use the method of splitting whenever pos-
sible, but only when there is a computer ready to handle the work. Our
experiments indicate that except for the last nodes of the search tree, there
is almost always a free computer to handle the work. The only case where
no computer is free to receive work is when there is a full processor load,
which is quite rare in our experiments.

The single most important part of parallelization is load-balancing,
which is the method used to determine when to send the work, and to
which processor. There are several different methods for performing load-
balancing, divided into receiver-initiated and sender-initiated [5]. In the
former case, a processor that becomes idle requests work from another

141

Processor 1 Processor 2

X ∈
Y ∈ {0..9}

{0..4} split {5..9}

X ∈ {0..4}
Y ∈ {0..9}

X ∈ {5..9}
Y ∈ {0..9}

Figure 1: Example of domain splitting.

processor, while in the latter an overloaded processor tries to find an idle
processor with which to share the work. In both cases, there are differ-
ent methods for selecting a processor to communicate with. Two common
methods are random polling, and round-robin [4]. As [13] shows, the
best method depends on the structure of the computer system. In [18] a
receiver-initiated method with a work-managing computer was used. In
our experiments we used a decentralized sender-initiated approach, in or-
der to reduce the overall network load. Hence, there was no master process
that coordinated the sharing of work.

There are three main models of communication in parallel CSP solv-
ing: state-copying, trailing, and state-recomputation. Most work, includ-
ing [6], [13], and [15], have used state-copying or trailing. State-copying
means that a full copy of the state is sent to the new search process. State-
recomputation, on the other hand, only sends a list of the decisions made
by the original search process, guaranteeing that they are valid. If the state
takes up a large amount of space, then the communication will take a lot
longer than sending the list of assignments.

In trailing, only the changes between states are stored, providing a
compromise between copying and recomputation. The problem is that
identifying the changes often takes too long if there is a lot of pruning [17].

142 State-Copying and Recomputation in Parallel Constraint . . .

Previous studies, including [18], have shown a correlation between
the variables used to generate a random CSP and the performance of the
different models of communication. Especially the tightness of the con-
straints affected the speed-up of the models. However, [18] did not look
at problems with global constraints, which are of particular concern for
recomputation. Since we are interested in the likely worst case for recom-
putation we looked at global constraint problems.

3 Models of Communication
There are some questions that have not been fully explored in the field
of parallel CSP solving. In this paper we have focused on the issue of
determining which model of communication, copying or recomputation,
is better for a certain problem, a question that has arisen quite recently.

The reason why state-copying dominates the research is that band-
width has in the past been cheaper than processor power. As [18] shows,
this is no longer the case. Today, one of the cheapest method for building
a high-performance computer system is to buy regular PCs and connect
them via an ethernet network. The performance of networking hardware
may increase faster than that of processors, but the cost might not drop
correspondingly. The reason is that only a few network architectures scale
well with maintained bandwidth when increasing the number of nodes in
the network. In the absence of an advanced architecture the performance
advantage of recomputation is likely to increase.

In this paper we argue that state-recomputation is sometimes faster
than state-copying, even for a computationally demanding task such as
constraint solving with global constraints. This statement is backed-up
by comparisons made in previous work for non-parallel, single processor
search. Schulte [17], for instance, compared different solvers, showing
that a solver using limited recomputation can outperform a solver that uses
state-copying or trailing.

While increasing the speed-up of a parallel program is of significant
interest, the different models of communication also have an impact on
load-balancing. If there is less communication then there is more room for
an advanced load-balancing scheme to further increase the performance.

143

It is important to realize that achieving a high processor load is not
a goal in itself. Often the time needed for communication is longer than
the time saved by letting an otherwise idle processor take over part of the
work. Therefore, the efficiency of the load-balancing is best measured
by the achieved speed-up, not by the average load. During our tests, we
noticed that achieving a significantly higher load mostly led to a sharp
decline in speed-up, which is why we decided to aim for the load that led
to the highest speed-up for the problem.

3.1 Determining Which Model to Use
The ideal formula that determines whether recomputation or copying is
better is as follows.

C =
TRC + TR

TCC + TL
(1)

TRC is the time to communicate the list of assignments and TR is the
time to recompute after receiving the list. TCC is the time to communicate
a copy of the state, and TL is the time needed to load the state. If C is
larger than one then copying is faster, and vice versa. The greater than one
C is, the larger the gain of copying is, and the smaller than one it is, the
greater the advantage of recomputation.

Given the difficulty of estimating the values in (1) at runtime, we need
an approximation formula, preferably one that can be recomputed in real-
time from the information collected from earlier parts of the search. There
are several performance-variables that can be measured during the search,
leading us to the following approximation.

C ≈ TMR · LA/LMR

TMC · CC/CMC
(2)

TMR is the average time needed for communication using recompu-
tation. LA is the length of the current assignment list, i.e., the number of
assignments we have made to reach the current depth in the search tree.
LMR is the average length of the assignment lists that have been sent using

144 State-Copying and Recomputation in Parallel Constraint . . .

recomputation. TMC is the average time for communication using copy-
ing. CC is the current number of computers that are executing. CMC is
the average number of computers that were executing when state-copying
have been used.

The reasoning behind (2) is that copying requires more communication
than recomputation, while recomputation needs more computations than
copying. Therefore, the performance bottleneck for copying should be
the network. For recomputation, on the other hand, the bottleneck should
be the time it took to prune the values at the receiving end of the split.
Ideally the expected network load would be estimated using data from the
network switch, but this data is not always possible to retrieve. Hence,
we try to estimate the network load by looking at how many computers
are likely to be sending work at the same time. The copy of the state is
rarely big enough to significantly affect the sending time as much as the
number of computers that are trying to send work. For recomputation,
the time needed for pruning depends on the number of assignments rather
than, e.g., the amount of values pruned at the machine that is sending the
work. The reason is that the time for pruning on the sending machine is not
necessarily related to the time needed for recomputation on the machine
that is receiving work. This is because the pruning at the receiver can take
place after all the assignments in the assignment list have been performed,
reducing the need for several iterations of consistency checking.

In our experiments, we used (2) as a measure for whether to use state-
copying or recomputation during the search. C was calculated every time
a split of the work was possible. If C was below one, then we chose
recomputation, and vice versa. We call this dual communication model
Dual Com.

The algorithm we used for CSP solving, depicted in Figure 2, is a
recursive backtracking depth-first search algorithm with forward checking.
There are many ways to combine the pruning with the search, and several
different ways to backtrack. However, as [2] shows, the combination of
forward checking, i.e., pruning after assignments, combined with a simple
backtracking is highly efficient for most problems. When using global
constraints, the advantage of a simple backtracking scheme is likely to
increase since there will be fewer inconsistent values after pruning.

145

LABEL(V arList)
if ReceivedData 6= [] then

if CommunicationMode = Recomputation then
RECOMPUTE-STATE(ReceivedAssignmentList)

else
LOAD-STATE(ReceivedState)

if V arList = [] then
return Solution

V ariable← V arListi
V arList← V arList− {V ariable}
if FreeComputers 6= [] then

{DomainLeft,DomainRight}←
SPLIT-DOMAIN(GET-DOMAIN(V ariable))

if COMPUTE-DUAL-COM() < 1 then
CommunicationMode← Recomputation

SEND-WORK(DomainRight,AssignmentList,

CommunicationMode)
else

CommunicationMode← Copying

SEND-WORK(DomainRight, State,

CommunicationMode)
V ariable← SELECT-VALUE(DomainLeft)
PRUNE-DOMAINS(State)
if ANY-EMPTY-DOMAIN(V arList) = true then

BACKTRACK(V arList)
else

LABEL(V arList)

Figure 2: The depth-first search algorithm with selection of model of com-
munication.

146 State-Copying and Recomputation in Parallel Constraint . . .

As seen in Figure 2, if we have received data we will either recompute
the state from an assignment list or load the received state from the sender.
Then we proceed to select a variable. If there is a computer available, we
split the domain of the variable into two parts, one to send and one that we
keep processing locally. Then we decide whether to use recomputation or
copying and send the work to the receiving computer. In the last part we
select a value for the variable and check if this leads to an inconsistency,
if this is not the case we proceed recursively. Otherwise we backtrack and
select a different value for the variable. Finally, when the list of variables
is empty, we have a consistent solution.

The most time-consuming tasks in the algorithm are the pruning and
the recursive call on the last line. Since a lot of pruning will be performed
when recomputing a state, this step takes about an order of a magnitude
longer than loading a state. The time required for the recursion comes
mostly from the need to allocate memory to store the information needed
for the backtracking. Although we use a CSP solver written in Java, the
average time needed for memory allocation may not be significantly faster
with another language. The reason is that the allocation-size is different
for each level of the search and therefore unpredictable. The time used
by the send operations can be quite high for some network architectures.
For example, if one uses a tree-like network topology, a message from one
leaf to another, that passes all levels of the tree, might need to wait several
times for the channel between levels to become free.

4 Experimental Results
Most of the previous studies on parallel and distributed constraint solving
have relied on randomly generated binary problems to test performance.
While it may be preferable to use random problems in some cases, we are
interested in one of the worst cases for recomputation, namely when using
constraints with a high time complexity.

147

4.1 Problem Set
The first problem is the n-Queens (nQ) problem, which is the task of find-
ing all possible ways to place n number of queens on an n × n chess-
board. This task is interesting because the number of solutions is very
large. Since, it is easy to find a solution, the difficulty is instead to min-
imize the backtracking by maximizing the pruning. The pruning is most
easily improved by using the global alldiff constraint instead of using only
binary constraints. The alldiff constraint takes an array of variables and
applies a bounds consistency algorithm [8], which removes all inconsis-
tent values in the beginning and end of the domains of the variables in the
array. Our implementation of alldiff uses the O(n2) algorithm, which is
faster for small instances than the O(nlog(n)) algorithm [12]. The reason
why we did not use the alldistinct constraint, which also prunes inconsis-
tent values inside the domains rather than just the bounds, is that the alldis-
tinct representation generally runs slower for this problem. In total we use
three alldiff constraints, one for the columns, and one for each diagonal.
Thanks to the alldiff constraints for the diagonals, some of the inconsistent
values inside the domains will also be pruned. Since the search is for all
solutions, we will explore every consistent branch of the search tree.

The second problem is to find and prove the optimality of an Optimal
Golomb Ruler (OGR). Golomb rulers are defined as a set of n positive
integer values where the differences between every pair of variables are
unique. The optimality is defined by the total size of the ruler, i.e., the
largest number in the set. This optimization problem is interesting because
it can be formulated using an alldiff constraint, ensuring the uniqueness of
the differences. This constraint will then have a direct impact on all the
variables in the ruler, making it quite expensive to recompute. Since it is
the differences that are in the alldiff constraint, the pruning will also be
performed inside the domains, making an alldistinct constraint unneces-
sary.

148 State-Copying and Recomputation in Parallel Constraint . . .

In order to test the effect of the global constraints we also performed
experiments on versions of nQ and OGR that only use binary constraints.
The global constraints were then replaced by n2 binary constraints, which
are less expensive to recompute in the average case, since not all the con-
straints may need to be evaluated. The downside is that it is more expen-
sive to communicate all the binary constraints than a global constraint.

4.2 Experiment Setup
We have used the JaCoP solver [7] for our experiments. This solver is
written entirely in Java 5. The distribution was performed using TCP/IP
sockets for the communication. We used a sender-initiated work-sharing
without a central controller.

The experiments were performed on a cluster of AMD Opteron 148
processors, with a clock frequency of 2.2 GHz and 1 MB of second level
cache. The main memory was 1 GB per machine and the operating system
was CentOS Linux 4.4. The machines were connected via a gigabit net-
work, with stacked switches communicating at 10 gigabit. All tests were
run 10 times, and the presented results are the absolute speed-up based on
the average execution time.

4.3 Results
Figure 3 depicts the absolute speed-up for the n-Queens problem while
Figure 4 presents similar results for the Optimal Golomb Ruler. The re-
sults for finding all solutions to n-Queens are somewhat different from
the results for Golomb. For n-Queens, the differences in speed-up are
slightly bigger and recomputation is almost never better than copying.
Dual Com is the fastest in both representations, except for the binary one
with four computers. The reason why recomputation is less competitive
for n-Queens than for Golomb is that there are three global constraints in
n-Queens and only one in Golomb. This makes n-Queens a more diffi-
cult problem for recomputation. Dual Com is the best because we will
use recomputation when the network load is very high. This reduces the
cost of sending very small amounts of work, that might have been better
to process locally.

149

4 8 16 32
0

2

4

6

8

10

12

14

16

18

20

Copy Recompute

Dual Com

Number of computers

S
p
e
e
d
-u

p

4 8 16 32
0

2

4

6

8

10

12

14

16

18

20

Copy Recompute

Dual Com

Number of computers

S
p
e
e
d
-u

p

Figure 3: Absolute speed-up of finding all solutions to the binary repre-
sentation (top) and the global representation (bottom) of n-Queens with
n = 15.

150 State-Copying and Recomputation in Parallel Constraint . . .

4 8 16 32
0

2

4

6

8

10

12

14

16

18

20

Copy Recompute

Dual Com

Number of computers

S
p
e
e
d
-u

p

4 8 16 32
0

2

4

6

8

10

12

14

16

18

20

Copy Recompute

Dual Com

Number of computers

S
p
e
e
d
-u

p

Figure 4: Absolute speed-up of the binary representation (top) and the
global representation (bottom) of proving the optimal Golomb ruler with
n = 12.

151

As Figure 4 shows, recomputation and copying are nearly equally fast
when using eight computers or less. But in the more interesting case,
when using many computers, recomputation is significantly faster, at least
for the global representation. However, Dual Com is the fastest model for
all instances of Golomb except the binary representation with four com-
puters. In general the differences between the models are smaller for fewer
computers.

When looking at smaller problems, such as Golomb with n = 11, the
differences between the models of communication are smaller. The more
communication is performed, i.e., the more splits are performed during
the solving, the greater the differences between the models. Generally, the
more values are left after the pruning, the more work can be shared with
other computers, increasing the total amount of communication and the
potential benefit of Dual Com.

The binary representation often has a higher speed-up than the global
representation. The reason is that there is more need for processing power,
since the pruning is a lot weaker. In actual time, the binary representations
of n-Queens and Golomb take more than twice as long to finish as the
global representation. The speed-up gained from using global constraints
instead of using only binary constraints is presented in Figure 5.

The reason why the differences between the global and the binary rep-
resentation are shrinking in Figure 5 is that there are more computers to
compensate for the low pruning. With enough computers there would be
no difference at all, since the global representation would not have as many
values to send to other solvers as the binary representation.

As seen in Table 1, the average processor load is sometimes fairly
low. The reason is that the communication in those cases is particularly
expensive. Therefore the computers will spend a lot of time sending or
loading the data rather than processing it. Also, the 32 computer case is
the most difficult in our studies to achieve a high load for. The load is
naturally higher when fewer computers are used.

The execution times, shown in Table 2, vary quite a lot. The reason
we did not use larger problems is that the execution time grows signifi-
cantly with the problem size. We also wanted our experiments to reflect
the performance of real world usage of constraint programming outside of

152 State-Copying and Recomputation in Parallel Constraint . . .

a supercomputer environment. This performance may not be reflected by
problems taking several hours to solve even when using many computers.

The reason why the execution time is the same for the different models
when using only one processor is that we looked at the absolute speed-up.
If the absolute speed-up is higher for one model than the others, that model
is by necessity the fastest for that problem instance. The reason is that the
speed-up is calculated by comparing the execution time of the parallel
program to the fastest available serial program for the same problem.

1 4 8 16 32
0

1

2

3

4

n-Queens

Golomb

Number of computers

S
p
e
e
d
-u

p

Figure 5: The speed-up of using the global representation for the problems
showed in Figure 3 and Figure 4.

Table 1: Average processor load during search with 32 computers.

Problem
Model nQ-Bin nQ-Glob OGR-Bin OGR-Glob

Copy 45% 71% 48% 65%
Recompute 56% 70% 80% 83%
Dual Com 50% 72% 71% 74%

153

Table 2: Execution times in seconds for the problems and models.

Processors
Problem 1 4 8 16 32

nQ-Binary Copy 9887 2807 1556 866 546
nQ-Binary Recompute 9887 2870 1741 914 632
nQ-Binary Dual Com 9887 2980 1413 805 533
nQ-Global Copy 4125 1266 676 375 271
nQ-Global Recompute 4125 1201 663 415 331
nQ-Global Dual Com 4125 1131 626 352 236
OGR-Binary Copy 7528 1906 1513 902 490
OGR-Binary Recompute 7528 2051 1471 805 473
OGR-Binary Dual Com 7528 2225 1358 769 410
OGR-Global Copy 2144 599 479 314 214
OGR-Global Recompute 2144 593 439 245 181
OGR-Global Dual Com 2144 556 414 223 159

5 Conclusions
Given the experimental results, we can claim that our original thesis that
recomputation can sometimes be faster than copying holds even for paral-
lel CSP solving with global constraints. The claim may seem rather strong
given that we are often quite far from the theoretical limit of speed-up.
But one of the main reasons why recomputation can be faster is that it
achieves a significantly higher average load than copying, as seen in Ta-
ble 1. In other words, the bottleneck of our experimental setup is not the
computing power, but the network latency, precisely the situation that can
be observed in the design of many modern super-computer systems.

Using a different memory architecture, such as cache-coherent non-
uniform memory access would not necessarily render a greater speed-up.
The usage of global constraints, with the significant changes to the do-
mains that usually follow, means that in a distributed shared memory ar-
chitecture there would be a lot of extra communication compared to using

154 State-Copying and Recomputation in Parallel Constraint . . .

non-shared memory. In the case of shared memory, the best case would be
if we hardly ever had to use the network to access the memory, which is
essentially the same situation as using non-shared memory.

We can also claim that the models scale approximately the same, inde-
pendently of whether we use the global or the binary representation. This
is good news given that most of the research on solver performance has
focused on binary constraint problems. It also means that our conclusions
about the different models of communication are more likely to hold for
randomly generated binary CSPs than if the differences had been larger.

From our experiments we can also draw the conclusion that our for-
mula, (2), works quite well for determining which model of communica-
tion to use. On average about 70% of the work was sent using copying and
the remaining part using recomputation. For almost all of the problems,
combining copying and recomputation led to a higher speed-up. While the
difference between Dual Com and the other models was sometimes small,
Dual Com serves to reduce the network load compared to copying, and the
processor load compared to recomputation. Hence, in a situation where
several different processes are competing for resources, a lower load will
help the other processes to achieve a higher performance.

References
[1] L. Araujo and J. Ruz. A parallel Prolog system for distributed mem-

ory. Journal of Logic Programming, 33(1):49–79, 1997.

[2] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

[3] I. Gent, E. Macintyre, P. Prosser, B. Smith, and T. Walsh. Random
constraint satisfaction: Flaws and structure. Constraints, 6:345–372,
2001.

[4] A. Grama and V. Kumar. A survey of parallel search algorithms
for discrete optimization problems. ORSA Journal of Computing,
7(4):365–385, 1995.

155

[5] A. Grama and V. Kumar. State of the art in parallel search tech-
niques for discrete optimization problems. IEEE Transactions on
Knowledge and Data Engineering, 11(1):28–35, Jan/Feb 1999.

[6] Z. Habbas, F. Herrmann, P.-P. Merel, and D. Singer. Load balancing
strategies for parallel forward search algorithm with conflict based
backjumping. In ICPADS ’97: Proceedings of the 1997 Interna-
tional Conference on Parallel and Distributed Systems, pages 376–
381, Washington, DC, USA, 1997. IEEE Computer Society.

[7] K. Kuchcinski. Constraints-driven scheduling and resource assign-
ment. ACM Transactions on Design Automation of Electronic Sys-
tems, 8:355–383, July 2003.

[8] A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast
and simple algorithm for bounds consistency of the alldifferent con-
straint. In G. Gottlob and T. Walsh, editors, IJCAI, pages 245–250.
Morgan Kaufmann, 2003.

[9] K. Marriott and P. J. Stuckey. Introduction to Constraint Logic Pro-
gramming. MIT Press, Cambridge, MA, USA, 1998.

[10] L. Michel, A. See, and P. Van Hentenryck. Parallelizing constraint
programs transparently. In C. Bessiere, editor, Principles and Prac-
tice of Constraint Programming - CP 2007, volume 4741 of Lecture
Notes in Computer Science, pages 514–528. Springer Berlin / Hei-
delberg, 2007.

[11] G. Mitra, I. Hai, and M. T. Hajian. A distributed processing algorithm
for solving integer programs using a cluster of workstations. Parallel
Computing, 23(6):733–753, 1997.

[12] J.-F. Puget. A fast algorithm for the bound consistency of alldiff
constraints. In Proceedings of the fifteenth national/tenth conference
on Artificial intelligence/Innovative applications of artificial intelli-
gence, AAAI ’98/IAAI ’98, pages 359–366, Menlo Park, CA, USA,
1998. American Association for Artificial Intelligence.

156 State-Copying and Recomputation in Parallel Constraint . . .

[13] A. Reinefeld. Parallel search in discrete optimization problems. Sim-
ulation Practice and Theory, 4(2-3):169–188, 1996.

[14] C. C. Rolf. Parallel and distributed search in constraint program-
ming. Master Thesis, Department of Computer Science, Lund Uni-
versity, June 2006.

[15] C. Roucairol. Parallel processing for difficult combinatorial op-
timization problems. European Journal of Operational Research,
92(3):573–590, 1996.

[16] P. V. Roy, P. Brand, D. Duchier, S. Haridi, M. Henz, and C. Schulte.
Logic programming in the context of multiparadigm programming:
The Oz experience. Theory and practice of logic programming,
3(06):715–763, 2003.

[17] C. Schulte. Programming constraint services: High-level program-
ming of standard and new constraint services. Springer-Verlag,
Berlin, Heidelberg, 2002.

[18] J. Yang and S. D. Goodwin. High performance constraint satisfaction
problem solving: State-recomputation versus state-copying. In Pro-
ceedings of the 19th International Symposium on High Performance
Computing Systems and Applications, pages 117–123, Washington,
DC, USA, 2005. IEEE Computer Society.

157

PAPER V

DISTRIBUTED CONSTRAINT
PROGRAMMING WITH AGENTS

This paper is a reformatted version of Distributed Constraint Program-
ming with Agents, International Conference on Adaptive and Intelligent
Systems, 2011.

160 Distributed Constraint Programming with Agents

Distributed Constraint Programming
with Agents

Carl Christian Rolf and Krzysztof Kuchcinski

Department of Computer Science, Lund University
Carl_Christian.Rolf@cs.lth.se, Krzysztof.Kuchcinski@cs.lth.se

Abstract

Many combinatorial optimization problems lend themselves to
be modeled as distributed constraint optimization problems (Dis-
COP). Problems such as job shop scheduling have an intuitive match-
ing between agents and machines. In distributed constraint prob-
lems, agents control variables and are connected via constraints. We
have equipped these agents with a full constraint solver. This makes
it possible to use global constraint and advanced search schemes.

By empowering the agents with their own solver, we overcome
the low performance that often haunts distributed constraint satisfac-
tion problems (DisCSP). By using global constraints, we achieve far
greater pruning than traditional DisCSP models. Hence, we dramat-
ically reduce communication between agents.

Our experiments show that both global constraints and advanced
search schemes are necessary to optimize job shop schedules using
DisCSP.

161

1 Introduction
In this paper, we discuss distributed constraint programming with agents
(DCP). We introduce advanced agents with global constraints, and ad-
vanced search to solve distributed constraint satisfaction problems
(DisCSP), in particular distributed constraint optimization problems (Dis-
COP). DCP is a special form of constraint programming (CP), where vari-
ables belong to agents and can only be modified by their respective agents.

We differentiate DCP from DisCSP since DisCSP has traditionally as-
sumed one variable per agent [18]. In contrast, we study the case where
agents can control several variables, making it possible to use global con-
straints. Such constraints are often needed when solving complex CP
problems, such as job shop scheduling problems (JSSP).

Using global constraints in DCP requires that each agents has its own
constraint solver. Having a full solver in each agent also makes model-
ing and communication more efficient. As far as we know, no published
work on DisCSP has studied global constraints. In earlier work, these
constraints were transformed into equivalent primitive or table constraints.
This led to inefficient solving and model representation.

There are two main contributions in this paper:

• We empower the individual agents with a full constraint solver; and

• We introduce an advanced search scheme.

A major advantage of each agent having a full solver is that we can
create advanced search methods by adding constraints during search. In
this paper, we study JSSP and search that adds ordering-constraints before
the actual assignments, significantly increasing the performance. We are
not aware of any previous research on DisCSP that studies this type of
search.

Formally, a constraint satisfaction problem (CSP) can be defined as a
3-tuple P = (X,D,C), where X is a set of variables, D is a set of finite
domains where Di is the domain of xi, and C is a set of primitive or global
constraints containing several of the variables in X . Solving a CSP means
finding assignments to X such that the value of xi ∈ Di, while all the
constraints are satisfied. P is referred to as a constraint store.

162 Distributed Constraint Programming with Agents

Finding a valid assignment to a constraint satisfaction problem is usu-
ally accomplished by combining backtracking search with consistency
checking that prunes inconsistent values. In every node of the search tree,
a variable is assigned one of the values from its domain. Due to time-
complexity issues, the consistency methods are rarely complete. Hence,
the domains will contain values that are locally consistent, i.e., they will
not be part of a solution, but we cannot prove this yet.

DisCSP, as used in [17], can be defined similarly to CSP with the 4-
tuple P = (A,X,D,C), where A is a set of agents and X is a set of
variables so that xi ∈ ai. D is a set of finite domains, and C is a set of
sets of binary constraints. Each variable xi has a finite domain di, and
each set of constraints cij connects two agents ai and aj , where i 6= j.
Furthermore, each variable is controlled by exactly one agent. Lastly, the
constraint network builds a connected graph. In other words, each agent
is connected to another agent. Hence, there is at least one path from agent
ai to agent aj .

Our model of DCP extends the DisCSP definition to a higher level.
We retain the properties that a variable is controlled by exactly one agent,
and that there is a path from any agent ai to agent aj . Now, however, X
is a set of sets of variables, C is a set of sets of n-ary constraints, and D
is a set of sets of finite domains. Every agent ai has a set of variables xi

and a set of constraints ci. In [13], a similar definition is introduced, but
not expanded upon. In fact, we are not aware of anyone actually using
the main advantage of having many variables per agent. The fact that
our agents can have global constraints enables us to use the full power of
modeling and pruning in CP.

In DCP, we can perform the consistency and search phase asynch-
ronously [20]. First, we let each agent establish consistency internally,
then send its prunings to the agents that are connected via constraints.
Figure 1 depicts the structure of the constraint network for a small JSSP.
Each agent holds two variables and ensures no overlap between tasks via
a cumulative constraint [2]. The constraints between agents are the prece-
dence constraints, stated at the edges. Whenever a variable that is part of a
connected constraint changes, the prunings will be propagated to the con-
nected agents. Using our formal model, we, e.g., have A = {X,Y, Z},

163

xx = {Xa,Xb}, cx = {cumulative([Xa,Xb]), Xa > Y a,Xb < Y b}
and cxy = {Xa > Y a,Xb < Y b}.

The rest of this paper is organized as follows. Section 2 introduces the
background and the related work. In Section 3, our model of DCP with
global constraints and advanced search is described. Section 4 describes
our experiments and results. Finally, Section 5 gathers our conclusions.

Ya > Za
Yb < Zb

Xa > Ya
Xb < Yb

Xa > Za
Xb < Zb

cumulative([Ya, Yb]) cumulative([Za, Zb])

cumulative([Xa, Xb])

Agent Y Agent Z

Agent X

Figure 1: Model of a distributed JSSP, where each agent holds several
variables.

2 Background and Related Work
Most work on DisCSP deals with the scenario where each agent holds a
single variable and only binary constraints exist between the agents [18].
These problems are typically solved with an asynchronous search, where
consistency is enforced between the connected agents [20]. One notable
exception is [13]. However, that paper mentions neither global constraints
nor advanced search methods.

The model of each agent only controlling one variable and only having
binary constraints can technically be used to model any problem. How-
ever, even the latest search algorithms need to send a huge amount of mes-
sages to other agents [6] to solve such problems. This makes such a limited
model less feasible when dealing with large or complex problems. This is
especially problematic for optimization problems, since there is a greater
need for search than for simple satisfiability problems.

164 Distributed Constraint Programming with Agents

One main difference between our model and previous work, such as
[20, 6, 4, 17, 13], is that we can communicate entire domains. When a
domain has been received, the prunings it carries are evaluated. This is
much more efficient than sending one value from a domain at a time and
getting a Good or NoGood message back.

Privacy is often used to motivate distribution of variables. Previous
work, such as [21] shows that perfect privacy is possible for DisCSP. How-
ever, in the real world, complex encryption and minimal communication
are impractical if they decrease performance too much. Our ultimate goal
is to use our work for scheduling in autonomous unmanned aerial vehi-
cles [9]. Hence, we focus more on performance than privacy.

A great limitation of previous work is that the problem model is usually
translated into a table form [11]. These tables represent all possible assign-
ments by the cartesian product of the domains in the constraint. For many
problems, this representation is unfeasibly large [17]. In scheduling, a sin-
gle cumulative constraint, ensuring no overlap of tasks [2], would have to
be translated to binary constraints for every single time point. Even small
scheduling problems would need thousands of constraints.

Many complex optimization problems need global constraints to solve
in reasonable time. Some papers on DisCSP build advanced structures of
agents. Others add a master-like agent that controls the global limits of
the problem [12]. However, as far as we know, no one provides global
constraints in each agent.

In order for DCP to solve large problems which are relevant to the real
world, like JSSP, we need more advanced agents. Theoretically, one vari-
able per agent is sufficient to model any DisCSP. However, just as global
constraints can be reduced to binary constraints, the decreased pruning
makes such an approach unrealistic for large optimization problems. This
paper introduces agents with full constraint solvers, in order to make DCP
feasible for industry use.

165

Agent 1

JaCoP Solver

Agent 2

JaCoP Solver

Connected
Constraints

Connected
Constraints

Communication
of prunings

Figure 2: Our model of DCP, each agent holds a full constraint solver.

3 Distributed Solvers
Figure 2 depicts our model of DCP. Each agent holds a separate copy of
the JaCoP solver [8], and only controls the variables that are needed for
that part of the problem model. For instance, in JSSP, each agent holds the
variables representing the tasks on the machine that the agent models. The
precedence constraints between tasks assigned to different machines are
stored in the connected constraints, since they constrain tasks controlled
by different agents. This is how prunings are sent between agents.

Figure 3 depicts a simplified view of the distributed constraint evalua-
tion process and the search. All time consuming steps in our solving are
parallel. As depicted in Figure 3, the algorithm evaluates consistency and
the agents vote on the next master in parallel. However, in order to guar-
antee synchronicity, the agents must wait for all prunings to be finished
before they can move on to select the next master. Hence, the algorithm
moves from synchronous to asynchronous execution of the agents, and
back again, with every assignment.

When consistency is evaluated, all prunings are sent directly between
the agents that are part of the connected constraint. Hence, the master
agent is not controlling communication. It serves only to make an assign-
ment decision and ensure that all agents are synchronized for the next step
in the execution. The next step after an assignment may be to backtrack,
or locate the next master, or to communicate a solution.

166 Distributed Constraint Programming with Agents

X

Z

Y

X

X Z

Z

Y

X

Make
assignment

Run
consistency

Find new
master

Vote on new
master

Make
assignment

Active agents: 1 3 1 3 1

Master Master Master

Figure 3: The progress from assignment to next assignment. X, Y, and Z
are agents.

An example of the operations of our model is depicted in Figures 4–5,
which show all execution steps. The execution progresses as follows.

1. When the solving is initialized, all agents start to run consistency of
their constraints, see Figure 4(a).

2. If there are changes to a variable that is in a connected constraint,
those prunings are sent to the agent holding the other variable of the
connected constraint, see Figure 4(b). In this paper, we only study
the case of binary constraints between agents. Each agent holds
a queue of pruning messages, when changes have been received,
consistency is again evaluated in the agent. This process continues
iteratively until there are no more prunings sent between agents.

3. As soon as the consistency is finished, a negotiation determines
which agent will start the search, see Figure 4(c). This follows the
principles of distributed election [5].

167

4. The agent holding the variable with the highest priority, defined by
a user configurable heuristic, gets the master token, see Figure 4(d)
and Figure 5(a). In this paper, we look at synchronized search. This
means that only one agent holds the master token and only this mas-
ter gets to make the next assignment decision.

5. The master makes an assignment and enforces consistency, see Fig-
ure 5(b).

6. The master sends the prunings to the agents that have connected
constraints containing changed variables, see Figure 5(c).

7. When the agents receive prunings, they automatically run consis-
tency, see Figure 5(d).

8. When consistency has finished again, we are at the same position as
in Figure 4(c). We renegotiate which agent is to be the new master.

The procedure above continues until all variables have been assigned
a value. When a master finds a solution, the cost of the solution can be
shared amongst all agents by propagating it to all agents connected to
the master. These agents then propagate it further, and so on, until all
agents are aware of the solution cost. This is similar to the communica-
tion in [3]. Sharing solution costs is necessary in order to use branch and
bound search.

If backtracking is necessary, we will undo the assignment leading to
the inconsistency. If the current master has run out of possible assign-
ments, it will send a message to the previous master telling it to backtrack.
Hence, all agents that have been masters keep track of which agent was
master before itself. Furthermore, since agents have several variables, an
agent can become master several times in the same search tree branch.
Agents therefore also need to keep track of backtracking to themselves.

The pseudo-code for our model is shown in Figure 6 and Figure 7.
The receive method will be called automatically by the agent whenever
a message has been received. Communication between agents are per-
formed by similar syntax to that of [7]. All communication of costs is
handled by connected constraints and is therefore controlled by the prob-
lem model. This gives great versatility to our model.

168 Distributed Constraint Programming with Agents

The biggest challenge in our distributed model is to detect that all
agents are synchronous. For instance, detecting that consistency has reach-
ed a fixpoint and it is time to make the next assignment. That detec-
tion takes place in the handling of the message Wait_For_Consistency.
Verifying whether agents are running and consistent can be done as for
DisCSP, by using the process of [3].

3.1 Advanced Search in Distributed Constraint
Programming

In order to solve complex JSSP, we need the more advanced search that
is made possible by our model. The algorithm presented in Figure 6 and
Figure 7 is somewhat simplified. For JSSPs, we use a sequence of two
search methods. The first orders the tasks on each machine by adding
precedence constraints. The second assigns actual start times for each task.
This is based on the principles described in [1]. While some problems may
solve without the ordering, many require an ordering to solve in reasonable
time.

Figure 8 depicts the algorithm for the ordering search. During the
ordering, the machine with the least slack in the tasks scheduled on it is
selected. Then we pick the task, running on that machine, with the smallest
start time. Finally, we impose that the selected task has to execute before
the other tasks on that machine, and we remove it from the list used to
calculate slack. This procedure is repeated recursively.

This type of advanced search is not possible in all DisCSP solvers.
Many DisCSP solvers cannot impose constraints during the search. Even
solvers that can impose new constraints, are often limited by mostly sup-
porting table constraints [11]. If only table constraints are supported, the
memory use of the solver will increase greatly whenever new constraints
are imposed for every time unit of the schedule.

169

enforceConsistency

Agent Y Agent Z

Agent X

enforceConsistency enforceConsistency

(a) Start: Enforce consistency

sendPrunings

Agent Y Agent Z

Agent X

sendPrunings sendPrunings

(b) Communicate prunings

findMaster

Agent Y Agent Z

Agent X

(c) Elect new master

Agent Y Agent Z

Agent X

sendMostCritical sendMostCritical

(d) Reply with measurement

Figure 4: The first part of the operating sequence for consistency and
search in our model. The waves along the edges indicate communication.

170 Distributed Constraint Programming with Agents

makeMaster

Agent Y Agent Z

Agent X

(a) Make Agent Y new master

Agent Y Agent Z

Agent X

makeAssignment
enforceConsistency

(b) Master assigns and runs consistency

Agent Y Agent Z

Agent X

sendPrunings

(c) Master communicates prunings

enforceConsistency

Agent Y Agent Z

Agent X

enforceConsistency

(d) Affected agents enforce consistency

Figure 5: The second part of the operating sequence for consistency and
search in our model.

171

1 // variables controlled by the agent V
2 // actors that participate in the problem A
3

4 receive(message) {
5 switch (message.type) {
6

7 case Make_Master(oldMaster):
8 master = true
9 previousMaster = oldMaster

10 this ! Start_Search
11

12 case Start_Search:
13 v = selectionHeuristic.selectVariable
14 if (v == null)
15 storeSolution
16 this ! Backtrack
17 else
18 k = valueHeuristic.selectValue
19 store.makeAssignment(v, k)
20 this ! Enforce_Consistency
21

22 case Enforce_Consistency:
23 running = true
24 if (store.enforceConsistency)
25 forall (c in connectedConstraints)
26 forall (v in c.remoteVariables)
27 if (v.hasChanged)
28 v.remoteAgent !
29 Pruning(v.name, v.domain)
30 else
31 consistent = false
32 if (master)
33 this ! Wait_For_Consistency
34 running = false
35

36 case Pruning(varName, domain):
37 v = store.findVariable(varName)
38 v.domain = domain
39 this ! Enforce_Consistency

Figure 6: Part one of the pseudo code for the agents. The receive method
is called whenever a message arrives. Exclamation mark indicates com-
munication to an agent.

172 Distributed Constraint Programming with Agents

1 case Wait_For_Consistency:
2 forall (a in A)
3 if (a.isRunning)
4 this ! Wait_For_Consistency
5 return
6 forall (a in A)
7 if (a.inconsistent)
8 this ! Backtrack
9 return

10 this ! Select_Next_Master
11

12 case Backtrack:
13 store.forbidLastAssignment
14 store.undoLastAssignment
15 if (store.stillInconsistent)
16 previousMaster ! Backtrack
17 else
18 this ! Start_Search
19

20 case Select_Next_Master:
21 forall (a in A)
22 a ! Find_Best_Variable(this)
23

24 case Find_Best_Variable(theMaster):
25 v = selectionHeuristic.selectVariable
26 k = v.fitness
27 theMaster ! Fitness(k, this)
28

29 case Fitness(fitness, actor):
30 if (fitness > bestF itness)
31 bestF itness = fitness
32 bestActor = actor
33 fitnessReplies += 1
34 if (fitnessReplies == A.size)
35 master = false
36 bestActor ! Make_Master(this)
37 }
38 }

Figure 7: Part two of the pseudo code for the agents.

173

1 // M is a vector of vectors representing tasks assigned
2 // to a machine. Each task is specified by its starting
3 // task start time t, task duration d
4

5 boolean Jobshop_Search(M)
6 if store.enforceConsistency
7 if M 6= ∅
8 m← selectCriticalMachine(M)
9 sort tasks in m in ascending values of t.min()

10 for each i = 1, . . . , n
11 for each j = 1, . . . , n
12 if (i 6= j)
13 impose mi.t+mi.d ≤ mj .t
14 M ′ ← M \mi

15 if Jobshop_Search(M ′)
16 return true
17 else
18 return false
19 return false
20 else
21 store solution
22 return true
23 else
24 return false
25

26 vector selectCriticalMachine(M)
27 for each mi ∈M
28 min ← min(min(mi.t0), min(mi.t1), . . ., min(mi.tn))
29 max ← max(max(mi.t0 +mi.d0), max(mi.t1 +mi.d1), . . . ,
30 max(mi.tn +mi.dn))
31 supply ← max−min
32 demand ←∑

mi.di
33 critical ← supply − demand
34 return machine mi with the lowest value of critical

Figure 8: The pseudo code for the ordering search.

174 Distributed Constraint Programming with Agents

4 Experimental Evaluation
For our experiments, we used the JaCoP solver [8]. The agent system
is written using actors in Scala [14]. The experiments were run on a Mac
Pro with two 3.2 GHz quad-core Intel Xeon processors running Mac OS X
10.6.2 with Java 6 and Scala 2.8.1. These two processors have a common
cache and memory bus for each of their four cores. The parallel version
of our solver is described in detail in [16]. We used a timeout of 30 min-
utes for all the experiments. All experiments were run 20 times, giving a
standard deviation of less than 5 %.

We ran several standard benchmark scheduling problems described
in [19, 10]. The characteristics of the problems are listed in Table 1. These
are all JSSP, where n jobs with m tasks are to be scheduled on m different
machines. We study the case of non-preemptive scheduling.

Table 1: Characteristics of the problems for the global constraint model.

Problem Jobs Tasks Variables Constraints Optimum

LA01 10 5 61 56 666
LA04 10 5 61 56 590
LA05 10 5 61 56 593
MT06 6 6 43 43 55

We created two DisCOP models of each problem: one for our version
of DCP with global constraints, and the other representing the traditional
case with only primitive constraints. When using our model, each agent
represents one machine. It contains one global cumulative constraint with
n tasks [2], to ensure no overlap of tasks.

In the primitive model, each agent represents one variable. For the
problems we studied, the primitive constraints are binary in the sense
that they only contain two variables. Our primitive constraint models
did not use table constraints. Instead, they used the constraint starti +
durationi ≤ startj∨startj+durationj ≤ starti for every pair of tasks,
to ensure no overlap. This constraint is technically a binary constraints,
since the duration is a constant. These primitive constraints replace cumu-
lative for JSSP since we only have one instance of each resource.

175

Each problem was started with no prior knowledge of the optimal solu-
tion. Hence, the domains of the variables representing the start time tasks
were {0..1000}. When using many resources, translating a single cumula-
tive constraint into a table constraint requires primitive constraints in every
time point. For many problems, this could result in an excessive number
of rows in the table constraint. This is often infeasible due to memory size.

4.1 Experimental Results
The results for finding and proving the the optimal solution are shown in
Table 2 and Table 3. Clearly, the primitive representation of the problems
rarely found the optimal within the 30 minute timeout. The only exception
was MT06, the simplest problem we tested. Still, finding the solution for
MT06 took almost 30 times as long as the global model.

Table 2: Execution time in seconds that the global constraint model took to
find the optimal solution and the best solution found within the 30 minute
timeout.

Problem Time to find Time to prove Best
optimum optimum solution

LA01, Global 3.8 4.0 666
LA04, Global 10.8 12.1 590
LA05, Global 0.7 0.97 593
MT06, Global 3.0 3.0 55

Our model of DCP with global constraints in each agent gives superior
performance in our experiments. The traditional model with only one vari-
able per agent never managed to prove the optimality within the timeout.
This performance increase comes partly from the fact that we can order
variables before we start search. When agents control only one variable,
this type of ordering is not possible. In this case, adding the ordering con-
straints will mostly serve to increase the number of pruning messages that
need to be sent.

176 Distributed Constraint Programming with Agents

Table 3: Execution time in seconds for the primitive constraint model and
best solution found within the timeout.

Problem Time to find Time to prove Best
optimum optimum solution

LA01, Primitive Timeout Timeout 936
LA04, Primitive Timeout Timeout 976
LA05, Primitive Timeout Timeout 720
MT06, Primitive 87.7 Timeout 55

When we turn off the ordering of tasks, the performance drops signif-
icantly for the global model. However, even though we could not prove
optimality without ordering, we found better solutions within the timeout
than the primitive model for almost all problems. Hence, the benefit of our
model is not simply in the use of advanced search, but also in the use of
global constraints.

Although our search is synchronous, using asynchronous search would
probably not benefit the traditional primitive model much. Our model
would probably still be better, because in our experiments we use a simu-
lated distribution, thus minimizing the penalty of sending many messages.
The primitive model communicates many more messages to reach the con-
sistency fixpoint. When using a network, the communication would be an
order of magnitude more time consuming than on a shared-memory mul-
ticore machine.

Using asynchronous search would bring benefits to both the global
constraint model and the primitive one. However, the search space of CP
is exponential with regard to domain size. Parallel search only gives a
polynomial speed-up [15]. Hence the performance advantage of the global
constraint model is likely to remain, even though the model with one vari-
able per agent allows for more parallelism.

We also created a third model, where each agent control several vari-
ables, but have no global constraints. Just as for the global representation,
each agent models one machine. However, the cumulative constraint has
been replaced by the same kind of constraints as in the primitive model for
every pair of tasks.

177

The performance of this third model, shown in Table 4, was better than
that of the single variable per agent model. However, the performance was
usually much lower than of the global constraint representation. For the
simplest problem it was slightly faster. But for the most difficult problem,
it did not find the optimum within the timeout.

The performance benefit of our model of DCP is not simply because
of our advanced search. The ordering of tasks on each machine is possi-
ble in the model with several variables per agent but without global con-
straints. However, the pruning is much weaker when there are no global
constraints.

Our results for the model in Table 4, compared to the results in Table 3,
illustrate the cost of communication. We get much better performance than
the scenario of one variable per agent, despite using the same constraints.
Hence, the difference between the performance of these two models comes
mostly from the communication of prunings.

The cost of communication depends on the agent framework. How-
ever, we ran our experiments on a shared-memory machine. Running on
a cluster, with network communication, would increase the performance
penalty of communication severely. If anything, our experiments over es-
timate the competitiveness of traditional DisCSP models.

Table 4: Results for multi-variable agents, without global constraints, but
with ordering.

Problem Time to find Time to prove Best
optimum optimum solution

LA01 3.8 6.9 666
LA04 Timeout Timeout 667
LA05 0.47 9.7 593
MT06 2.5 2.6 55

178 Distributed Constraint Programming with Agents

5 Conclusions
In this paper, we have introduced a completely new model of distributed
constraint programming. Unlike any work we are aware of, we equip each
agent with a full constraint solver. Our model is the the only one we have
seen published that can use global constraints. It also allows advanced
search, during which we can order tasks before assigning actual start times
of scheduling problems.

By equipping each agent with a full constraint solver, we allow much
more efficient modeling of problems. Unlike most work on DisCSP, we
do not translate our models into table constraints. This allows us to com-
municate domains and constraints between agents during the search. Such
communication is much more efficient than that of traditional DisCSP. Re-
ducing communication is a major concern in DisCSP solving.

Our main conclusion of this paper is that both global constraints and
advanced search are needed in order to solve complex scheduling prob-
lems using distributed constraint programming. Traditional work on
DisCSP has focused on agents that only control one variable and only have
primitive constraints. We conclude that these older models are unlikely to
offer good performance for real world use, even when using asynchronous
search.

Another conclusion is that using the traditional approach to DisCSP of
one variable per agent should be very well motivated. Using one variable
per agent may provide better robustness and privacy. However, we show
that letting agents control several variables, using global constraints, and
using advanced search methods are all important for good performance.

References
[1] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Schedul-

ing. Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[2] Y. Caseau and F. Laburthe. Improving branch and bound for job-
shop scheduling with constraint propagation. In M. Deza, R. Euler,

179

and I. Manoussakis, editors, Combinatorics and Computer Science,
volume 1120 of Lecture Notes in Computer Science, pages 129–149.
Springer Berlin / Heidelberg, 1996.

[3] K. M. Chandy and L. Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer
Systems, 3:63–75, Feb 1985.

[4] R. Ezzahir, C. Bessiere, M. Belaissaoui, and E. Bouyakhf. DisChoco:
A platform for distributed constraint programming. In Proceedings
of IJCAI-07 Workshop on Distributed Constraint Reasoning, pages
16–27, 2007.

[5] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed al-
gorithm for minimum-weight spanning trees. ACM Transactions on
Programming Languages and Systems, 5:66–77, Jan 1983.

[6] A. Gershman, A. Meisels, and R. Zivan. Asynchronous forward
bounding for distributed COPs. Journal of Artificial Intelligence Re-
search, 34:61–88, Feb 2009.

[7] C. A. R. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21:666–677, Aug 1978.

[8] K. Kuchcinski. Constraints-driven scheduling and resource assign-
ment. ACM Transactions on Design Automation of Electronic Sys-
tems, 8(3):355–383, July 2003.

[9] J. Kvarnstrom and P. Doherty. Automated planning for collaborative
uav systems. In 2010 11th International Conference on Control Au-
tomation Robotics Vision (ICARCV), pages 1078–1085, Dec 2010.

[10] S. R. Lawrence. Resource-constrained project scheduling: An ex-
perimental investigation of heuristic scheduling techniques. Gradu-
ate School of Industrial Administration, Carnegie-Mellon University,
Pittsburgh PA, 1984.

180 Distributed Constraint Programming with Agents

[11] T. Léauté, B. Ottens, and R. Szymanek. FRODO 2.0: An open-
source framework for distributed constraint optimization. In Pro-
ceedings of IJCAI-09 Workshop on Distributed Constraint Reason-
ing, pages 160–164, Pasadena, California, USA, July 2009.

[12] A. Meisels and E. Kaplansky. Scheduling agents - distributed
timetabling problems (DisTTP). In Practice and Theory of Auto-
matedTimetabling IV, volume 2740 of Lecture Notes in Computer
Science, pages 166–177. Springer Berlin / Heidelberg, 2003.

[13] A. Meisels and R. Zivan. Asynchronous forward-checking for DisC-
SPs. Constraints, 12:131–150, 2007.

[14] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A
Comprehensive Step-by-step Guide. Artima Incorporation, USA, 1st
edition, 2008.

[15] V. Rao and V. Kumar. Superlinear speedup in parallel state-space
search. In K. Nori and S. Kumar, editors, Foundations of Software
Technology and Theoretical Computer Science, volume 338 of Lec-
ture Notes in Computer Science, pages 161–174. Springer Berlin /
Heidelberg, 1988.

[16] C. C. Rolf and K. Kuchcinski. Load-balancing methods for parallel
and distributed constraint solving. In IEEE International Conference
on Cluster Computing, pages 304–309, Sep/Oct 2008.

[17] F. Rossi, P. v. Beek, and T. Walsh. Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence. Elsevier
Science Inc., New York, NY, USA, 2006.

[18] M. Salido. Distributed CSPs: Why it is assumed a variable per agent?
In I. Miguel and W. Ruml, editors, Abstraction, Reformulation, and
Approximation, volume 4612 of Lecture Notes in Computer Science,
pages 407–408. Springer Berlin / Heidelberg, 2007.

[19] G. L. Thompson. Industrial scheduling / edited by J.F. Muth and
G.L. Thompson with the collaboration of P.R. Winters. Prentice-Hall,
Englewood Cliffs, N.J., 1963.

181

[20] M. Yokoo and K. Hirayama. Algorithms for distributed constraint
satisfaction: A review. Autonomous Agents and Multi-Agent Systems,
3:185–207, 2000.

[21] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed constraint
satisfaction: Reaching agreement without revealing private informa-
tion. In P. Van Hentenryck, editor, Principles and Practice of Con-
straint Programming - CP 2002, volume 2470 of Lecture Notes in
Computer Science, pages 43–66. Springer Berlin / Heidelberg, 2006.

182 Distributed Constraint Programming with Agents

APPENDIX

APPENDIX A

CONTROLLING THE
PARALLELISM

The performance of parallel solving can sometimes be greatly improved
by configuring the solving for that problem. Automatic parallelism in CP
will often provide a speed-up when searching for the optimal solution.
However, even better performance can be achieved if the parallelization is
tuned specifically for that problem.

Ideally, automatic parallelism would not require any hints to, or con-
figuration of, the solver by the problem modeler. However, in the absence
of dynamic adaptation during the solving process, a few simple param-
eters can empower the programmer without requiring too much effort.
The design of parallelism control in our solver is fairly similar to related
work [10, 34].

To the provider of the constraint framework, the main challenge with
automatic parallelism is to extract good parallel performance from the
problem. It is very simple for problem modelers to use the parallelism,
but sometimes choosing good values for the parameters in Table 1 and
Table 2 is central in order to get a speed-up.

186 Controlling the Parallelism

1 Controlling the Parallel Consistency

Table 1 presents the variables used to control the parallel consistency in
our solver. There are fewer parameters compared to parallel search. In
parallel consistency, we cannot decide the size of work unless we split
up the constraint algorithms. However, constraint specific parallel consis-
tency algorithms are not within the scope of this thesis.

The first parameter, con_thread_count, determines how many thre-
ads are available for running consistency. When we combine parallel
search and parallel consistency, as described in detail in Paper II, this pa-
rameter determines the number of consistency threads per search thread.
Without parallel search, we always have one search thread. For example, if
we have one search thread and set con_thread_count to four, there will
at most be four threads running in parallel. If we have eight search threads
and set con_thread_count to eight, we will at most have 64 threads run-
ning at the same time. Hence, this parameter is useful for tuning the pro-
cessor usage. In conjunction with thread_count, see Table 2, we have
a good control over how much resources we allocate to parallel search
compared to parallel consistency.

The second parameter, con_split, is used to control how many con-
straints are taken out of the constraint queue each time a consistency thread
needs more work. If this is too low, the consistency threads will be idle
more often while they are trying to get work out of the central queue.
If setting it too high, the work load will be split unevenly between the
threads. Setting a low value is not a problem if using a wait-free queue.
A high value is not a major problem, since threads can take constraints
from each other. However, getting a speed-up from parallel consistency
can be a delicate process. Hence, this parameter may have an impact on
the performance.

2 Controlling the Parallel Search 187

Table 1: The parameters for controlling the parallel consistency.

Parameter Description Unit

con_thread_count The number of threads for consistency per solver Absolute
con_split The number of constraints per consistency thread Absolute

2 Controlling the Parallel Search

The parameters we use to control parallel search are presented in Table 2.
The first parameter, thread_count, determines how many solvers will be
running search. If no value is given, there will be as many search threads
as there are processor cores available to the Java runtime.

The second parameter, start_split, is the point from which we al-
low splitting of work. This value is absolute, for instance, setting it to two
will prevent splitting of work at the first two levels of the search tree. This
parameter may increase performance if the first variable should always
have its minimal value. This is useful when,for example, finding optimal
Golomb rulers.

The third search parameter, end_split, controls the depth in the
search tree to which splitting is allowed. This parameter can be very use-
ful for ensuring that we do not send work that is too small to benefit from
parallelism. It is given as a percentage of the total number of variables that
we label in the problem. For instance, setting it to 0.8 for a labeling with
20 variables will disallow splitting after depth 16.

The fourth parameter, split_min, determines the minimum size of
a domain that we send. For instance, if a domain has five values, and
split_min is five we will not split this domain since we have to keep
at least one value for the sending solver. When used in conjunction with
end_split, this variable allows more finely tuned control of the amount
of work we send.

188 Controlling the Parallelism

The fifth variable, split_size, controls how much of the current do-
main will be sent. The value has to be larger than zero and smaller than
one, as it represents the percentage of values in the split domain. If the
domain size multiplied with split_size is larger than split_min, we
will not send work. The main use of split_size is to ensure that we do
not send too much work to one solver, but rather split the same domain
several times if there are several free solvers.

Table 2: The parameters for controlling the parallel search.

Parameter Description Unit

thread_count The number of search threads Absolute
start_split The depth at which sharing of work starts to be allowed Absolute
end_split The depth at which sharing of work is no longer allowed Percent
split_min The minimum size of a domain that can be shared Absolute
split_size The part of the domain that is to be shared Percent

