LUND UNIVERSITY

Co-optimization of FFT and FIR in a delayless acoustic echo canceller implementation

Berkeman, Anders; Owall, Viktor

Published in:
[Host publication title missing]

DOI:
10.1109/ISCAS.2000.857408

2000

Link to publication

Citation for published version (APA):

Berkeman, A., & Owall, V. (2000). Co-optimization of FFT and FIR in a delayless acoustic echo canceller
implementation. In [Host publication title missing] (Vol. 5, pp. 241-244)
https://doi.org/10.1109/ISCAS.2000.857408

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 17. Jan. 2026

https://doi.org/10.1109/ISCAS.2000.857408
https://portal.research.lu.se/en/publications/bef9db0b-973c-4bb6-8312-402b052adf9b
https://doi.org/10.1109/ISCAS.2000.857408

ISCAS 2000 - |EEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

Co—Optimization of FFT and FIR in a
Delayless Acoustic Echo Canceller Implementation

Anders Bérkeman and Viktor Owall

CCCD, Dept. of Applied Electronics, Lund University, Sweden. E-mail: {abn,vikt}@tde.lth.se

Abstract

In application specific implementation of digital sig-
nal processing algorithms optimization is important
for a low power solution, not only on block level
but also between blocks. This paper presents a co-
optimization of a fast Fourier transform and a finite
impulse response filter in a silicon implementation of
an acoustic echo. The optimization gain can be mea-
sured in the number of operations and memory ac-
cesses performed per second, and therefore process-
ing power. The optimization can also be applied
to other algorithms with a similar constellation of
Fourier transforms and finite impulse response filters.

1 Introduction

To reduce power consumption at the architectural
level, care has to be taken both on the design of the
computational units as well as on the memory man-
agement [1]. Optimization of an architecture has to
be performed both on each functional block as well as
in the connection between them. This paper present
a co-optimization of a Fourier transform connected to
a Pinite Impulse Response (FIR) filter in an acous-
tic echo canceller. The optimization makes use of a
distributed arithmetic multiplier [2].

In wireless communication systems delay in the sig-
nal path is a serious obstacle and care has to be taken
to reduce delay in all signal processing parts of the
signal path. An application specific implementation
of an acoustic echo canceller algorithm with no’sig-
nal path delay sustains the real-time signal processing
with affordable power consumption.

The main parts of the algorithm are shown in fig-
ure 1. At the upper left corner the far end signal
z(n) enters and connects to the canceller and to the
loudspeaker. The signal from the microphone y(n)
is the other input to the canceller. Echoes and the
near end talker signal v(n) is added in the acoustic
path between the loudspeaker and the microphone.
The AFIR block contains an estimate of the impulse
response of the acoustic path. The signal z(n) is
convolved with this estimate, and the output is sub-

0-7803-5482-6/99/$10.00 ©2000 IEEE

«(n) v(n)}‘
-z o e
9(n)
r TFFT i
1
[‘ Conj\;gnne/stacking : |
[FFT [FFT |---[FFT]
A
FB| | - B

[LMs

Figure 1: The subband echo cancellation algorithm,
from [3]. Echo cancellation is done in the time domain.

tracted from the microphone signal, optimally leaving
nothing but the near end talker. The difference signal
e(n) is then fed back to the far end.

The heart of the algorithm is a number of adaptive
Least-Mean-Squares (LMS) filters that track the fre-
quency response from speaker to microphone. Each
of these LMS filters act on a small frequency band of
the = and y signals which have been divided by the
filterbanks (FB).

The estimated filter taps from one adaptive filter
represent a part of the total impulse response in a
certain frequency band. To make a fullband impulse
response, these taps have to be Fourier transformed,
stacked in frequency and inverse transformed. The
fullband impulse response is used to filter the far end
signal to simulate the effect of the sound propagating
through the room. Typical sizes for the estimated
impulse response is N = 1000 to 4000 taps at 16 kHz
sample rate. The fullband impulse response is a de-
layed estimate of the room acoustics due to the delays
in the filterbanks, adaptive filters and FFTs.

V-241

2 The FFT and FIR part of the
echo canceller

The filterbanks split the z(n) and y(n) signals into
M complex subbands. Due to symmetry in the fre-
quency plane, only M/2 + 1 bands contain unique
information [3], and therefore there are M/2+1 LMS
filters operating on these subbands. .

The adaptive weights calculated in the LMS fil-
ters are combined into a fullband impulse response
of length N. This is achieved by Fourier transform-
ing the LMS weights, stacking them in frequency into
a fullband frequency function, and inverse Fourier
transform to get an impulse response in the time do-
main. ‘

To achieve a fullband impulse response of length
N, N/2 taps from the Fourier transform of the LMS
filter taps are saved and stacked in increasing fre-
quency order from position 0 to N/2— 1, in what will
be the fullband impulse response. Then their com-
plex conjugates are repeated in reversed order from
N/2 to N — 1 sequentially. The bins are then trans-
formed back to time-domain by an N-point inverse
FFT (IFFT). The reverse repetition of the complex
conjugates at the input of the IFFT generates a real-
valued output of the transform. This output is the
estimated room acoustic impulse response, iz, consist-
ing of the taps A(0), h(1), ... R(N —1). These coef-
ficients are used to calculate an estimate §(n) of the
signal y(n), according to the convolution

N-1
9(n) = D h(k)z(n — k) ¢))
k=0
which is performed in the Adaptive (AFIR) block of
figure 1.

It is convenient to implement the FFTs and IFFT
using the radix—2 decimation in frequency (DIF) or
decimation in time (DIT) schemes. The radix-2 ad-
dition and subtraction butterfly has a high regularity
and is therefore suitable for hardware implementation
with low control requirements. Twelve butterflies of
an FFT are depicted in figure 2. The last stage is al-
ways without twiddle-factor multiplication, indepen-
dent of whether it is FFT or IFFT, DIF or DIT.

When an FFT or IFFT is used to calculate coeffi-
cients for an FIR filter, the last stage of the FFT is
connected to the filter as shown in figure 3. In the
figure, the FFT and the FIR filter is of size N. The
signals ﬁpm are intermediate results inside the Fourier
transform. The relationship between h and fzpre is

{ h(2k) = hpre(2k) + hpre(2k +1)

2k +1) = hpre(2k) = hpre(2k + 1) @

Figure 2: Eight bin decimation in frequency (DIF) FFT.
Wy denotes €>™/V. Note that Wi = 1,VN and thus the
last stage is without twiddle multiplication.

or, the other way around
Ppre(2k) = 1(A(2k) + h(2k + 1))
hpre(@k+1) = 1(h(2k) — h(2k + 1)).

Due to the stacking at the input of the IFFT as de-
scribed earlier, the signals fz(k) are real. Therefore
the signals fsze(k) must also be real.

The sum and difference of the & signals in equa-
tion (3) looks similar to the precomputation re-
quired by inner product computation using dis-
tributed arithmetic.

3)

3 The Distributed Arithmetic
Multiplier

By using distributed arithmetic [4] the order of multi-
plication and addition in an inner product is reversed.
If precomputation is applied to one of the inputs, the
number of partial inner products can be significantly
reduced. When the inner product is of length two, as

in

(4)
precomputation is limited to one addition and one
subtraction.

If A is an L-bit fractional number in two’s comple-
ment, the value of A is calculated according to

P = Agzo+ Az,

L-1
A= —ao+ Z ar 27t (5)
£=1

V-242

#(n)

Figure 3: FIR filter preceded by sum/difference units.
The FIR filter is inside the dqtted box.

By using the identity

A= %(A - (-4)) 6)

and the rule for negating a two’s complement number
—A=A427E-D (7)
equation (5) can be written as

L-1
A=—(ag-a) 27 +) (ar—ag)2""" —27L (8)
=1

Introduce o = (ag — ao), and for &k #0, ar = (ar —
@k), note that all o, € {~1, +1}. Using this notation,
A can be written as

L-1
A=) a2t o7k 9)
=0

The relationship between a, and ay is

|

Using this encoding equation (4) can be written as

+1,ifae¢o=101‘ao=0
—l,ifa#o——-Oorao:l.

L1

P = Z(l’gaol +zlale)2’e"1 - (IO +Zl)2_L. (11)
=0

(10)

The expression zgag, + z1ay, is for £ # 0 examined
in the following table

Qp, 1, Laol ai, LQ:OCYOZ“‘-T] a1,
-1 =110 0 —z5
-1 11 0 1 N
1 -1 1 0 —Ta
1 1 1 1 s
where
{ Ty = To+ 2 (12)
Ia = To— 1

From the table it is clear that pe = (ao, ® a1,) and
g¢ = dp, can be used to select zx or za. Treating p,
and ¢, as integers holding the values 0 or 1 and V as
a bitwise inclusive-or operator, equation (11) can be
written as

L-1
P =" (-1)%*(pemaV Przs) 27 — x5 278 =
£=0 .

L-1
Z(‘H @ (pezaV Brzs) +qe) 2757 — x5 275, (13)
=0
When evaluating the sums, g¢ should be replaced with
gz for the case ¢ = 0, since the zeroth index has nega-
tive weight in'two’s complement representation. The
partial inner product

qe ® (pexaV Pexs) + ge (14)

is realized as a multiplexer selecting +zx or *za,
depending on the values of py and ¢e. The logic re-
quired to generate p, and g, is one inverter and one
exclusive-or gate per index £.

The number of partial inner product bits to be
added together for the expression Agzo+A;z1 assum-
ing the A and z are 16 bits wide each is 512 when or-
dinary multipliers are applied. Using the distributed
arithmetic approach the number is, dependent of the
implementation, approximately 289, or slightly less
than a 50% reduction. Addition of the partial in-
ner products can efficiently be implemented using an
adder tree [2].

4 Co-Optimization
The last stage of butterflies partitions the FIR filter

into N/2 partial convolvers, each computing

h(2k)z(n — 2k)
+h(2k 4+ 1)ax(n — (2k + 1)),

such that the complete convolution can be written as

Geln) = (15)

N
Ny

9(n) = > k(n) (16)
k=0

V-243

Bpre(N —2)

hpre(N—1)

1A

79(n)
Figure 4: Same function as figure 3, but with distributed
arithmetic multipliers. The multiplier with an extra circle

is used as a symbol for the distributed arithmetic multi-
plier.

see figure 3. If a distributed arithmetic multiplier
is used to calculate the partial convolutions §i(n),
its inputs has to be z(n — 2k) and z(n — (2k + 1)),
and the sums and differences of k(2k) and h(2k +1).
These sums and differences are visible in equation (3)
and, except for the factor 1/2, equal to fz,,re(Qk) and
ﬁpre(Qk + 1). Therefore, all butterflies in the last
stage of the IFFT can be removed, and every pair
of multipliers replaced by one distributed arithmetic
multiplier, as depicted in figure 4. The factor 1/2 is
compensated by a logic shift of one bit to the left.

The co-optimization reduces the number of arith-
metic operations, as well as the number of memory
accesses. Load and store operations consume energy
for memory access, address calculation and bus driv-
ing. Reduction of the number of memory accesses is
crucial to reduce power in an application specific in-
tegrated circuit [1]. The effects of the optimization is
shown in table 1.

Removal of the last addition and subtraction stage
of the IFFT reduces the number of loads and stores
with NV each. As one adder, one subtracter and two
multipliers are replaced by one distributed arithmetic
multiplier, the number of adders and subtracters are
reduced by N/2 each. Further, the number of prod-
ucts to be added in the filter is reduced from N —1 to
N/2 — 1 and the N multipliers are replaced by N/2

Element without opt. | with opt. |
Butterfly adders N 0
and subtracters
FIR adders N-1 _12‘1 -1
FIR Multipliers N 0
Distributed arithmetic 0 N
multipliers 2
Memory reads before

N 0
last butterfly stage
Memory writes after

N 0
last butterfly stage

Table 1: Optimization results.

distributed arithmetic multipliers. The distributed
arithmetic multiplier is comparable in size to one or-
dinary multiplier. Different schemes can be applied to
reduce the complexity of an ordinary multiplier, for
example modified Booth encoding [5], but the reduc-
tion of the number of memory accesses and additions
is made possible due to the distributed arithmetic
multiplier.

5 Conclusion

This paper presents a co-optimization of an IFFT and
a FIR filter by using distributed arithmetic multipli-
ers. The co-optimization reduces the number of mem-
ory accesses as well as the number of additions due
to the removal of the last stage of the IFFT.

References

(1] Francky Catthoor, Sven Wuytack, Eddy De Greef,
Florin Balasa, Lode Nachtergaele, and Arnout Van-
decappelle. “Custom Memory Management Method-
ology”. Kluwer Academic Publishers, 1998.

[2] V. Owall A. Berkeman and M. Torkelson. A low logic
depth complex multiplier using distributed arithmetic.
Scheduled for publication in IEEE Journal of Solid
State Circuits.

Dennis R. Morgan and James C. Thi. “Adaptive echo

Cancellation for Speech Signals”. In IEEE Transac-

tion on Signal Processing, volume 43, No. 8, August

1995.

[4] S.G. Smith and P.B. Denyer. “Efficient Bit-Serial
Complex Multiplication and Sum-Of Products Com-
putation Using Distributed Arithmetic”. In Proc. of
IEEE ICASSP, 1986.

[5] A. D. Booth. A signed binary multiplication tech-

nique. Q. J. Mech. Appl. Math., 4, 1951, pp. 236-240.

3

V-244

