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Abstract

In this paper we consider fundamental limitations for DOA estimation with
arbitrary lossless antennas or antenna arrays inserted inside a sphere. Spher-
ical vector modes and their associated equivalent circuits and Q factor ap-
proximations are employed as a general framework for the analysis. The
classical broadband matching theory by Fano is extended to a general multi-
port S–parameter model of the antennas and fundamental bounds are given
for the scattering parameters with respect to bandwidth and electrical size
of the sphere. Finally, assuming a statistical signal model with Gaussian
receiver noise, the Cramer–Rao lower bound is used to derive fundamental
upper bounds for the performance of DOA estimation by a sphere.

1 Introduction

The Direction of Arrival (DOA) estimation using antenna arrays has been the topic
for research in array and statistical signal processing over several decades and com-
prises now well developed modern techniques such as maximum likelihood and sub-
space methods, see e.g. [12, 18, 22] and the references therein. Statistical, and para-
metric estimation methods for sensor arrays typically rely on certain geometrical
properties of the assumed propagation model such as known steering vectors or ar-
ray manifold together with a statistical signal model for the receiver noise. Efficient,
modern parametric estimation methods then result in a resolution capability which
is not limited by the array aperture, provided that the data collection time or SNR
are sufficiently large and assuming that the data model accurately reflects the exper-
imental scenario [12]. Recently, there has been an increased interest in incorporating
properties of electromagnetic wave propagation with the statistical signal estima-
tion techniques used for sensor array processing and there are several papers dealing
with direction finding using electromagnetic vector sensors and diversely polarized
antenna arrays, tripole arrays, etc., see e.g. [10, 14, 15, 19, 23, 24].

In many cases it is desired to design systems that both have a high estimation
performance and a small physical size. Unfortunately, the antenna performance de-
teriorates when the antenna gets electrically small. The drawback of small antennas
as being narrowband and lossy are well known [2, 8], and the same will of course
be true for an array of antennas confined within a given volyme. In this paper we
analyze in detail how the fundamental physical limitations of antennas have im-
plications on the performance of DOA estimation with arbitrary lossless antennas
or antenna arrays inserted inside a sphere. In particular, we are interested in the
optimum estimation performance implied by the electrical size of the antennas as
well as the bandwidth of the system.

To analyze the estimation performance of a volume, it is essential to relate three
classical theories giving fundamental limitations in the disciplines estimation theory,
antenna theory and broadband matching. Assuming a Gaussian signal model for
the receiver noise, the Cramer–Rao bound [11] can be used as a performance mea-
sure for the estimation. The classical theory of radiating Q uses spherical vector
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modes and equivalent circuits to analyze the properties of a hypothetical antenna
inside a sphere, c.f. [2, 3, 6–9, 16, 20]. An antenna with a high Q factor has electro-
magnetic fields with large amounts of stored energy around it, and hence, typically
low bandwidth and high losses [8]. The mode expansion also gives a natural ex-
pression of the polarization, angle and spatial diversity that is utilized with array
processing systems. The classical theory of broadband matching shows how much
power that can be transmitted between a transmission line and a given load [5], i.e.
the antenna. In this paper we show that the classical broadband matching theory
by Fano can be extended to a general multiport S–parameter model of an antenna
array and fundamental bounds are given for the scattering parameters with respect
to bandwidth and electrical size of the sphere. Assuming a statistical signal model
with Gaussian receiver noise, the Cramer–Rao lower bound is then used to obtain
fundamental upper bounds for the performance of DOA estimation by a sphere.

The paper is outlined as follows. An introduction is given in section 1. In section
2 is given a detailed signal model for a receiving antenna array. We start by defining
a multiport S–parameter model for transmitting antenna arrays and then use the
reciprocity theorem to develop a multiport model for receiving arrays. The section
is concluded by incorporating a statistical signal model including Gaussian receiver
noise, and fundamental lower bounds are given for the accuracy of DOA estimation
with respect to the scattering parameters. Section 3 contains the Fano broadband
matching theory for the multiport S–parameter model with explicit results for the
first order spherical vector modes as well as for the general Q factor approximations.
Section 4 contains a number of numerical examples regarding fundamental DOA
estimation properties with respect to electrical size of the antennas and bandwidth
of the system.

2 Signal model for receiving antennas

2.1 A multiport scattering model for transmitting antennas

In order to develop a general signal model for receiving antennas we start by consid-
ering the electromagnetic fields associated with arbitrary antennas in the transmit
mode, and then apply the reciprocity theorem to obtain the properties of the corre-
sponding antennas in the receive mode.

We consider the electromagnetic field which is propagated into free space when
the transmitting antennas (all sources) are contained inside a sphere of radius r = a.
Let k = ω/c denote the wave number, ω = 2πf the frequency, and c and η the speed
of light and the wave impedance of free space, respectively. The transmitted electric
and magnetic fields, E(r) and H(r), can then be expanded in outgoing spherical
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vector waves uτml(kr) as [9]

E(r) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

fτmluτml(kr) (2.1)

H(r) = − 1

iη

∞∑
l=1

l∑
m=−l

2∑
τ=1

fτmluτ̄ml(kr) (2.2)

where fτml are the expansion coefficients or multipole moments and τ̄ denotes the
complementary index. Here τ = 1 (τ̄ = 2) corresponds to a transversal electric (TE)
wave and τ = 2 (τ̄ = 1) corresponds to a transversal magnetic (TM) wave. The
other indices are l = 1, 2, . . . ,∞ and m = −l . . . , l where l denotes the order of that
mode.

It can be shown that in the far field when r →∞, the electric field is given by

E(r) =
e−ikr

kr
F (r̂) (2.3)

where F (r̂) is the far field amplitude given by

F (r̂) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

il+2−τfτmlAτml(r̂) (2.4)

and Aτml(r̂) denotes the spherical vector harmonics [9]. Furthermore, it can also
be shown that the total power Ps transmitted by the antenna can be expressed in
terms of the expansion coefficients as

Ps =
1

2ηk2

∞∑
l=1

l∑
m=−l

2∑
τ=1

|fτml|2. (2.5)

For further details about the spherical vector mode representation we refer to Ap-
pendix A and [9, 13].

Equivalent circuit Lossless multiport Matching network

fα

ηk
1 zα

η
yi

η

z+
α

η
z−α
η

y+
i

η
y−i
η

x+
i

η
x−i
η

Z1 = 1 Z2 = 1

Figure 1: Normalized multiport model of a lossless antenna.

Next, we assume that the antenna is lossless and can be modeled using a normal-
ized multiport as shown in Fig. 1 where a finite number of modes M is employed.
As was originally described by Chu in [2], an arbitrary antenna inside a sphere of
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Equivalent circuit Lossless multiport Matching network

f+

f− Γ′
1 Γ′

2

T′
Γ′′

1 Γ′′
2

T′′

S11

S21

S12

S22

z+

z−
y+

y−
x+

x−

Figure 2: Normalized multiport model of a lossless antenna, matrix form. The
reflection and transmission matrices Γ and T are diagonal and the scattering matrix
S is general (lossless and reciprocal).

radius a can be modeled using a coupling network connecting independent equiv-
alent circuits representing each spherical mode. The propagated power for each
mode is represented by the power loss over the terminating resistance η and the
wave impedance as seen by the spherical mode at radius a is equal to the input
impedance of the equivalent circuit for all frequencies. In Appendix A we derive the
four possible equivalent circuits for TE and TM modes of even and odd order and
an electric circuit analogy for the terminal quantities.

In Fig. 1, x+
i and x−

i denote the incident and reflected voltages at the antenna
waveguide connections for i = 1, . . . , N where N is the number of antenna ports.
These voltages are normalized so that the power delivered to a particular antenna

port is
|x+

i |2
2η

and the corresponding reflected power is
|x−i |2
2η

. For simplicity, we as-
sume that the transmission line characteristic impedance is the same as the wave
impedance η of free space. Each antenna port may be connected to a lossless match-
ing network in which case y+

i and y−i denote the wave amplitudes at the antenna
waveguide connections as depicted in Fig. 1.

In the left end of Fig. 1, we let the voltage fα

ηk
represent the propagated wave

amplitude where fα denotes the expansion coefficients for the spherical vector waves
as in (2.1). Here, the multi–index α = (l,m, τ) is chosen to simplify the notation.
The multiport model of Fig. 1 is normalized to the wave impedance η and the totally
transmitted power for each mode is thus equal to 1

2ηk2 |fα|2 as in (2.5).
The total voltage at each antenna port is denoted yi, and the normalized voltage

at the input of the TE or TM equivalent circuit is defined by

zα

η
=

fα

ηk

Vn

V0

(2.6)

where Vn and V0 are defined as in (A.11) in Appendix A.
It is assumed that the relation between incident and reflected wave quantities in

Fig. 1 can be represented by a scattering matrix as(
z−

y−

)
=

(
S11 S12

S21 S22

)(
z+

y+

)
= S

(
z+

y+

)
(2.7)

where the dimension of the matrices S11, S12, S21 and S22 are M × M , M × N ,
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N ×M and N ×N , respectively. The matrix S is assumed to be lossless (SHS = I)
and reciprocal (S = ST).

In the normalized model of Fig. 1, all port resistances are 1 Ohm. The matrix
form for the normalized multiport model is depicted in Fig. 2. We have the following
scattering parameters (

f−

z+

)
=

(
Γ′

1 T′

T′ Γ′
2

)(
f+

z−

)
(2.8)

and (
y+

x−

)
=

(
Γ′′

1 T′′

T′′ Γ′′
2

)(
y−

x+

)
(2.9)

where all reflection and transmission matrices Γ and T are diagonal.
By solving (2.7) through (2.9) for f− and x− when f+ and x+ are given, we get

the total scattering matrix(
f−

x−

)
=

(
S̄11 S̄12

S̄21 S̄22

)(
f+

x+

)
= S̄

(
f+

x+

)
(2.10)

where

S̄11 = Γ′
1 + T′K−1

(
S11 + S12Γ

′′
1M

−1S21

)
T′ (2.11)

S̄12 = T′K−1S12

(
I + Γ′′

1M
−1S22

)
T′′ (2.12)

(2.13)

and

K = I− S11Γ
′
2 − S12Γ

′′
1M

−1S21Γ
′
2 (2.14)

M = I− S22Γ
′′
1. (2.15)

Since the antenna is assumed to be lossless and reciprocal we have S̄HS̄ = I and
S̄T = S̄ implying that S̄H

11S̄11 + S̄H
21S̄21 = I and S̄T

21 = S̄12.
We note that the normalized multiport model described above can be interpreted

as a vector two–port model which generalizes the well known result for M = N = 1,
S11 = S22 = 0, S21 = S12 = 1, and hence

S̄11 = Γ′
1 +

T ′2Γ′′
1

1− Γ′′
1Γ

′
2

(2.16)

S̄12 =
T ′T ′′

1− Γ′′
1Γ

′
2

(2.17)

cf. e.g. [5]. Here |S̄11|2 + |S̄21|2 = 1 and S̄21 = S̄12.
As an idealized mode–coupled antenna we assume that M = N , S11 = S22 = 0,

and that S21 and S12 are diagonal. Since S is reciprocal (ST = S) we have S12 =
ST

21 = S21. Since S is lossless (SHS = I) we have that SH
12S12 = I, and we conclude

that the diagonal elements of S12 have unit magnitude.
The scattering parameters of (2.10) become
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S̄11 = Γ′
1 + S2

12T
′2K−1Γ′′

1 (2.18)

S̄12 = S12T
′T′′K−1 (2.19)

(2.20)

and

K = I− S2
12Γ

′′
1Γ

′
2 (2.21)

where all matrices are diagonal.

2.2 Multiport scattering model for receiving antennas

Next, we derive the multiport scattering model for receiving antennas by considering
the reciprocity theorem. On transmission the transmitted wave field is given by f− =
S̄12x

+. Thus, if we consider the transmitted wave field fα due to one single input
terminal with the incident voltage wave x+

i , we get the output fα = k
[
S̄12

]
α,i

x+
i .

Now, from the antenna reciprocity theorem [4] we have

x−
i x+

i = −i
λ2

2π
F (k̂0) ·E0 (2.22)

where E0 is the complex vector amplitude of an incoming plane wave E0e
−ikk̂0·r

from direction k̂0 and x−
i the corresponding received signal. Further, F (r̂) is the far

field amplitude corresponding to the transmitted signal x+
i . Hence, by using (2.4)

the received signal is obtained from the reciprocity theorem (2.22) as

x− =
2π

k
S̄21AE (2.23)

where A is an M×2 matrix where each row corresponds to the spherical components
of the spherical vector harmonics il+1−τAα(k̂0), and E is an 2× 1 vector containing
the corresponding signal components of the electric field E0.

2.3 Statistical signal model and accuracy bounds for DOA
estimation

In this section we employ a simple statistical signal model in order to derive accuracy
bounds for the estimation of Direction Of Arrival (DOA) parameters, with regard
to the scattering parameters previously described.

The received signal in (2.23) is in principal given in the frequency domain. How-
ever, we will consider a signal snapshot model [21] where time domain samples are
taken in the baseband. We consider a situation where the received electric field is
monochromatic and completely polarized. We assume a narrowband signal model
where k corresponds to the carrier frequency ω0 and the fractional bandwidth B = ∆ω

ω0

is reasonable low. Here ∆ω denotes the absolute bandwidth. It is further assumed
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that the receiver baseband noise are Nyquist samples of a white complex Gaussian
stochastic process [17] which has been filtered through an ideal lowpass filter with
bandwidth ∆ω. Thus, the discrete time sensor noise is white complex Gaussian with
a variance σ2

n which is assumed to be proportional to the bandwidth, σ2
n = N0ω0B

where N0 is the spectral density of the Gaussian process.
Now, from (2.23) the received signal is given by

x(t) =
2π

k
S̄21AE + n(t) (2.24)

where n(t) is white complex Gaussian noise with covariance matrix σ2
nI. The received

signal x(t) is therefore complex Gaussian with mean

µ = E {x(t)} =
2π

k
S̄21AE (2.25)

and covariance matrix

C = E
{
(x(t)− µ)(x(t)− µ)H

}
= σ2

nI (2.26)

where E {·} denotes the expectation operator.
We are interested in the estimation accuracy of the spherical DOA parameters θ

and φ which we write as a vector parameter ξ = [θ φ]T. For the complex Gaussian
case, the Fisher information matrix is generally given by [11]

[I(ξ)]ij = tr

{
C−1∂C

∂ξi

C−1∂C

∂ξj

}
+ 2 Re

{
∂µH

∂ξi

C−1 ∂µ

∂ξj

}
(2.27)

which becomes in our particular case

[I(ξ)]ij =
8π2

σ2
nk

2
Re
{
pH

i S̄H
21S̄21pj

}
(2.28)

where

pi =
∂

∂ξi

{AE} . (2.29)

Now, the Cramer–Rao lower bound (CRLB) for estimating the parameter ξi is
given by [11]

var
{

ξ̂i

}
≥
[
I−1(ξ)

]
ii
≥ 1

[I(ξ)]ii
(2.30)

where

[I(ξ)]ii =
8π2

σ2
nk

2
pH

i S̄H
21S̄21pi (2.31)

which is real and nonnegative. Since S̄ is lossless we have S̄H
21S̄21 + S̄H

11S̄11 = I and
the eigenvalues of S̄H

21S̄21 are in the interval [0, 1]. It is therefore concluded that

[I(ξ)]ii ≤
8π2

σ2
nk

2
pH

i pi. (2.32)
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Hence, a lower bound for var
{

ξ̂i

}
is given by

var
{

ξ̂i

}
≥ 1

[I(ξ)]ii
≥ k2N0ω0

8π2
Fa (2.33)

where we have defined

Fa =
B

pH
i pi

(2.34)

as the accuracy factor which depends on bandwidth, but is independent of matching.
It is observed that the accuracy bound of (2.33) and the accuracy factor of (2.34) do

not necessarily give the greatest lower bound for var
{

ξ̂i

}
. However, the resulting

bounds are valid for general antennas and can be used to investigate the estimation
performance with respect to bandwidth and optimum matching of the reflection
coefficients Γj.

We note also that for the idealized mode–coupled antenna where S̄11 is diagonal,
the CRLB expression (2.31) can be calculated when the reflection coefficients |Γj|2
are known

[I(ξ)]ii =
8π2

σ2
nk

2
pH

i

(
I− S̄H

11S̄11

)
pi. (2.35)

The final bound for var
{

ξ̂i

}
in (2.30) becomes

var
{

ξ̂i

}
≥ 1

[I(ξ)]ii
=

k2N0ω0

8π2
FCRLB

a (2.36)

where

FCRLB
a =

B

pH
i diag [1− |Γj|2]pi

(2.37)

is an accuracy factor directly related to the Cramer–Rao lower bound. Here, we use
the notion diag [1− |Γj|2] for the diagonal matrix with diagonal elements 1− |Γj|2.

2.4 Explicit expressions for the Cramer–Rao lower bound

As an example of an explicit derivation of the Cramer–Rao bound we consider the
estimation of the polar angle θ when θ = 0, using an idealized mode–coupled antenna
as described above and a linear polarization E0 = E0θ̂ of the incoming field. We
have for the denominator in (2.37)

pH
i diag

[
1− |Γj|2

]
pi = |E0|2

∞∑
l=1

l∑
m=−l

1− |Γml|2

l(l + 1)

(∣∣∣∣ ∂

∂θ

1

sin θ

∂Yml

∂φ

∣∣∣∣2 +

∣∣∣∣∂2Yml

∂θ2

∣∣∣∣2
)

(2.38)
where Yml are the spherical harmonics given by

Yml(θ, φ) =

√
2l + 1

4π

√
(l −m)!

(l + m)!
Pm

l (cos θ)eimφ (2.39)
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and where Pm
l (x) are the associated Legendre functions, cf. [9, 13]. Using recursive

relations for the associated Legendre functions we have

∂2

∂θ2
Pm

l (cos θ)|θ=0 =
1

4
δm+2 −

1

2
l(l + 1)δm +

1

4
(l − 1)l(l + 1)(l + 2)δm−2 (2.40)

and we can calculate∑
lm

1− |Γml|2

l(l + 1)

∣∣∣∣∂2Yml

∂θ2

∣∣∣∣2
θ=0

=
∞∑
l=1

(
1− |Γl|2

) 2l + 1

32π

(
3l2 + 3l − 2

)
. (2.41)

Furthermore, by using the definition of the associated Legendre functions gener-
ated via the Legendre polynomials Pl(x), we find the relation

∂

∂θ

1

sin θ
Pm

l (cos θ)|θ=0 = P′′
l |x=1

(
δm−2 +

(l − 2)!

(l + 2)!
δm+2

)
(2.42)

where

P′′
l |x=1 =

(l − 1)l(l + 1)(l + 2)

8
(2.43)

and we can calculate∑
lm

1− |Γml|2

l(l + 1)

∣∣∣∣ ∂

∂θ

1

sin θ

∂Yml

∂φ

∣∣∣∣2
θ=0

=
∞∑
l=2

(
1− |Γl|2

) 2l + 1

32π

(
l2 + l − 2

)
. (2.44)

We get finally

pH
i diag

[
1− |Γj|2

]
pi = |E0|2

∞∑
l=1

(
1− |Γl|2

) 2l + 1

8π

(
l2 + l − 1

)
. (2.45)

3 Broadband Fano theory for the multiport model

In this section we show that some of the important theoretical limitations for two–
port broadband matching of arbitrary impedances as given by Fano in [5], can be
generalized to the multiport model described previously in section 2.1.

As a starting point we consider the scattering matrix S̄11 given in (2.11) and
assume that the diagonal elements T ′

j of the transmission coefficient T′ has a common
zero at s = 0 with multiplicity n. Denote the diagonal elements of S̄11 by Γj and the
elements of Γ′

1 by Γ′
j. The Taylor series expansion of the logarithm of the diagonal

elements Γj about s = 0 can then be written

log
1

Γj

= A1s + · · ·+ A2k+1s
2k+1 + · · ·+ A2n−1s

2n−1 + · · · (3.1)

where even order coefficients up to and including 2n − 2 are zero, and the odd
coefficients A2k+1 are independent of the matching network (Γ′′

1, Γ′′
2, T′′) for k =

0, 1, . . . , n− 1.
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These facts are now established as follows. Since s = 0 is a common zero of T′

of multiplicity n, it follows from (2.11) that

dk

sk
Γj =

dk

sk
Γ′

j (3.2)

for s = 0 and k = 0, 1, . . . , 2n − 1. Hence, the Taylor coefficients Ak for log 1
Γj

and log 1
Γ′j

are equal for k = 0, 1, . . . , 2n − 1. The Taylor coefficient A0 = 0 since

Γj(0) = Γ′
j(0) and we assume that Γ′

j(0) = 1. Furthermore, we have the relation
|Γ′

j(iω)|2 + |T ′
j(iω)|2 = 1 and since |T ′

j(iω)|2 has a zero of multiplicity 2n at ω = 0
we have

dk

dωk
log |Γ′

j(iω)| = dk

dωk
|Γ′

j(iω)|2 = 0 (3.3)

for ω = 0 and k = 1, . . . , 2n − 1. Hence, since log |Γj(iω)| is an even function, the
corresponding even coefficients Ak in (3.1) are zero up to and including 2n− 2.

Now, assume that the reflection coefficient Γj has zeros soi and poles spi so that

log
1

Γj

=
∑

log(s− spi)−
∑

log(s− soi) (3.4)

it is then readily verified that the Taylor coefficients of (3.1) are given by

A2k+1 =
1

2k + 1

(∑
s−2k−1

oi −
∑

s−2k−1
pi

)
(3.5)

which are invariant to the choice of Γj or Γ′
j for k = 0, 1, . . . , n−1. The prerequisites

are now identical to the development in [5], and by employing the calculus of residues
the following integral relation is obtained∫ ∞

0

1

ω2(k+1)
log

1

|Γj|
dω = (−1)k π

2

1

2k + 1

[∑
s−2k−1

oi −
∑

s−2k−1
pi − 2

∑
s−2k−1

ri

]
(3.6)

for k = 0, 1, . . . , n − 1 and where sri are the zeros of Γj in the right half–plane.
When calculating the residues above it is observed that it is necessary that even
order Taylor coefficients vanish up to and including 2n− 2. Note that the first two
sums on the right hand side of (3.6) are proportional to A2k+1 in (3.5) and can
therefore be computed from the zeros s′oi and poles s′pi of Γ′

j.
If the diagonal elements T ′

j of T′ has a common zero at infinity s = ∞ with
multiplicity n, the previous result can be readily employed by the substitution z =
s−1. The resulting integral relation is∫ ∞

0

ω2k log
1

|Γj|
dω = (−1)k π

2

1

2k + 1

[∑
s2k+1

oi −
∑

s2k+1
pi − 2

∑
s2k+1

ri

]
(3.7)

for k = 0, 1 . . . , n− 1.
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a) TMm1 b) TEm1 c) TMmn, TEmn d) TMmn, TEmn

1 a
c

a
c

1

a
c

a
c

1
1

Qnω0

Qn

ω0
1 1

Qnω0Qn

ω0

Figure 3: Circuit models of spherical modes. The resistor models the radiation
part. The capacitor and inductor model the parts that stores the electric field and
magnetic field, respectively. Figures a) and b) are exact circuit equivalents for the
TMm1 and TEm1 modes, respectively. Figures c) and d) are series and parallel
RCL Q–factor approximations, respectively, which are valid for general TMmn or
TEmnmodes.

3.1 Fundamental bounds for the lowest order modes

The transmission coefficients T ′
j for all modes with equivalent circuits depicted in

Fig. 13 have a double zero (n = 2) at s = 0. The first six modes of order n = 1
consists of a ladder circuit containing one capacitance a/c and one inductance a/c
and a 1 Ohm terminating resistance, cf. Figs. 3 a) and b).

The transmission coefficients are given by

T ′
j(s) =

2s2(a
c
)2

2s2(a
c
)2 + 2sa

c
+ 1

(3.8)

with a double zero at s = 0, and the reflection coefficients are

Γ′
j(s) =

1

2s2(a
c
)2 + 2sa

c
+ 1

(3.9)

with no zeros and poles s′pi = c
2a

(−1± i) and s′pi
−1 = a

c
(−1± i).

By assuming a constant reflection coefficient |Γj| over the bandwidth [ω0 −
ω0

B
2
, ω0 + ω0

B
2
] and introducing the constant K = 2

π
log 1

|Γj | , the two integrals of

(3.6) for k = 0, 1 become

K
B

1−B2/4
= 2ka− 2

∑ ω0

sri

(3.10)

K
B + B3/12

(1−B2/4)3
=

4

3
(ka)3 +

2

3

∑(
ω0

sri

)3

. (3.11)

Since Re
{

ω0

sri

}
> 0, the relation (3.10) implies the inequality |Γj| ≥ e−πka

(1−B2/4)
B .

However, this is not a greatest lower bound and cannot be achieved. Instead we aim
to solve (3.10) and (3.11) for B fixed.

Since Re
{

ω0

sri

}
> 0, we have

Re

{(
ω0

sri

)3
}

<

(
Re

{
ω0

sri

})3

(3.12)
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and thus,

∑
Re

{(
ω0

sri

)3
}

<
∑(

Re

{
ω0

sri

})3

≤
(∑

Re

{
ω0

sri

})3

. (3.13)

We wish to minimize the right hand side of (3.13) and at the same time to maximize
the left hand side. The optimum solution is thus obtained by employing one single
real term in (3.13), x = ω0

sri
. The equations (3.10) and (3.11) become

K
B

1−B2/4
= 2ka− 2x (3.14)

K
B + B3/12

(1−B2/4)3
=

4

3
(ka)3 +

2

3
x3 (3.15)

which is a nonlinear system of equations in the unknowns K and x, and which can
be solved by using numerical methods. We will refer to the corresponding solution
|Γj| = e−

π
2
K as the Fano limit.

It is also possible to derive a narrowband approximation based on (3.14) and
(3.15) as follows. We get for B � 1

KB ≤ 2ka− 2x (3.16)

KB ≤ 4

3
(ka)3 +

2

3
x3. (3.17)

Combining these inequalities, we get

KB ≤ 4

3
(ka)3+

2

3
(ka− 1

2
KB)3 = 2(ka)3−(ka)2KB+

1

2
kaK2B2− 1

12
K3B3 ≤ 2(ka)3

(3.18)
when B � 1. The narrowband approximation is hence given by

|Γj| ≥ e−
π
B

(ka)3 . (3.19)

3.2 Fundamental bounds for the Q-factor approximation

In theory, the equivalent circuits can be used to derive a Fano limit for any TE or
TM mode. However, this is rather tedious due to the complex structure of these
higher order modes together with the nonlinearity of the Fano theory. Moreover, it
is known that it is advantageous to mix the TE and TM modes in high bandwidth
systems [9]. Instead of using the analytic expressions of the impedance it is common
to use the Q–factor (quality factor, antenna Q or radiation Q) to get an estimate of
the bandwidth. Since there is an extensive literature on the Q–factor for antennas,
see e.g. [2, 3, 6–9, 16, 20], only some of the results are given here. The Q of the
antenna is defined as the quotient between the power stored in the reactive fields
and the radiated power [2, 9]

Q =
2ω max(WM, WE)

P
(3.20)



13

where ω is the angular frequency, WM stored magnetic energy, WE stored electric
energy, and P the dissipated power. At the resonance frequency of the antenna,
there are equal amounts of stored electric energy and stored magnetic energy, i.e.
WE = WM. The Q–factor is related to the bandwidth of the corresponding resonance
circuit as ∆f/f0 ≈ Q−1 for Q � 1. The Q–factor can either be determined by
the equivalent circuits [2, 9] or by an analytic expression involving spherical Hankel
functions [3]. The six lowest order modes have Q = (ka)−1+(ka)−3. By combination
of one TEm1 mode and one TMm1 mode the Q–factor is reduced to Q = (ka)−1 +
(ka)−3/2.

At and around the resonance frequency, ω0 = 2πf0, the antenna model is given
by a resonance circuit. The impedance of the antenna is only matched to the feeding
network at the resonance frequency. The resonance circuit is either a series RCL
circuit with capacitance 1

Qω0
and inductance Q

ω0
, or a parallel circuit with these

values switched. Again, the resonance circuit is terminated with a 1 Ohm resistance
modeling the propagated power, cf. Figs. 3 c) and d).

The transmission coefficients for the Q–factor resonance circuits are given by

T ′
j(s) =

2
Q

s
ω0

1 + 2
Q

s
ω0

+ ( s
ω0

)2
(3.21)

with one single zero at s = 0 and one single zero at s = ∞. Note that these zeros
are common for all modes. The reflection coefficients are

Γ′
j(s) =

1 + ( s
ω0

)2

1 + 2
Q

s
ω0

+ ( s
ω0

)2
(3.22)

with zeros at s′oi = ±iω0 and poles s′pi = ω0

Q
(−1± i

√
Q2 − 1) and s′pi

−1 = 1
ω0Q

(−1±
i
√

Q2 − 1).
By assuming a constant reflection coefficient |Γj| over the bandwidth [ω0 −

ω0
B
2
, ω0 + ω0

B
2
] and introducing the constant K = 2

π
log 1

|Γj | , the two integrals of

(3.6) and (3.7) for k = 0 become

KB

1−B2/4
=

2

Q
− 2

∑ ω0

sri

(3.23)

KB =
2

Q
− 2

∑ sri

ω0

. (3.24)

We can see that these equations can be satisfied by one complex conjugated pair

sri and s∗ri as follows. Let sri

ω0
= x + iy, then Re

{
sri

ω0

}
= x and Re

{
ω0

sri

}
= x

x2+y2 .

Since KB < KB/(1− B2/4), the equations can be satisfied by letting y →∞ and
then chosing a suitable x > 0. Hence, the relation (3.23) gives an inequality which
is a greatest lower bound for |Γj|

|Γj| ≥ e−
π
Q

1−B2/4
B . (3.25)

We will refer to this bound as the Q–factor approximation.
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4 Numerical Examples

Next, we give a number of numerical examples to highlight the properties of the
fundamental bounds derived for DOA estimation. We start by studying general
properties of optimum Fano–matching with respect to bandwidth B and electrical
size ka, as well as the behavior of the accuracy factor Fa which is valid for arbitrary
antennas. We also compare the general results to the Cramer–Rao lower bound
accuracy factor FCRLB

a which is explicitly derived for some interesting special cases.

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Optimum reflection coefficient |Γj|

Fractional bandwidth B

ka = 1

ka = 0.3

ka = 0.2

ka = 0.1
ka = 0.01

Figure 4: Optimum reflection coefficient |Γj| for the n = 1 modes as a function of
fractional bandwidth B and various values of ka. Solid line: Fano limit. Dashed
line (coinciding with solid line): Q-factor approximation. Dotted line: Narrowband
approximation.

4.1 Fundamental limitations for general antennas

In Fig. 4 is shown the optimum reflection coefficient |Γj| for the n = 1 modes as
a function of fractional bandwidth B and various values of ka. The solid line is
the Fano limit defined by (3.14) and (3.15). The dashed line (coinciding with the
solid line) is the Q-factor approximation defined in (3.25) with Q = (ka)−1 +(ka)−3.
Thus, the Q–factor yield a very good approximation (indistinguishable plots) for the
Fano limit for the n = 1 modes. The dotted line is the narrowband approximation
defined in (3.19). This is a good approximation for the Fano limit in narrowband
cases when B � 1, however as is expected, we can see that it is not the greatest
lower bound for |Γj|.

In Fig. 5 is shown the optimum reflection coefficient |Γj| for the first 3 mode
orders n = 1, 2, 3 as a function of fractional bandwidth B when ka = 1

2
. The
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Figure 5: Optimum reflection coefficient |Γj| for the first 3 mode orders n = 1, 2, 3
as a function of fractional bandwidth B. Electrical size is ka = 1

2
. Solid line: n = 3.

Dashed line: n = 2. Dotted line: n = 1.

reflection coefficients are calculated according to the Q–factor approximation given
in (3.25) with

Q1 =
1

ka
+

1

(ka)3
(4.1)

Q2 =
3

ka
+

6

(ka)3
+

18

(ka)5
(4.2)

Q3 =
6

ka
+

21

(ka)3
+

135

(ka)5
+

675

(ka)7
(4.3)

for the first 3 mode orders, cf. [3]. The plot illustrates the fact that for a given
electrical size ka, all modes will ultimately be useless (useful), i.e. |Γ| will approach
unity (zero) as the bandwidth B increases (decreases). Furthermore, for a given
bandwidth B, there is always a certain limited number of modes that are useful
with |Γ| significantly less than unity.

In Fig. 6 is shown the accuracy factor Fa for DOA estimation given in (2.34)
for the first 3 mode orders n = 1, 2, 3, as a function of fractional bandwidth B
when ka = 1

2
. In Fig. 6 is also shown the Cramer–Rao lower bound accuracy factor

FCRLB
a given in (2.37) for the explicit case derived in section 2.4 and (2.45), together

with the Q–factors Q1, Q2 and Q3 as given above. The solid line shows three
mode orders included n = 1, 2, 3 (M = 30), the dashed line shows two mode orders
included n = 1, 2 (M = 16), and the dotted line show one mode order included
n = 1 (M = 6). This example illustrates the fact that as the bandwidth increases,
the accuracy of DOA estimation is determined by a decreasing number of modes.
In this example with ka = 1

2
, it is sufficient to consider 3 mode orders for the lower
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Figure 6: Accuracy factor Fa and FCRLB
a for the first 3 mode orders n = 1, 2, 3 as

a function of fractional bandwidth B. Electrical size is ka = 1
2
. Solid line: Three

mode orders included n = 1, 2, 3. Dashed line: Two mode orders included n = 1, 2.
Dotted line: One mode order included n = 1.

bandwidths and 2 mode orders for the higher bandwidths. This figure should be
compared to the optimum reflection coefficients of Fig. 5.

In Fig. 7 is shown the optimum reflection coefficient |Γj| for the first 3 mode
orders n = 1, 2, 3, as a function of the electrical size ka when B = 0.01. The
reflection coefficients are calculated according to the Q–factor approximation given
in (3.25) with Q1, Q2 and Q3 as given above. The plot illustrates the fact that
for a given bandwidth B, all modes will ultimately be useless (useful), i.e. |Γ| will
approach unity (zero) as the electrical size ka decreases (increases). Furthermore,
for a given electrical size ka, there is always a certain limited number of modes that
are useful with |Γ| significantly less than unity.

In Fig. 8 is shown the accuracy factors Fa and FCRLB
a in the same example as

above, but here as a function of the electrical size ka when B = 0.01. The solid line
shows three mode orders included n = 1, 2, 3, the dashed line shows two mode orders
included n = 1, 2, and the dotted line show one mode order included n = 1. This
example illustrates the fact that as the electrical size ka decreases, the accuracy of
DOA estimation is determined by a decreasing number of modes. In this example
with B = 0.01, it is sufficient to consider 3 mode orders for ka = 1, 2 mode orders
for ka = 0.5 and 1 mode order for ka = 0.1. This figure should be compared to the
optimum reflection coefficients of Fig. 7.
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Figure 7: Optimum reflection coefficient |Γj| for the first 3 mode orders n = 1, 2, 3
as a function of electrical size ka. Fractional bandwidth is B = 0.01. Solid line:
n = 3. Dashed line: n = 2. Dotted line: n = 1.

4.2 Fundamental limitations for the idealized mode–coupled
antenna

Next, we study the DOA estimation performance of the idealized mode–coupled
antenna. We consider the Cramer–Rao lower bound accuracy factor FCRLB

a given
in (2.37) together with the Q–factor approximation in (3.25) and Q–factors (4.1)
through (4.3). We consider the case of estimating the azimuthal spherical angle φ
when the angle θ is given. Further, we assume that the polarization is linear with
E0 = E0 · θ̂. Hence, in (2.37) we have used

pH
i diag

[
1− |Γj|2

]
pi = |E0|2

∑
ml

1− |Γml|2

l(l + 1)

[∣∣∣∣ 1

sin θ

∂2

∂φ2
Yml

∣∣∣∣2 +

∣∣∣∣ ∂2

∂φ∂θ
Yml

∣∣∣∣2
]

(4.4)

where |Γml| is the optimum reflection coefficient calculated using (3.25).
In Fig. 9 is shown the Cramer–Rao lower bound accuracy factor FCRLB

a for the
first 3 mode orders n = 1, 2, 3 as a function of the spherical angle θ. Here the
fractional bandwidth is B = 0.01 and the electrical size ka = 1

2
or ka = ∞. The

solid line shows three mode orders included n = 1, 2, 3 (M = 30), the dashed line
shows two mode orders included n = 1, 2 (M = 16), and the dotted line show one
mode order included n = 1 (M = 6). In this example, there is a significant gain
in going from one mode order (n = 1) to two mode orders (n = 1, 2) included.
However, the inclusion of a third mode order (n = 1, 2, 3) does not contribute much
when ka = 1

2
. The figure also illustrates the possible gain of using two or three mode

orders when ka is large enough (ka = ∞). Qualitatively, we will of course see the
same effect also for higher order modes, i.e. for a given electrical size and bandwidth
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Figure 8: Accuracy factor Fa and FCRLB
a for the first 3 mode orders n = 1, 2, 3 as

a function of electrical size ka. Fractional bandwidth is B = 0.01. Solid line: Three
mode orders included n = 1, 2, 3. Dashed line: Two mode orders included n = 1, 2.
Dotted line: One mode order included n = 1.

there will always be a limited number of modes that contribute to the Cramer–Rao
lower bound.

In this example, it is noted that the Cramer–Rao lower bound is independent
of the azimuthal angle φ, but is dependent on the elevation angle θ as indicated in
Fig. 9. This may seem odd at first since we expect the estimation performance of
a sphere to be spherically symmetrical, i.e. independent of the DOA. However, it
should be noted that as soon as the coordinate system has been fixed, the spherical
modes have properties that are not spherically symmetrical, cf. [1]. In this case this
means simply that the optimum performance for estimating φ when θ is known is
obtained by chosing a new coordinate system such that θ = π/2, c.f. Fig. 9.

In Fig. 10 is shown the Cramer–Rao lower bound accuracy factor FCRLB
a for

the first 3 mode orders n = 1, 2, 3 as a function of fractional bandwidth B. Here
θ = π/2 and ka = 1

2
. The solid line shows three mode orders included n = 1, 2, 3

(M = 30), the dashed line shows two mode orders included n = 1, 2 (M = 16), and
the dotted line show one mode order included n = 1 (M = 6). This figure should
be compared to the optimum reflection coefficients of Fig. 5 and the behavior of the
general accuracy factor of Fig. 6.

In Fig. 11 is shown the Cramer–Rao lower bound accuracy factor FCRLB
a for the

first 3 mode orders n = 1, 2, 3 as a function of electrical size ka. Here θ = π/2 and
B = 0.01. The solid line shows three mode orders included n = 1, 2, 3, the dashed
line shows two mode orders included n = 1, 2, and the dotted line show one mode
order included n = 1. This figure should be compared to the optimum reflection
coefficients of Fig. 7 and the behavior of the general accuracy factor of Fig. 8.
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Figure 9: The Cramer–Rao lower bound accuracy factor FCRLB
a for the first 3

mode orders n = 1, 2, 3 as a function of the spherical angle θ. Here the fractional
bandwidth is B = 0.01 and the electrical size ka = 1

2
or ka = ∞. Solid line: Three

mode orders included n = 1, 2, 3. Dashed line: Two mode orders included n = 1, 2.
Dotted line: One mode order included n = 1.

5 Summary

To analyze the estimation performance of a volume, it is essential to relate three
classical theories giving fundamental limitations in the disciplines estimation theory,
antenna theory and broadband matching. In this paper we consider fundamental
limitations for DOA estimation with arbitrary lossless antennas or antenna arrays
inserted inside a sphere.

A signal model for receiving antenna arrays is developed by defining a multiport
scattering S–parameter model for transmitting antennas and then using the reci-
procity theorem to obtain a multiport model for receiving antennas. A statistical
signal model including Gaussian receiver noise is adopted and fundamental lower
bounds are given for the accuracy of DOA estimation with respect to the scattering
parameters of this model. Classical antenna theory with spherical vector modes and
their associated equivalent circuits and Q factor approximations are employed as a
general framework for the analysis. We show that the classical broadband matching
theory by Fano can be extended to the general multiport S–parameter model of the
antenna array and fundamental bounds are given for the scattering parameters with
respect to bandwidth and electrical size of the sphere. Explicit results for the first
order spherical vector modes as well as for the general Q factor approximations are
given.

Finally, a number of numerical examples are given regarding fundamental DOA
estimation properties with respect to electrical size of the antennas and bandwidth
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Figure 10: The Cramer–Rao lower bound accuracy factor FCRLB
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2
. Solid line: Three mode orders included n = 1, 2, 3. Dashed line: Two mode

orders included n = 1, 2. Dotted line: One mode order included n = 1.

of the system. Using the properties of spherical vector modes we have modeled,
quantified and illustrated how the fundamental difficulty of matching a high Q or a
high bandwidth system implies a deterioration of the estimation performance when
the electrical size decreases (Q increases) or when the system bandwidth increases.
Hence, for a given electrical size and bandwidth, there is always a fundamental limit
on the number of modes that can be effectively matched to the feeding networks
and contribute to the received power, spatial diversity and estimation performance.
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Appendix A Spherical vector mode representa-

tion and equivalent circuits

The outgoing spherical vector waves are given by

u1ml(kr) = hl(x)A1ml(r̂) (A.1)

u2ml(kr) =
(xhl(x))′

x
A2ml(r̂) +

√
l(l + 1)

hl(x)

x
A3ml(r̂) (A.2)

where x = kr and hl(x) are the spherical Hankel functions of the second kind, the
prime (·)′ denotes differentiation with respect to x, and r = rr̂ where r̂ is the unit
direction vector. Further, Aτml(r̂) are the spherical vector harmonics given by

A1ml(r̂) =
1√

l(l + 1)

(
θ̂

1

sin θ

∂

∂φ
Yml(r̂)− φ̂

∂

∂θ
Yml(r̂)

)
(A.3)

A2ml(r̂) =
1√

l(l + 1)

(
θ̂

∂

∂θ
Yml(r̂) + φ̂

1

sin θ

∂

∂φ
Yml(r̂)

)
(A.4)

A3ml(r̂) = r̂Yml(r̂) (A.5)

where Yml(r̂) are the scalar spherical harmonics [9] and θ and φ spherical coordi-
nates.

The spherical Hankel functions of the second kind hl(x) can be expressed as

hl(x) =
il+1

x
e−ix

l∑
k=0

(l + k)!

k!(l − k)!

1

(2ix)k
(A.6)
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so that the following initial relations

(xh0)
′

x
= −ih0 (A.7)

−h1 = −ih0(1 +
1

ix
) (A.8)

and the recursive relations

(xhl)
′

xil
=

hl−1

il
+

l

ix

hl

il+1
(A.9)

hl+1

il+2
=

hl−1

il
+

2l + 1

ix

hl

il+1
(A.10)

for l = 1, 2, 3, . . . may be verified.
The recursive relationships given above can be interpreted by using an electric

circuit analogy as follows. There are two possible dual circuits associated with (A.7)
through (A.10).

For circuit 1 we define

(xhl)
′

xil
=

{
Il l even l = 0, 2, 4, . . .
Vl l odd l = 1, 3, 5, . . .

hl

il+1
=

{
Vl l even l = 0, 2, 4, . . .
Il l odd l = 1, 3, 5, . . .

(A.11)

and the dual circuit 2 is obtained by interchanging Vl and Il. By using r = a,
x = ωa/c and the definitions in (A.11), the recursions (A.7) through (A.10) become

I0 = V0 (A.12)

I1 = I0 +
1

iω a
c

V0 (A.13)

Vl = Vl−1 +
1

iω a
c

1
l

Il, l = 1, 3, 5, . . . (A.14)

Vl+1 = Vl−1 +
1

iω a
c

1
2l+1

Il, l = 1, 3, 5, . . . (A.15)

Il = Il−1 +
1

iω a
c

1
l

Vl, l = 2, 4, 6, . . . (A.16)

Il+1 = Il−1 +
1

iω a
c

1
2l+1

Vl, l = 2, 4, 6, . . . (A.17)

and the corresponding circuit 1 is depicted in Fig. 12 (upper circuit). The dual
circuit 2 is obtained by interchanging Vl and Il in (A.12) through (A.17) and is
depicted in Fig. 12 (lower circuit).

Using the definitions for Vn and In as given in (A.11) above we can now write
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circuit 1 1

V0

I0

V1

I1

V2

I2

V3

I3

a
c

a
c

1
2

a
c

1
3

a
c

a
c

1
2

a
c

1
3

circuit 2 1

V0

I0

V1

I1

V2

I2

V3

I3

a
c

a
c

1
2

a
c

1
3

a
c

a
c

1
2

a
c

1
3

Figure 12: The two dual electric circuits representing spherical Hankel functions.

the TE mode (τ = 1) of order n in explicit form as follows

Eθ = in+1Vn
1√

n(n + 1)

1

sin θ

∂

∂φ
Ymn (A.18)

−iηHφ = inIn
1√

n(n + 1)

1

sin θ

∂

∂φ
Ymn (A.19)

−Eφ = in+1Vn
1√

n(n + 1)

∂

∂θ
Ymn (A.20)

−iηHθ = inIn
1√

n(n + 1)

∂

∂θ
Ymn (A.21)

−iηHr =
hn

ka

√
n(n + 1)Ymn (A.22)

where circuit 1 is used for even order and circuit 2 for odd order.
The TM mode (τ = 2) of order n is given by

Eθ = inVn
1√

n(n + 1)

∂

∂θ
Ymn (A.23)

iηHφ = in+1In
1√

n(n + 1)

∂

∂θ
Ymn (A.24)

Eφ = inVn
1√

n(n + 1)

1

sin θ

∂

∂φ
Ymn (A.25)

−iηHθ = in+1In
1√

n(n + 1)

1

sin θ

∂

∂φ
Ymn (A.26)

Er =
hn

ka

√
n(n + 1)Ymn (A.27)

where circuit 1 is used for odd order and circuit 2 for even order.
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The four circuits necessary to describe the TE and TM modes for even and
odd orders are depicted in Fig. 13 below. The input impedance of the circuits are
η Vn

In
= Eθ

Hφ
= −Eφ

Hθ
for both TE and TM modes.
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Figure 13: Electric circuit analogy for TE and TM modes, even and odd orders.

In the far field when r →∞, the spherical Hankel functions can be approximated
with hl(x) = il+1

x
e−ix + O(x−2) and h′

l(x) = il

x
e−ix + O(x−2). The outgoing spheri-

cal vector waves can therefore be approximated by uτml(kr) = il+2−τ e−ikr

kr
Aτml(r̂).

Hence, the far field expression is

E(r) =
e−ikr

kr
F (r̂) (A.28)

where F (r̂) is the far field amplitude given by

F (r̂) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

il+2−τfτmlAτml(r̂). (A.29)

The total power Ps transmitted by the antenna is given by

Ps =
1

2ηk2

∫
Ω

|F (r̂)|2 dΩ =
1

2ηk2

∞∑
l=1

l∑
m=−l

2∑
τ=1

|fτml|2 (A.30)
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where Ω denotes the unit sphere and dΩ the differential solid angle, cf. [9].
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