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Abstract. The goal of the presented work is to provide support for software
requirements engineering domain experts in modeling combinatorial optimiza-
tion problems that arise in requirements prioritization and release planning. A
Domain-Specific Language (DSL), called reqT/CSP, is presented that integrates
constraints modeling with requirements modeling. The DSL is embedded in the
object-functional Scala programming language. The DSL is demonstrated using
principal examples of priority ranking and release planning. Benefits, limitations
and future work are discussed.
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gineering, requirements engineering, release planning, prioritization, embedded
DSL, solver, constraint satisfaction programming, CSP, JaCoP, Scala

1 Introduction

This paper presents on-going work on a Domain-Specific Language (DSL) for combi-
natorial optimization in software Requirements Engineering (RE). The presented lan-
guage for expressing Constraint Satisfaction Problems is called reqT/CSP, which is a
sub-DSL of a larger requirements modeling DSL called reqT that aims to provide a
semi-formal, open and scalable tool for RE [33].

Combinatorial problems are intrinsic to several sub-disciplines of RE, such as pri-
oritization [12, 20], product line modeling [10, 38], and release planning [7, 40]. The
presented work aims to provide a DSL for combinatorial optimization that integrates
requirements modeling and constraint modeling in the same language. The presented
research is guided by this research question:

Research Question: How to support domain experts in modeling and solving com-
binatorial optimization problems in Requirements Engineering?

We embark on the above quest through software tool implementation and DSL de-
velopment based on reqT [1] and the JaCoP open source solver [2]. The reqT tool
provides a Domain-Specific Embedded Language (DSEL, a.k.a EDSL or internal DSL)
that is implemented “inside” its host language, to take advantage of the available host
infrastructure [19, 41]. The host language of both reqT and its sub-language reqT/CSP
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is Scala, an object-functional, general purpose programming language running on the
Java Virtual Machine [29]. Scala was chosen for its flexible syntax suitable for DSL
embedding [39]. Furthermore, with Scala’s Read-Evaluate-Print-Loop (REPL)1, users
of reqT/CSP can interactively and incrementally model and investigate constraint opti-
mization problems as an integrated part of their requirements modeling, while utilizing
the power of Scala and its comprehensive libraries.

The paper is organized as follows. Section 2 relates the presented research to previ-
ous work and provides background information on the reqT DSL and the JaCoP solver.
In Section 3, the main contribution of this paper is explained through examples of usage
of the reqT/CSP language and selected details of its implementation. Section 4 con-
cludes the paper with a discussion of benefits and limitations of the proposed approach
and an outlook on future research directions.

2 Background and Related work

Requirements Engineering (RE) is a research discipline recognized within Software
Engineering already in the 1970’s [9] and focuses on the intentional level of software
development and the decision-making regarding what software to build. RE involves
intertwined sub-processes such as elicitation, specification, validation and prioritiza-
tion [12, 20, 24], as well as market-oriented activities [34] related to software product
management [13, 16] including software release planning [7, 18]. Combinatorial opti-
mization problems in RE occur in several areas [31], including:

• prioritization, where a set of requirements are assessed based on criteria, such as
benefit, cost and risk, to find the requirements of highest priority, while balancing
the views of selected stakeholders [12, 32];

• release planning, where a set of requirements are scheduled for subsequent de-
velopment based on their priorities as well as resource constraints and scheduling
constraints such as precedence and coupling, while trying to optimize aspects such
as stakeholder benefit versus implementation cost [7, 15, 40];

• product line modeling, where a set of variation points may include different com-
binations of optional features depending on various constraints offering a family of
products, while trying to optimize aspects such as reuse and time-to-market [10,38].

This paper focuses on constraint solving for the first two of the above areas (for
the third area see e.g. Salinesi et al. [36–38]). Combinatorial optimization in release
planning have been studied using linear programming by Ruhe et al. [18, 28, 35] and
Akker et al. [6, 25, 26], while we in this paper focus on constraint solving for release
planning aiming to utilize the potential modeling flexibility of CSP [30, 31] compared
to other optimization approaches.

Languages specifically tailored for constraint solving include e.g. MiniZinc [3] and
AMPL [17]. They offer mathematical-like notations to define combinatorial problems
and can be used as a common input notation for many solvers. These languages are
general and can be used to specify combinatorial optimization problems of any domain.

1 The REPL is a textual user interface for incremental compilation and execution of Scala code.
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Fig. 1. Parts of the reqT metamodel.

However, languages such as MiniZinc [3] and AMPL [17] do not offer specialized
abstractions for RE problems and they are typically compiled separately rather than
integrated with an embedded DSL.

Kaplan [21] is a language where constraints can be expressed as lambdas using
a subset of Scala, called PureScala. Kaplan is based on compile-time transformations
using a compiler plug-in, while reqT/CSP is a library of "simple" case classes that the
library implementation uses to automatically construct internal objects required by the
solver back-end.

2.1 The reqT DSL

The reqT tool includes a DSL for requirements modeling [1, 33], allowing domain ex-
perts to specify and analyze requirements. The metamodel of the reqT DSL aims to
provide RE-specific concepts that give flexible expressiveness to domain experts by al-
lowing a mix of informal natural language text and graph-oriented formalizations of
typed requirements entities, attributes and relations. The use of a DSL allows require-
ments to be represented as textual, computational entities that can be stored together
with production code and test scripts in a common version management system.

By embedding the DSL [41] into Scala, reqT can utilize Scala’s collection library.
This enables domain experts to combine their model specifications with Scala scripts
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that manipulate their models using existing collection operations. Models can also be
traversed for various semantical checks, e.g. to investigate cycles and specific combina-
tions of attributes etc.

The metamodel of reqT is shown in Figure 1 (only a selection of elements is shown
for space reasons). A reqT Model is an immutable Map with a collection of pairs of
Key and NodeSet, allowing fast direct indexing through any Key in the collection.

A Model can be constructed through a sequence of triplets
<Entity> <Edge> <NodeSet>
as exemplified in Listing 1.

Listing 1. An example of a reqT Model.

1 Model(
2 Feature("F1") has (Spec("The system shall..."), Status(IMPLEMENTED)),
3 UserStory("US1") has (Gist("As a user I want..."), Status(ELICITED)),
4 UserStory("US1") requires Feature("F1")
5 )

A model can be visualized using GraphViz [4]. When calling the method toGraphViz
on a model, a dot language [4] export of the model is generated that can be rendered us-
ing GraphViz as shown in Figure 2. The Model has one requires relation between the
two entities UserStory US1 and Feature F1, where the former has the attributes Gist and
Status, while the latter has Spec and Status attributes. Entities, relations and attributes
can be flexibly connected using the concepts of the reqT metamodel, partly depicted in
Figure 1.

UserStory
US1

Feature
F1

requires

Gist(As a user I want...)

Status(ELICITED)

Spec(The system shall...)

Status(IMPLEMENTED)

Fig. 2. The corresponding graph of the example in Listing 1. Oval nodes represent entities.
Rounded rectangles represent attributes. Solid arrowed lines represent typed relation edges.
Dashed lines represent edges to attributes.

Model extraction and analysis. Users of reqT can carve out parts of models with
special operators, including the restrict / and exclude \ operators [33]. Given a Model m,
the expression m / Feature evaluates to a new Model restricted to keys only contain-
ing entities of type Feature. The exclude operator used in the complementary expression
m \ Feature yields a new Model with all keys of m that do not have a Feature entity.
It is also possible to use the restrict and exclude operators over attributes and relations.
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There are several other operators for, e.g., aggregation of models and for extracting parts
of a model using depth first search by following relation edges. For further information
of available operators and examples of their usage, see the reqT home page [1].

Models inside models. Any entity in a Model can contain a Submodel attribute that
in turn can contain a Model, hence enabling a hierarchy of models in a recursive tree
structure. A hierarchical modeling approach can be used for scalability reasons when
there is a need to modularize large models, but also for expressing models where e.g.
different stakeholder have different priorities for the same set of features, as is shown
in Listing 8 in Section 3.2. References to values of an attribute of a certain entity is
created using the bang operator, e.g. the expression (Feature("x")!Prio) constructs
a reference to the Prio attribute value of Feature("x"). If models are contained inside
models, references including submodel paths of arbitrary lengths can be constructed by
successive application of the bang operator.

For example, the expression (Stakeholder("s")!Feature("x")!Prio) refers to
the submodel of Stakeholder("s") and the Prio attribute value of Feature("x") in
that submodel.

2.2 The JaCoP Solver

The solver back-end of reqT/CSP is implemented using JaCoP [23]. JaCoP is a general
purpose constraint programming library implemented in Java. The solver implements
both finite domain constraint for integer variables as well as set variables, and offers a
rich set of global constraints [2].

JVM

Java

Scala
JaCoP

reqT

reqT/CSP

Platform

Libraries

DSL

Domain Application

Fig. 3. Architecture layers of reqT/CSP. A horizon-
tal border between layers represents a direct depen-
dency, where the above layer is dependent on the
layer below.

There are two available front-ends
for JaCoP for specification of vari-
ables, constraints and search meth-
ods: a MiniZinc front-end and a Scala
API. The Scala DSEL presented in
this paper is aimed at a higher ab-
straction level compared to the ex-
isting Scala API, and constraints and
variables in reqT/CSP are exclusively
based on immutable case classes [29]
and integrated with the reqT meta-
model, as the Constraint attribute can
be attached to any entity of a reqT
model.

JaCoP has been used in several
different domains for solving embed-
ded combinatorial problems, e.g. in
design automation for resource as-
signment and scheduling as well as computational pattern identification and selec-
tion [22, 27]. In the area of RE, JaCoP has been used for product line modeling [11].
JaCoP has been awarded a silver medal in the MiniZinc Challenge of 2010, 2011 and
2012 in the fixed search category [5].
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3 The reqT/CSP DSL

The reqT/CSP DSL aims to integrate requirements modeling with constraint modeling
while providing a high-level interface to the solver back-end that can wrap the search
details when appropriate, but still allows access to search parameters when more de-
tailed control over the solution space search is needed.

Architecture layers. Figure 3 shows the layers of the reqT architecture where the
dependencies are shown by horizontal borders between components. The reqT/CSP
DSL is integrated with reqT via the Constraints type that holds a collection of the
base type of the reqT/CSP constraint type hierarchy, called Constr, as shown in the
metamodel in Figure 1. The reqT/CSP DSL wraps the JaCoP solver back-end, that in
turn depends on Java libraries. The user can create domain applications by combining
constraint models in reqT/CSP with requirements models in reqT and general Scala
scripting. Both reqT and reqT/CSP depend on Scala libraries.

Constraints can be expressed using variables that refer to values of integer attributes
of reqT models, as exemplified in Listing 6 in Section 3.1. This enables integration of
constraint modeling with requirements modeling, as constraints on requirements mod-
els can be stored inside requirements models, and solutions that may fulfill the con-
straints and optimize some variables can be searched for using the high-level interface
to the solver back-end.

Listing 2. Some key parts of the implementation of reqT/CSP

1 case class Var[+T](ref: T) extends ... {
2 def #==[B >:T](that: Var[B]) = XeqY(this, that)
3 ...
4 }
5 case class Interval(min: Int, max: Int) extends ... {
6 def ::[T](v: Var[T]) = Bounds(Seq(v), Seq(this))
7 def ::[T](vs: Seq[Var[T]]) = Bounds(vs, Seq(this))
8 }
9 case class Bounds[+T](seq1: Seq[Var[T]], domain: Seq[Interval]) ...

10 case class SumBuilder[+T](vs: Seq[Var[T]]) {
11 def #==[B >:T](that: Var[B]) = SumEq(vs, that)
12 }
13 object Sum {
14 def apply[T](vs: Seq[Var[T]]) = SumBuilder(vs)
15 }

Implementation. Listing 2 shows excerpts of key classes of the reqT/CSP DSL,
including the Var case class that represents an integer finite domain variable.2 The
identifying name of a variable is given by the toString value of the ref field. The
Var case class has a series of operators for constructionof constraints, e.g. the #==
operator that constructs the XeqY constraint. This allow users to write expressions such
as Var("x") #== Var("y") to constrain two variables to the same value.3

2 Scala’s case classes provide automatic structural equality and pattern matching abilities.
3 Scala’s flexible syntax allows one-argument object method calls to be simplified, so that
Var("x").#==(Var("y")) can be written Var("x") #== Var("y")
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The Interval case class has a right-associative operator :: that, via an implicit
conversion between Interval types and Scala’s Range type, allows for the construction
of Bounds constraints with expressions such as Var("x")::{1 to 10} representing
that x can hold values between 1 and 10.

SumBuilder has the #== operator that together with the Sum factory object allow ex-
pressions such as Sum(Var("x"), Var("y"), Var("z")) #== Var("sum") for constrain-
ing the sum of a sequence of variables to be equal to another variable’s value.

Listing 3 shows the definition of four functions that generate sequences of variables
or constraints. The vars generator is used at the second line of Listing 4 to construct
a value f referring to a vector with 5 variables Var("f0") to Var("f4"). A bounding
constraint on vectors or other sequences of variables can be constructed with the ::
operator as shown on line 4 of Listing 4.

The forAll functions takes a sequence of objects of some type T and applies a func-
tion that takes an object of type T and returns a constraint. This can be used to construct
a sequence of constraints, e.g. as shown on line 9 in Listing 4. 4 Similarly, the sum-
ForAll function generates a sequence of variables of a SumBuilder that in turn, with the
#== operator, can be used to create a SumEq constraint, as exemplified in Listing 9 on
line 11.

Listing 3. Functions for generating variables and constraints.

1 def vars[T](vs: T *): Vector[Var[T]] = vs.map(Var(_)).toVector
2 def vars(n: Int, prefix: String): Vector[Var[String]] =
3 (for (i <- 0 until n) yield Var(s"$prefix$i")).toVector
4 def forAll[T](xs:Seq[T])(f: T => Constr[_]) = Constraints(xs.map(f(_)))
5 def sumForAll[T](xs:Seq[T])(f: T => Var[_]) = SumBuilder(xs.map(f(_)))

3.1 Prioritization Example

Many different methods have been proposed for requirements prioritization, often im-
plying that a specific algorithm is used to calculate priorities while requiring a specific
form of input data from stakeholders [12]. One simple method for requirements prioriti-
zation is priority ranking [12], where requriements are assigned priorities on an ordinal
scale. This method can be expressed using variables bounds to the interval {1 to n}
where n is the number of requirements together with the AllDifferent constraint.

By also allowing general constraints over priority ranks, domain experts can ex-
press domain-specific concerns, e.g. that one specific requirement should have a higher
rank than all other requirements, or that one specific requirements should have a higher
rank than some another specific requirement. Thus, constraints add modeling flexibility
for domain experts compared to if the ranks were derived using some specific sorting
method such as bubble sort or binary search tree algorithms [8, 20, 31].

Listing 4 shows a priority ranking example using constraints, both the general con-
straints inherent to the ranking method, f::{1 to n} and AllDifferent(f), as well
as some additional, domain-specific constraints. The level of abstraction is comparable
to the corresponding MiniZinc model shown in Listing 5.

4 Scala’s string interpolator s is used to insert values of identifiers into strings by the $ sign.
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We can also call solve(FindAll) on a sequence of constraints to find all possible
solutions, which given the constraints of the example in Listing 4 would yield 3 different
solutions.

Listing 4. Prio ranking in reqT/CSP

1 val n = 5
2 val f = vars(n, "f")
3 Constraints(
4 f::{1 to n},
5 AllDifferent(f),
6 f(0) #> f(1),
7 f(1) #>= f(2),
8 f(2) #< f(3),
9 forAll(0 until n)

10 { f(4) #>= f(_) }
11 ).solve(Satisfy)

Listing 5. Corresponding MiniZinc model

1 int: n = 5;
2 array[1..n] of var 1..n: f;
3 constraint
4 alldifferent(f);
5 constraint f[1] > f[2];
6 constraint f[2] > f[3];
7 constraint f[3] < f[4];
8 constraint
9 forall ( i in 1..n)

10 ( f[5] >= f[i] );
11 solve satisfy;

The example in Listing 4 demonstrates how reqT/CSP can be used as a general
constraint programming DSL without explicit reference to reqT models. A major ob-
jective with reqT/CSP is to integrate constraint modeling with requirements modeling,
avoiding the need for modeling in separate languages. This integration is demonstrated
in Listing 6, where a set of reqT features in a requirements model m is combined with
a sequence of constraints cs. The vector f includes references to Prio attributes of all
entities of m, constructed with a lambda using the bang operator, as shown on line 8.
The constraints in cs are then imposed on the model m and the solution to the combina-
torial optimization issued by line 17 will make the resulting priorities to be inserted in a
new model m2 for each feature of m. The resulting model m2 is shown in Listing 7. The
search demonstrates combinatorial optimization by calling solve with the argument
Maximize(Feature("a")!Prio).

Listing 6. Prio ranking integrated with a requirements model in reqT

1 val m = Model(
2 Feature("a") has Spec("..."),
3 Feature("b") has Spec("..."),
4 Feature("c") has Spec("..."),
5 Feature("d") has Spec("..."),
6 Feature("e") has Spec("...")
7 )
8 val f = m.entityVector.map(_!Prio)
9 val cs = Constraints(

10 f::{1 to n},
11 AllDifferent(f),
12 (Feature("a")!Prio) #> (Feature("b")!Prio),
13 (Feature("b")!Prio) #>= (Feature("c")!Prio),
14 (Feature("c")!Prio) #< (Feature("d")!Prio),
15 forAll(0 until n) { (Feature("e")!Prio) #>= f(_) }
16 )
17 val (m2, result) = m.impose(cs).solve(Maximize(Feature("a")!Prio))
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Listing 7. Resulting model of priority ranking in Listing 6

1 m2: reqt.Model =
2 Model(
3 Feature("a") has (Spec("..."), Prio(4)),
4 Feature("b") has (Spec("..."), Prio(3)),
5 Feature("c") has (Spec("..."), Prio(1)),
6 Feature("d") has (Spec("..."), Prio(2)),
7 Feature("e") has (Spec("..."), Prio(5))
8 )

Listing 8. A reqT model with input parameters (prio, benefit, cost, capacity) to a principal
release planning problem, as well as precedence and coupling constraints by stakeholders.

1 val m = Model(
2 Stakeholder("Martin") has (Prio(10),
3 Submodel(
4 Feature("F1") has Benefit(20),
5 Feature("F2") has Benefit(20),
6 Feature("F3") has Benefit(20)
7 ),
8 Constraints((Feature("F2")!Order) #< (Feature("F3")!Order))
9 ),

10 Stakeholder("Anna") has (Prio(20),
11 Submodel(
12 Feature("F1") has Benefit(5),
13 Feature("F2") has Benefit(15),
14 Feature("F3") has Benefit(35)
15 ),
16 Constraints((Feature("F1")!Order) #== (Feature("F2")!Order))
17 ),
18 Resource("DevTeam") has Submodel(
19 Release("Alfa") has Capacity(100),
20 Release("Beta") has Capacity(100),
21 Feature("F1") has Cost(10),
22 Feature("F2") has Cost(70),
23 Feature("F3") has Cost(20)
24 ),
25 Resource("TestTeam") has Submodel(
26 Release("Alfa") has Capacity(100),
27 Release("Beta") has Capacity(100),
28 Feature("F1") has Cost(40),
29 Feature("F2") has Cost(10),
30 Feature("F3") has Cost(50)
31 ),
32 Release("Alfa") has Order(1),
33 Release("Beta") has Order(2)
34 )
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3.2 Release Planning Example

Listing 8 shows how reqT/CSP is used to express a principal example of input parame-
ters to a fictitious release planning problem. Model m includes two stakeholders (Anna
and Martin), three features (F1, F2 and F3), two resources (DevTeam and TestTeam),
and two releases (Alfa and Beta).

The preferences of Anna has double priority compared to Martin. Stakeholder pref-
erences are expressed using the Benefit attribute. Each resource has a Capacity for
each release and an estimated Cost for each feature. The temporal ordering of releases
are modeled using the Order attribute.

The stakeholders also have their own specific constraints on precedence and cou-
pling, where Martin wants F2 to be implemented before F1, while Anna wants F1 to be
in the same release as F2.

Listing 9. Generating release planning constraints based on an input model

1 def releasePlanningConstraints(m: Model): Constraints = {
2 val features = (m.flatten / Feature).sourceVector
3 val releases = (m / Release).sourceVector
4 val resources = (m / Resource).sourceVector
5 val stakeholders = (m / Stakeholder).sourceVector
6 m.constraints ++ Constraints(
7 forAll(features) { f => (f!Order)::{1 to releases.size} } ++
8 forAll(stakeholders, features) { (s, f) =>
9 (s!f!Benefit) * (s!Prio) #== Var(s"benefit($s,$f)") } ++

10 forAll(features) { f =>
11 sumForAll(stakeholders)(s => Var(s"benefit($s,$f)")) #==
12 Var(s"benefit($f)") } ++
13 forAll(releases, features) { (r, f) =>
14 IfThenElse((f!Order) #== (r!Order),
15 Var(s"benefit($r,$f)") #== Var(s"benefit($f)"),
16 Var(s"benefit($r,$f)") #== 0) } ++
17 forAll(releases) { r =>
18 sumForAll(features)(f => Var(s"benefit($r,$f)")) #==
19 Var(s"totBenefit($r)") } ++
20 forAll(releases,features, resources) { (rel, f, res) =>
21 IfThenElse((f!Order) #== (rel!Order),
22 Var(s"cost($rel,$f,$res)") #== (res!f!Cost),
23 Var(s"cost($rel,$f,$res)") #== 0) } ++
24 forAll(resources, releases) { (res, rel) =>
25 sumForAll(features)(f => Var(s"cost($rel,$f,$res)")) #==
26 Var(s"totCost($rel,$res)") } ++
27 forAll(resources,releases) { (res, rel) =>
28 Var(s"totCost($rel,$res)") #<= (res!rel!Capacity) } ++
29 forAll(releases) { rel =>
30 sumForAll(resources)(res => Var(s"totCost($rel,$res)")) #==
31 Var(s"totCost($rel)") }
32 )
33 }
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There are many ways of modeling the release planning problem, depending on e.g.
(1) what type of information that domain experts want to take into account, (2) which
input parameters are meaningful to estimate given uncertainties of future prediction, (3)
what type of constraints are important in a specific case, etc.

In Listing 9, a function named releasePlanningConstraints is defined that
demonstrates one particular way of modeling the release planning problem. This func-
tion returns Constraints, which can be used in subsequent searches for optimal solu-
tions, and in what-if analysis [6]. Firstly, four vectors of features, releases, resources
and stakeholders are extracted from the input model m via the restrict operator and the
sourceVector method. As features are stored in submodels, the model is flattened to
pull all features to the top level. The expression m.constraints yields all constraints
in model m, e.g. collecting all precedence and coupling constraints of all stakeholders.

The ++ operator is used to concatenate vectors of constraints. In Listing 9 concatena-
tion is applied to avoid the need of flattening, as forAll returns a vector of constraints.

There are other ways of expressing the release planning problem. The problem can,
for example, be re-modeled with extra binary variables and the Reified constraint and
multiplication constraints instead of IfThenElse, or the Binpacking global constraint
can be used.

Listing 10 shows how to issue a search for a solution that optimizes the total benefit
of the first release. The impose method on a Model combines the constraints in that
model with additional constraints and returns an intermediate object than can be used
to parameterize and issue a solve process taking all constraints into account.

A new model m2 is computed with the result of imposing the release planning con-
straints on model m, thus taking the stakeholders’ constraints from Listing 8 into ac-
count. Should the stakeholders’ constraints be inconsistent, no solution can be found
unless the constraints that are responsible for the inconsistency first are excluded. The
resulting feature allocation to releases via the Order attribute is extracted from m2 to-
gether with the total cost of the first release, with output as shown in Listing 11.

Listing 10. Searching for an optimal solution given an input model.

1 val utility = Var("totBenefit(Release(Alfa))")
2 val (m2, result) =
3 m.impose(releasePlanningConstraints(m)).solve(Maximize(utility))
4 val featureAllocation = m2 / Feature
5 val costOfAlfa = result.lastSolution(Var("totCost(Release(Alfa))"))

Listing 11. Output results of the release planning problem in Listings 8–10

1 featureAllocation: reqt.Model =
2 Model(
3 Feature("F3") has Order(2),
4 Feature("F1") has Order(1),
5 Feature("F2") has Order(1)
6 )
7 costOfAlfa: Int = 130
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3.3 Search Parameters and Result

A simple, black-box constraint solving can be issued by calling solve(), thereby utiliz-
ing all default values of the available search parameters to the solve methods. However,
if the solution is hard for the solver to find within reasonable time, it may be necessary
to open provide more control over the pruning of the solution space. The solve method
has a number of parameters that are fed to the solver back-end, as shown in Listing 12.

Listing 12. Parameters to the solve method and their default values.

1 def solve[T](
2 searchType: SearchType = Satisfy,
3 timeOutOption: Option[Long] = None,
4 solutionLimitOption: Option[Int] = None,
5 valueSelection: ValueSelection = IndomainRandom,
6 variableSelection: VariableSelection = InputOrder,
7 assignOption: Option[Seq[Var[T]]] = None
8 ): Result[T] = ...

The default search type is Satisfy. Other options are CountAll and FindAll
to search for multiple solutions, while counting or recording all found solutions. A
search for an optimal value for some variable v can be issued with the search types
Minimize(v) or Maximize(v).

The default value selection method is IndomainRandom. Also IndomainMax,
IndomainMedian, IndomainMiddle, and IndomainMin can be used.

The default variable selection method is InputOrder. Other available selection
methods are: MaxRegret, SmallestDomain, LargestDomain, LargestMin, LargestMax,
SmallestMin, SmallestMax, MostConstrainedDynamic, and MostConstrainedStatic.
(For further explanation of selection methods, see the JaCoP documentation [2].)

Listing 13. The Result case class that holds solution data.

1 case class Result[T](
2 conclusion: Conclusion,
3 solutionCount: Int = 0,
4 lastSolution: Map[Var[T], Int] = Map[Var[T], Int](),
5 interruptOption: Option[SearchInterrupt] = None,
6 solutionsOption: Option[Solutions[T]] = None
7 )
8
9 trait Solutions[T] {

10 def nSolutions: Int
11 def solutionMap(solutionIndex: Int): Map[Var[T], Int]
12 def valueVector(v: Var[T]): Vector[Int]
13 def printSolutions: Unit
14 ...
15 }

Listing 13 shows the type of objects that are returned as a result of calling the
solve method on Constraints. The type Conclusion is the base type of the case
objects named SolutionFound, SolutionNotFound, InconsistencyFound that, to-
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gether with the case class SearchFailed(msg: String), are possible conclusions of
a search result.

The values Some(SearchTimeOut) or Some(SolutionLimitReached) are given
if a search was interrupted. If a solution was found the solutionOption value includes
a optional instance of the Solutions trait that allows for iteration over solutions using
the solutionMap as defined at line 11 in Listing 13.

4 Discussion and Conclusion

This paper presents the reqT/CSP DSL and demonstrates how it can be used to express
combinatorial optimization problems in requirements engineering, and how a solver
back-end can be invoked to search the solution space. This section concludes the pre-
sentation by discussing benefits, limitations and future work.

4.1 Benefits

The presented DSL provides an interface to the back-end solver at a level of abstrac-
tion comparable to MiniZinc (see Listing 5). The integration with reqT enables domain
experts to combine requirements and constraints modeling. Embedding a requirements
engineering constraint modeling language in Scala and connecting it to a full-featured
constraint solver such as JaCoP makes it possible to use the full power of the host lan-
guage for scripting and custom extensions in concert with the solver capabilities.

Moreover, a general constraint solver offers a rich catalog of constraints that can
be used for modeling combinatorial optimization problems in different ways and for
controlling the search with respect to e.g. value and variable selection.

Compared to the existing Scala API for JaCoP [2], the reqT/CSP DSL has a higher
abstraction level and enables more concise search parameterization.

4.2 Limitations

The presented work is still on-going and reqT and its CSP sub-language is still experi-
mental and has not yet been validated in real-world software engineering. The interface
to the back-end solver is still incomplete and only a part of its available capabilities is
exposed. The wrapper also introduces a layer of indirection that may have performance
penalties.

The current implementation of reqT/CSP is in some aspects specific to JaCoP, and
the DSL exposes JaCoP-specific search parameters in cases where users choose to go
beyond default parameters. Also, some case class names are based on JaCoP classes,
e.g. XeqY, chosen in absence of a globally standardized constraint nomenclature (al-
ternative operator notation, e.g. #== in line with the Prolog tradition is, however, also
available). In principal it would be possible to change the solver back-end from JaCoP
to any other solver that has a Java-based API, but some (probably minor) adjustments
to the DSL and (probably localized) refactoring of the implementation would then be
necessary.
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4.3 Future work

In general, the scalability of the approach needs to be investigated. Also, the usability
of the presented DSL would be interesting to assess in empirical studies with domain
experts, and it remains to be seen if reqT can effectively solve real world combinatorial
optimization problems in requirements engineering.

Furthermore, in terms of DSL expressiveness, it would be interesting to investigate
how the inherent uncertainties of software requirements can be expressed, as require-
ments in practice often contain volatile information and rough estimations of different
parameters. For example, the future benefit and cost of implementing a given feature
can be estimated differently by different stakeholders. In this case, constraint program-
ming with soft constraints and/or stochastic constraints may be useful. Soft constraints
enable specification of situations were constraints sometimes may be violated, e.g. to
some specified cost. Stochastic constraints make it possible to assign probabilities to
different values and calculate the most probable outcome or an expected value for a
given parameter [14].

From implementation generalization perspective, further work may include a more
complete exposure of the available back-end solver capabilities. It would also be in-
teresting to investigate the pros and cons of generalizing the back-end solver wrapper
by removing all explicit dependencies to a specific solver, trading off the potential lack
of implementation-specific search process control with the potential gains of increased
flexibility in choice of solver technology.

In conclusion, although this work demonstrate potential utility of the proposed DSL
for combinatorial optimization in requirements engineering, future extensions and more
validation are needed.
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