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Abstract

A mathematical framework is introduced for optimization of antenna near-

�eld imaging problems, based on the multipole expansion of the electromag-

netic �eld, the Fisher information to quantify the quality of data and use of

modern interior point convex optimization techniques. We consider the gen-

eral problem of optimizing the measurement sensor allocation for parameter

estimation in distributed systems, and in particular the problem of optimizing

the measurement set-up for antenna near-�eld estimation. As an application

example for antenna near-�eld imaging, we consider a relevant measurement

set-up using cylindrical probing coordinates. The convex optimization prob-

lem is examined using duality theory, and it is shown that several structural

properties of the optimal measurement problem can be exploited in develop-

ing an e�cient interior point optimization method. In particular, we show

that the cylindrical measurement set-up yields a Fisher information matrix

with block diagonal structure, a feature which can be directly exploited in the

optimization algorithm by reducing the number of dual decision variables.

1 Introduction

Inverse scattering and imaging are topics with a variety of applications in e.g., medi-
cine, non-destructive testing, surveillance, quantum mechanics, optics, etc. These
problems are in general ill-posed, i.e., they are not well-posed in the sense of exis-
tence, uniqueness, and continuous dependence of the solution on the data [4, 5, 8, 11�
14]. Although imaging and inverse scattering have been thoroughly studied during
the last century there is only a partial understanding of these complex problems.
Most of the e�orts have been placed on the development of e�cient inversion al-
gorithms and mathematical uniqueness results. In comparison, there are very few
results and a limited knowledge about the information content in the inversion data
and the design of optimal measurement geometries.

Optimal experimental design constitutes a broad area that has been evolving
since the 80's, see e.g., [2, 19, 23, 25]. Typical application areas of experimental de-
sign are for optimization of various industrial production processes, see e.g., [3].
However, there seem to be very few applications to imaging and inverse scattering
and only a few studies have been devoted to the sensor location problem for para-
meter estimation. Qureshi et. al. [20] developed an optimality criterion based on
the determinant of the Fisher information matrix, a topic which has been further
developed in e.g., [22, 25]. The convex Fisher information measure was proposed
already in the early 80's [20], but a comprehensive exploitation of the e�cient poly-
nomial time interior point methods for convex optimization that has been estab-
lished during the 90's (including determinant maximization) seem to be missing, see
e.g., [7, 15, 24].

Previously, we have employed linear estimation theory and the Cramér-Rao lower
bound to quantify the ill-posedness of inverse problems, see e.g., [16, 18]. The pur-
pose of this paper is to provide a mathematical framework for optimization of in-
verse imaging problems, based on the multipole expansion of the electromagnetic
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Figure 1: Measurement setup for antenna near �eld imaging using cylindrical prob-
ing coordinates.

�eld [1, 6, 9], the Fisher information [10] to quantify the quality of data and use of
modern interior point convex optimization techniques [7, 15, 24].

As a prototype example of designing optimal measurements for antenna near-�eld
imaging, we study the measurement set-up1 depicted in Figure 1. The cylindrical
data is gathered by rotating the object under test and moving the near-�eld probe in
the vertical direction. The measurements are time consuming and hence costly. The
azimuthal measurement points are determined by the angular velocity of the object
under test and are in general �xed. The measurement can hence only be improved
by proper choice of the vertical measurement points. By Fourier transforming the
data over the azimuthal coordinates the Fisher information matrix decouples and
obtains a block diagonal structure. From convex optimization theory we know that
the dual of the log-determinant problem [15] encompasses as many dual variables
as there are nonzero elements of the Fisher information matrix. Hence, a decoupled
Fisher information matrix will impose a very speci�c structure also on the convex
optimization problem. This is a vital point to take advantage of in developing a
numerically e�cient optimization method for an inverse imaging problem that may
in general be very large.

2 Antenna near-�eld estimation based on cylindri-

cal data

We consider the antenna near-�eld estimation problem based on cylindrical data. Let
(r, θ, φ) and (ρ, φ, z) denote the spherical and cylindrical coordinates, respectively.
Further, let k = ω/c denote the wave number, ω = 2πf the angular frequency, and

1The picture is taken at an antenna near-�eld measurement campaign performed by SAAB

Bofors Dynamics and Chelton Applied Composites, Sweden.
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c and η the speed of light and the wave impedance of free space, respectively.
Assume that all sources are contained inside a sphere of radius r = a, and let eiωt

be the time-convention. The transmitted electric �eld, E(r), can then be expanded
in outgoing spherical vector waves uτml(kr) for r > a as [1, 6, 9]

E(r) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

fτmluτml(kr) (2.1)

where fτml are the multipole coe�cients. Here τ = 1 corresponds to a transversal
electric (TE) wave and τ = 2 corresponds to a transversal magnetic (TM) wave. The
other indices are l = 1, 2, . . . ,∞ and m = −l . . . , l where l denotes the order of that
mode. In principle, the sum in (2.1) is in�nite. However, for all practical purposes
the maximum useful order L is �nite and is physically restricted by the electrical
size ka of the sphere as well as the bandwidth of the antenna, see e.g., [6, 17].
For further details about the spherical vector mode representation we refer to the
Appendix and [1, 6, 9].

We consider now the inverse, linear estimation problem of determining the multi-
pole coe�cients fτml based on an observation of the electric near �eld, E(r), as it is
measured on the cylindrical surface {ρ = ρ0, z1 ≤ z ≤ z2}. We assume that the mea-
surement is corrupted by additive and spatially uncorrelated complex Gaussian noise
N (r) with zero mean and dyadic covariance function E{N (r)N ∗(r′)} = σ2

nδ(r−r′)I
where E{·} denotes the expectation operator, σ2

n the noise variance, δ(r) the impulse
function and I the identity dyad. Note that since the data is assumed here to be
discrete, δ(·) denotes the discrete impulse function with δ(0) = 1.

When we wish to estimate the near �eld at a sphere of radius r = a, the lin-
ear equations in (2.1) are �rst regularized by normalizing with the vector norm
‖uτml(kr)‖ = (

∫
|uτml(kr)|2 dΩ)1/2 where dΩ is the di�erential solid angle. By the

orthonormality of the spherical vector harmonics [1, 6, 9], we have

‖u1ml(kr)‖2
r=a =

∣∣∣h(2)
l (ka)

∣∣∣2
‖u2ml(kr)‖2

r=a =

∣∣∣∣∣(kah
(2)
l (ka))′

ka

∣∣∣∣∣
2

+ l(l + 1)

∣∣∣∣∣h(2)
l (ka)

ka

∣∣∣∣∣
2 (2.2)

which are independent of the azimuthal m-index.
Consider �rst a situation where we have arbitrary measurement points rj for

j = 1, . . . , n. The Fisher information matrix [10] for estimating the normalized
multipole coe�cients fτml is then given by

[I ]τml,τ ′m′l′ =
1

σ2
n

n∑
j=1

∂E∗(rj)

∂f ∗τml

· ∂E(rj)

∂fτ ′m′l′

=
1

σ2
n

n∑
j=1

u∗
τml(krj)

‖uτml(kr)‖r=a

· uτ ′m′l′(krj)

‖uτ ′m′l′(kr)‖r=a

. (2.3)
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Now, assume that we have a cylindrical measurement using M azimuthal points
φ equally spaced in [0, 2π], and n vertical positions zj with spherical coordinates
(rj, θj). The Fisher information (2.3) then becomes

[I ]τml,τ ′m′l′ =
M

σ2
n

n∑
j=1

ũ∗
τml(rj, θj)

‖uτml(kr)‖r=a

· ũτ ′m′l′(rj, θj)

‖uτ ′m′l′(kr)‖r=a

δ(m−m′) (2.4)

where we have employed the orthogonality of the Discrete Fourier Transform (DFT)
and the azimuthal Fourier transform ũτml(r, θ) of the spherical vector waves
uτml(kr) = ũτml(r, θ)e

imφ, see the Appendix.
The Fisher information matrix (2.4) is decoupled over the m-index and can hence

be organized as a block diagonal matrix with diagonal blocks Im with [Im]τl,τ ′l′ =
[I ]τml,τ ′ml′ for −L ≤ m ≤ L where τ, τ ′ = 1, 2 and l, l′ = max{|m|, 1}, . . . , L. The
corresponding Cramér-Rao lower bound (CRB) [10] for near-�eld estimation is now
given by

E {|Ee(r)−E(r)|2} ≥
L∑

m=−L

2∑
τ,τ ′=1

L∑
l,l′=max{|m|,1}

ũ∗
τml(r, θ) · [I−1

m ]τl,τ ′l′ũτ ′ml′(r, θ)

‖uτml(kr)‖r=a‖uτ ′ml′(kr)‖r=a

(2.5)
where Ee(r) denotes the estimated �eld. Note that the CRB in (2.5) is independent
of the azimuthal coordinate φ, and depends only on (r, θ).

3 The convex problem of optimal measurements

The problem of designing optimal measurements is to determine a set of optimal
observation points rj which maximizes a suitable chosen measure of the estimation
performance. We will follow here the approach proposed in e.g., [20, 22, 25] by
de�ning a constrained convex functional of the Fisher information matrix.

Assume that there are n possible spatial observation points rj and assign to
each point the probability measure xj ≥ 0 for j = 1, . . . , n. The corresponding
vector decision variable is denoted x ∈ Rn. Let G(x) denote the Fisher information
matrix corresponding to a speci�c measurement constellation x, ξ ∈ Cν the vec-
tor of complex parameters to be estimated, ν the number of parameters and

∂E(rj)

∂ξ

the corresponding sensitivity vector, see e.g., the previous model (2.3). It is fur-
ther assumed that the observations are degraded by additive uncorrelated complex
Gaussian noise with variance σ2

n. The corresponding convex optimization problem
is then given by 

min
x∈Rn

− log detG(x)

G(x) = 1
σ2
n

n∑
j=1

xj
∂E∗(rj)

∂ξ∗
· ∂E(rj)

∂ξT

x ≥ 0
n∑

j=1

xj ≤ 1

(3.1)
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which is equivalent to maximize the determinant of the Fisher information matrix.
In order to gain insight about the optimization problem in (3.1) and to solve

it e�ciently we now derive the corresponding dual formulation. See e.g. [24] for a
similar derivation with linear semide�nite constraints. The optimization problem
(3.1) is �rst rewritten on the canonical primal form (P)

(P)


min
x∈Rn

− log detG(x)

G(x) =
n∑

j=1

xjGj > 0

Ax ≥ b

(3.2)

where Gj =
∂E∗(rj)

∂ξ∗ · ∂E(rj)

∂ξT ∈ Cν×ν , GH
j = Gj, and

A =

(
In

−1T

)
, b =

(
0
−1

)
(3.3)

where In is the n × n identity matrix, 1 an n × 1 column vector of ones and 0 is
an n× 1 column vector of zeros. The matrix A is m× n and the vector b is m× 1
where m = n + 1 with our present formulation (3.1).

The primal optimization problem (3.2) is now reformulated as

(P)


min
x,X>0

− log detX

X−G(x) ≥ 0
−X + G(x) ≥ 0
Ax ≥ b

(3.4)

where x ∈ Rn and the positive de�nite matrix variable X ∈ Cν×ν has been intro-
duced. Further, by introducing the positively semide�nite matrix Lagrange multi-
pliers W1 ∈ Cν×ν and W2 ∈ Cν×ν , and the non-negative vector Lagrange multiplier
λ ∈ Rm, the problem (3.4) can be reformulated as

min
x,X>0

max
Wi≥0,λ≥0

− log detX− trW1(X−G(x))− trW2(−X + G(x))−λT (Ax− b) .

(3.5)
Here, (x,X) are referred to as primal variables and (Wi, λ) as dual variables. It is
readily seen that the optimal solution to (3.5) is characterized by

W1(X−G(x)) = 0 (3.6)

W2(−X + G(x)) = 0 (3.7)

λT (Ax− b) = 0. (3.8)

The dual formulation is obtained by interchanging the order of minimization and
maximization in (3.5)

max
Wi≥0,λ≥0

min
x,X>0

− log detX− trW1(X−G(x))− trW2(−X + G(x))−λT (Ax− b) .

(3.9)
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To perform the minimization in (3.9) the objective function f(x,X) is di�erentiated
with respect to the primal variables

∂f

∂xj

= −tr (W2 −W1)Gj − λTaj = 0, (3.10)

∂f

∂X
= −X−1 + (W2 −W1) = 0 (3.11)

where aj denote the columns of A and j = 1, . . . , n. By employing (3.10) and (3.11)
and introducing W = W2 − W1 = X−1 > 0, the function f(x,X) can now be
written

f(x,X) = − log detX + trWX− trWG(x)−λT (Ax− b) = log detW + ν + λTb.
(3.12)

Hence, the dual formulation (D) is

(D)

{
max

W>0,λ≥0
log detW + λTb + ν

trWGj + aT
j λ = 0, j = 1, . . . , n.

(3.13)

A solution x ∈ Rn is said to be primal feasible if the corresponding constraints
of the primal problem (3.2) are satis�ed. In particular, it is noted that a primal
feasible solution (x,X) in (3.4) satis�es also X = G(x). Accordingly, a solution
(W > 0, λ ≥ 0) is said to be dual feasible if the corresponding constraints of the
dual problem (3.13) are satis�ed. Since W = X−1 as shown above, it is concluded
that a primal and dual feasible solution (x,W, λ) satis�es W = G−1(x) as well as
λT (Ax− b) ≥ 0.

The duality gap corresponding to a primal and dual feasible solution can now be
calculated

DG = − log detG(x)− log detW − λTb− ν

=
n∑

j=1

xj

(
trWGj + λTaj

)
− λTb− ν = trWG(x) + λTAx− λTb− ν

= trIν + λT (Ax− b)− ν = λT (Ax− b) ≥ 0. (3.14)

Hence, the duality gap is DG = λT (Ax− b) ≥ 0 which is always non-negative.
This means that the primal value is always greater than or equal to the dual
value. From (3.8) we also see that an optimal solution is characterized by DG =
λT (Ax− b) = 0 for which the primal and dual problems (3.2) and (3.13), respec-
tively, have the same optimal value.

4 Solving the dual problem

Consider the dual problem formulation (3.13) in our particular application where
A and b are given by (3.3). By partitioning the Lagrange multiplier vector λ as
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λ = [λ1, . . . , λn, µ]T the dual problem formulation (3.13) is now written

(D)

{
max

W>0,λj≥0,µ≥0
log detW − µ + ν

trWGj + λj − µ = 0, j = 1, . . . , n.
(4.1)

By rewriting the equality constraints of (4.1) as inequality constraints using λj ≥ 0,
we obtain an equivalent convex optimization problem

(D)

{
min

W>0,µ≥0
− log detW + µ− ν

λj = −trWGj + µ ≥ 0, j = 1, . . . , n
(4.2)

where the decision variables have been reduced to W > 0 and µ ≥ 0.
The advantage of solving (4.2) instead of (3.2) is that (4.2) comprises a small

number of decision variables, assuming that n � ν2. If W is complex (ξ is complex),
the corresponding number of real variables (including µ) is ν2 +1. If W is real (ξ is

real), the number of variables is ν(ν+1)
2

+ 1. Hence, we write

W =
r∑

q=1

yqWq (4.3)

where yq are real variables, the matrices Wq constitute a basis forW and r is either

r = ν2 or r = ν(ν+1)
2

corresponding to the complex and real case, respectively. It is
observed that the optimal solution of (4.2) can always be represented by a maximum
of r active constraints. This follows from the Kuhn-Tucker conditions of (4.2) and an
application of the Caratheodory's theorem as shown in the Appendix. Consequently,
there are always a maximum of r optimal observation points rj of (3.1) for which
xj ≥ 0.

It has been previously established that an optimal measurement problem com-
prising of ν complex parameters can always be represented by a maximum of ν2

optimal points (or ν(ν+1)
2

for the real case), see e.g., [22]. By using the present du-
ality theory, we see that the maximum number of optimal points r is equal to the
number of dual parameters for the Fisher information matrix G. Hence, if the Fisher
information matrix has a speci�c structure such as the block diagonal structure in
(2.4), then the dual variable W and its corresponding basis Wq attains the same
structure. Thus, the corresponding number r of maximum observation points in this
case may be much less then ν2.

In order to solve (4.2) using an interior point algorithm [15, 24], we consider an
unconstrained optimization problem using the following objective function

ϕ(y, µ, t) = t (− log detW + µ− ν)−
n∑

j=1

log λj − log µ (4.4)

where y denotes an r × 1 vector of yq variables, the log det(·) and log(·) functions
are used as barriers for the feasible domains and t is a positive (large) number,
cf. [7]. We note that (4.4) is a strictly convex function and we assume that it can
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be minimized to any desired accuracy using e.g. very e�cient Newton iterations.
The resulting set of solution variables (W, λj, µ) is strictly dual feasible for (4.2)
assuming that such a solution exists, hence W > 0, λj > 0 and µ > 0. In fact, a
strictly dual feasible initial solution for the Newton iterations is readily obtained by
chosing W = I and µ su�ciently large in (4.2).

The central path [7] is de�ned by the minimum of (4.4) and is characterized by
∂ϕ
∂yq

= t (−trW−1Wq)−
n∑

j=1

1

λj

(−trWqGj) = 0

∂ϕ
∂µ

= t−
n∑

j=1

1

λj

− 1

µ
= 0

(4.5)

or, equivalently 
trW−1Wq = tr

n∑
j=1

1

tλj

GjWq

n∑
j=1

1

tλj

+
1

tµ
= 1.

(4.6)

Hence, from (4.6) we can chose
xj =

1

tλj

=
1

t (−trWGj + µ)
> 0

G(x) =
n∑

j=1

xjGj

(4.7)

and it is concluded that W−1 = G(x) > 0,
∑n

j=1 xj < 1, and (x,W, λ) is a primal
and dual feasible solution of (3.2). The corresponding duality gap is given by

DG = λT (Ax− b) =
n∑

j=1

λjxj + µ

(
−

n∑
j=1

xj + 1

)
=

n + 1

t
. (4.8)

The duality theory makes it possible to determine a suitable value of t in order
to solve (4.2) within a certain accuracy. Suppose e.g., that we require a relative
accuracy c (where c = 0.99 corresponds to 99% accuracy) so that the desired solution
satis�es

c detGo ≤ detG ≤ detGo (4.9)

where Go denotes the optimal solution. It is then readily seen that the condition

DG ≤ − log c (4.10)

implies that (4.9) is satis�ed. Hence, a suitable value of t to use in (4.4) could be

t =
2(n + 1)

− log c
(4.11)
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so that the duality gap of the corresponding central path solution given by (4.8)
is DG = 1

2
(− log c). The condition (4.10) can then be used as a stopping criteria

for the Newton iterations. Thus, by employing a relative accuracy criterion for the
max det(·) problem, an absolute accuracy criterion is obtained for the min log det(·)
problem for which the duality gap can be directly applied. A more sophisticated
algorithm employs a combination of dual and primal central paths, as well as an
iteration of the t-parameter, see e.g., [7, 15, 24]. A staightforward interior point
optimization algorithm to solve (4.2) is given in the Appendix.

5 Numerical examples

We consider a numerical example for the optimal measurement formulation (3.1),
reformulated as a dual problem in (4.2) and by using the straightforward interior
point optimization algorithm described in the Appendix. We employ as a measure-
ment case the Fisher information matrix described in (2.4) and evaluate the resulting
Cramér-Rao lower bound using (2.5).

We consider an antenna near-�eld estimation problem with fairly small electrical
size, and assume that the number of excited modes is L = 3. We assume that the
estimation is optimized for ka = 2π at the radius of one wave length a = λ, and that
the measurement is made at the cylindrical surface {ρ = 2λ,−5λ ≤ z ≤ 5λ} with
n = 101 positions z and M = 120 azimuthal points φ. As an illustration, we employ
only a few parameters and consider an estimation problem for the three electrical
TE modes (τ = 1, m = 1, l = 1, 2, 3) as shown in Figure 2.

-1

0

1

-1
0

1
-1

0

1

-1

0

1

-1
0

1
-1

0

1

-1

0

1

-1
0

1
-1

0

1

ũ111(r,θ)
‖u111(kr)‖r=a

ũ112(r,θ)
‖u112(kr)‖r=a

ũ113(r,θ)
‖u113(kr)‖r=a

Figure 2: The three normalized electrical TE modes (τ = 1, m = 1, l = 1, 2, 3) at
radius a = λ.

In Figure 3 is shown the optimal solution xj together with the magnitudes of the
three electrical TE modes over the measurement domain. Hence, the optimization
gives two optimal points at the position z = ±0.7λ. Note that these two vector
measurements correspond to four scalar measurements which are thus optimal for
estimating the three complex parameters {f11l}l=1,2,3. In Figure 4 is shown the
optimization process over iteration index. The convergence of primal and dual costs
is fairly slow using this straightforward interior point optization algorithm. However,
the quantized solution, as described in the Appendix, shows a very fast convergence
to the optimal solution.
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Figure 3: Optimal solution for the antenna near-�eld estimation of TE modes
(τ = 1, m = 1, l = 1, 2, 3) at radius a = λ. Dotted line with �o� indicate the optimal
measurement points xj. Solid, dashed and dash-dotted line show the TE modes for
l = 1, 2, 3, respectively.

In Figure 5 a) and b) is shown the Cramér-Rao lower bound for near-�eld estima-
tion (2.5) using the z = ±5λ measurement, and the optimal measurement positions
z = ±0.7λ, respectively. It is assumed here that the noise variance in (2.5) cor-
responds to a 50 dB signal to noise ratio at a signal level of 0 dB. Note that the
estimation error in this example becomes somewhat more evenly spread using the
z = ±5λ measurement, whereas the overall estimation error is improved by 10-15
dB using the optimal measurement constellation.

6 Summary and conclusions

We introduce a mathematical framework for optimization of antenna near-�eld imag-
ing problems, based on the multipole expansion of the electromagnetic �eld, the
Fisher information to quantify the quality of data and use of modern interior point
convex optimization techniques. The general problem of optimizing the measure-
ment sensor allocation for parameter estimation in distributed systems is considered,
as well as the speci�c problem of optimizing the measurement set-up for antenna
near-�eld estimation based on cylindrical data. The convex optimization problem
is examined using duality theory, and it is shown that several structural proper-
ties of the optimal measurement problem can be exploited in developing an e�cient
interior point optimization method. In particular, we show that the cylindrical mea-
surement set-up yields a Fisher information matrix with block diagonal structure,
a feature which can be directly exploited in the optimization algorithm by reducing
the number of dual decision variables. The presented framework for optimization is
particularly useful when the number of nonzero elements of the Fisher information
matrix is much less then the number of possible measurement positions, a situation
which is relevant for reasonable small antennas which can be characterized by a
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Figure 4: Optimization process. The solid, dashed and dash-dotted lines show the
primal cost − log detG, the dual cost log detW − µ + ν and the quantized primal
cost, respectively.

limited number of vector modes.

Appendix A Spherical Vector Waves and their Az-

imuthal Fourier Transforms

The outgoing spherical vector waves are given by

u1ml(kr) = h
(2)
l (kr)A1ml(r̂)

u2ml(kr) =
1

k
∇× u1ml(kr) =

(krh
(2)
l (kr))′

kr
A2ml(r̂) +

√
l(l + 1)

h
(2)
l (kr)

kr
A3ml(r̂)

(A.1)

where Aτml(r̂) are the spherical vector harmonics and h
(2)
l (x) the spherical Hankel

functions of the second kind, see [1, 6, 9]. The spherical vector harmonics Aτml(r̂)
are given by

A1ml(r̂) =
1√

l(l + 1)
∇× (rYml(r̂))

A2ml(r̂) = r̂ ×A1ml(r̂)
A3ml(r̂) = r̂Yml(r̂)

(A.2)

where Yml(r̂) are the scalar spherical harmonics given by

Yml(θ, φ) = (−1)m

√
2l + 1

4π

√
(l −m)!

(l + m)!
Pm

l (cos θ)eimφ (A.3)

and where Pm
l (x) are the associated Legendre functions [1]. For negative m-indices,

the scalar waves satis�es the symmetry Y−m,l(r̂) = (−1)mY∗
ml(r̂), and hence

Aτ,−m,l(r̂) = (−1)mA∗
τml(r̂). (A.4)
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Figure 5: Cramér-Rao lower bound for near-�eld estimation plotted for 0.5λ ≤ ρ ≤
1.5λ, 0 ≤ θ ≤ π and φ = 0, π (xz-plane). In a) using the measurement positions
z = ±5λ and in b) using the optimal measurement positions z = ±0.7λ.

For convenience, we introduce also the normalized associated Legendre functions

P̄m
l (x) =

√
2l + 1

2

√
(l −m)!

(l + m)!
Pm

l (x) (A.5)

so that Yml(r̂) = (−1)mP̄m
l (cos θ) 1√

2π
eimφ. The following relations for P̄m

l (x) are
useful for numerical calculations

P̄−m
l (x) = (−1)mP̄m

l (x)
∂

∂θ
P̄m

l (x) =
1

2

√
(l + m)(l −m + 1)P̄m−1

l (x)− 1

2

√
(l + m + 1)(l −m)P̄m+1

l (x)

(A.6)
where x = cos θ. Note also that P̄m

l (x) = 0 for m > l.
Now, from (A.2) the spherical vector harmonics may be derived as

A1ml(r̂) = Ã1ml(θ)e
imφ = (−1)m√

l(l+1)

(
θ̂ im

sin θ
P̄m

l (cos θ)− φ̂ ∂
∂θ

P̄m
l (cos θ)

)
1√
2π

eimφ

A2ml(r̂) = Ã2ml(θ)e
imφ = (−1)m√

l(l+1)

(
θ̂ ∂

∂θ
P̄m

l (cos θ) + φ̂ im
sin θ

P̄m
l (cos θ)

)
1√
2π

eimφ

A3ml(r̂) = Ã3ml(θ)e
imφ = r̂(−1)mP̄m

l (cos θ) 1√
2π

eimφ

(A.7)
where the Fourier transformed spherical vector harmonics Ãτml(θ) are de�ned so
that

Aτml(r̂) = Ãτml(θ)e
imφ. (A.8)

The Fourier transformed outgoing spherical vector waves ũτml(r, θ) are derived sim-
ilarly from (A.1) as

ũ1ml(r, θ) = h
(2)
l (kr)Ã1ml(θ)

ũ2ml(r, θ) =
(krh

(2)
l (kr))′

kr
Ã2ml(θ) +

√
l(l + 1)

h
(2)
l (kr)

kr
Ã3ml(θ)

(A.9)
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so that
uτml(kr) = ũτml(r, θ)e

imφ. (A.10)

Note that Ãτml(θ) and ũτml(r, θ) are de�ned as Fourier transforms only with
respect to their respective spherical r, θ, φ components. As vector �elds they still
depend on the φ coordinate via the basis vectors r̂, θ̂, φ̂.

Appendix B Maximum number of optimal points

We prove here that the optimal solution of (4.2) always can be represented by a
maximum of r active constraints.

The Kuhn-Tucker conditions of (4.2) are given by(
−trW−1Wq

1

)
=

n∑
j=1

ζj

(
−trWqGj

1

)
(B.1)

where ζj are non-negative Lagrange multipliers and q = 1, . . . , r. Caratheodory's
theorem [21] states that a vector x ∈ Rr belongs to the convex coneC generated
by a set G ⊂ Rr if and only if x can be expressed as a non-negative linearcom-
bination of r vectors in G. Hence, we may take x = (−trW−1Wq) ∈ Rr and
G = {(−trWqGj)}n

j=1 ⊂ Rr, and conclude that (B.1) can always be represented by
a maximum of r multpliers ζj ≥ 0. It follows that there are always a maximum of
r optimal observation points rj of (3.1) for which xj ≥ 0.

Appendix C Interior point optimization algorithm

A straightforward interior point optimization algorithm to solve (4.2) is given below.
As stopping criteria is used (4.10), and the parameter t is given by e.g., (4.11).

1. Initialization. Initialize with xj = 1
n
, and

G(x) =
1

n

n∑
j=1

Gj (C.1)

W = G−1(x) (C.2)

µ = max
j∈{1,...,n}

trWGj + ε (C.3)

λj = −trWGj + µ, j = 1, . . . , n (C.4)

where ε > 0 is a small positive number. This initialization is stricytly dual feasible,
hence W > 0, λj > 0 and µ > 0.

2. Newton iteration. Make K Newton iterations on the unconstrained function
ϕ(y, µ, t) in (4.4). Denote the kth variable vector

uk =

(
yk

µk

)
(C.5)
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and calculate the corresponding gradient gk from
∂ϕ
∂yq

= −ttrW−1Wq +
n∑

j=1

1

λj

trWqGj

∂ϕ
∂µ

= t−
n∑

j=1

1

λj

− 1

µ

(C.6)

and Hessian Hk from

∂2ϕ
∂yp∂yq

= ttrW−1WpW
−1Wq +

n∑
j=1

1

λ2
j

trWpGjtrWqGj

∂2ϕ
∂yq∂µ

= −
n∑

j=1

1

λ2
j

trWqGj

∂2ϕ
∂µ2 =

n∑
j=1

1

λ2
j

+
1

µ2

(C.7)

where p, q = 1, . . . , r.
The Newton iteration is now given by

pk = −H−1
k gk (C.8)

‖pk‖H =
√

pT
k Hkpk (C.9)

uk+1 = uk + dkpk (C.10)

where pk and ‖pk‖H are referred to as the Newton direction and the Newton decre-

ment, respectively, and where the step-length parameter dk can be chosen as e.g.

dk =

{
1 if ‖pk‖H ≤ 1

2
1

1+‖pk‖H
if ‖pk‖H > 1

2
.

(C.11)

It can be shown that the choice of step-length parameter as in (C.11) will guarantee
that the iterations result in strictly dual feasible variables (W > 0, λj = −trWGj +
µ > 0, µ > 0), see e.g. [7, 15]. The dual cost is now given by log detW − µ + ν as
in (4.1) and the primal cost − log detG in (3.2) can be obtained by calculating the
primal variables as in (4.7).

3. Truncation of primal variables. Chose the r largest values of xj = 1
tλj

and

set the rest of the ξj = 0. Scale the variables so that
∑

xj 6=0 xj = 1. Calculate

G(x) =
∑

xj 6=0 xjGj and the corresponding primal cost − log detG(x). If G(x) is
singular, or nearly singular, return to step 2 above.

4. Accuracy calculation. Calculate the dual variables

W = G−1(x) > 0 (C.12)

µ = max
j∈{1...n}

trWGj ≥ 0 (C.13)

λj = −trWGj + µ ≥ 0, j = 1, . . . , n. (C.14)



15

The corresponding primal and dual variables are now primal and dual feasible,
and we may calculate the duality gap

DG =
n∑

j=1

λjxj + µ

(
−

n∑
j=1

xj + 1

)
=
∑
xj 6=0

λjxj. (C.15)

If DG ≤ − log c, then stop according to the stopping criteria as described above,
see (4.10). Else, return to step 2 above, and use the previous set of dual variables
(W, λj, µ) from step 2 as initialization. 2
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