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Abstract

A new method to estimate the microstructural parameters of anisotropic two-
phase composite material is derived. The parameters are estimated using
information from measurements or from numerical experiments. The method
is used to derive new bounds on the effective tensor that incorporates infor-
mation from measurements of a related parameter. These new bounds are
called cross-property bounds. New tight bounds on low-order microstructural
parameters are given in the anisotropic case.

1 Introduction

The problem of determining the effective properties of a composite is classical in
physics and engineering. The determination of the effective permittivity tensor is
the focus of this article, but the results work equally well for the effective thermal
conductivity, magnetic permeability or diffusivity of the composite material. In
many instances the inhomogeneities in the composite material are small compared
with the wavelength. The composite then reacts to the slowly varying field in much
the same way as a homogeneous material. In this case an effective permittivity
tensor εeff is given by

〈D〉 = 〈εE〉 = εeff〈E〉, (1.1)

which relates the average, 〈·〉, of the electric displacement field 〈D〉 to the average
of the electric field 〈E〉. The material is usually assumed to be statistically homoge-
neous. Roughly speaking, the material is statistically homogeneous if different parts
of the sample have the same statistical properties [4]. The volume averages can then
be replaced by ensemble averages.

The effective permittivity can be determined by solving a local problem in the
form of a partial differential equation [2, p. 663]. Fast and accurate numerical meth-
ods to solve this differential equation have been developed in recent years [13, 14].
In two dimensions it is possible to calculate problems with thousands of inclusions,
which give accurate estimates on the effective permittivity in the stochastic case [14].
One drawback is that a complete knowledge of the geometry rarely is available. An-
other drawback with this approach is that the problem depends not only on the
microstructure but also on the contrast. If we change the contrast all calculations
need to be repeated.

An alternative approach is to characterize the microstructure in terms of an in-
finite set of correlation functions [4, 9]. Except for some special cases the infinite
set of correlation functions are not known and hence an exact solution is not possi-
ble. If some of the correlation functions are known this knowledge can be used to
obtain rigorous bounds on the effective property. The bounds become progressively
narrower as more microstructural information is used.

In the case of macroscopically isotropic materials, considerable theoretical prog-
ress has been made, see for example [4–6, 11, 18–20, 22] and the monographs [21, 29].
The case of macroscopically anisotropic materials are less studied. Theoretical works
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include [16, 19, 20, 25, 27], see also the monographs [21, 29]. The microstructural
parameters in the anisotropic case are harder to determine and have only been
calculated in a few special cases [24, 28].

In this article we provide new tight bounds on the microstructural parameters
and bounds on the effective permittivity for loosy materials (complex-valued per-
mittivity). Moreover, we provide a new method to estimate the microstructural
parameters using measurements or the solution of the local problem [2, p. 663].
The local problem is solved for a low contrast, but the bounds are valid for all con-
trasts. One of the bounds can in many cases provide an accurate estimate of the
effective permittivity even when the lower and upper bounds are very distant from
each other. Finally, we give new bounds in the anisotropic case that incorporates
information from measurements, so called cross-property bounds.

This paper is organized as follows. Section 2 presents notation and bounds used
in this paper. A method for determination of the structural parameters is given in
Section 3. In Section 4 bounds on the structural parameters are derived. Section
5 gives complex bounds on the permittivity in the anisotropic case. Cross-property
bounds are calculated in Section 6. Finally, the results are discussed in Section 7.

2 Preliminaries

The materials in this paper are assumed to be d-dimensional and to consist of two
homogenous, isotropic phases. The two-component material is locally modeled by
the scalar relative permittivity

ε(ε1, ε2) = ε1χ1(x) + ε2χ2(x), (2.1)

where the components are isotropic with constant permittivity ε1 and ε2. The volume
fraction of the two phases are denoted f1, f2, respectively and the characteristic
function χi is defined as

χi(x) =

{
1, x in phase i

0, otherwise.

The effective permittivity matrix is written as the power series expansion

εeff

ε2

= F(z), F(z) =
∞∑

n=0

cnz
n (2.2)

where z = (ε1 − ε2)/ε2 is the contrast. The matrices cn can be calculated from
integrals over the correlation functions S1, . . . , Sn associated with the phase 1. The
n-point correlation function is defined by the ensemble average

Sn(x1, . . . ,xn) = 〈χ1(x1)χ1(x2) . . . χ1(xn)〉 (2.3)

that gives the probability of finding n points with positions x1, . . . ,xn all in phase 1,
see [19–21, 25]. The correlation functions are possible to calculate from photographs
of cross sections using image analyses, see [29, Chapter 12].
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2.1 Bounds on the eigenvalues of the effective permittivity
matrix

Rigorous bounds on the effective permittivity can be obtained for example using
variational principles [11, 21], compensated compactness [21, Chapter 24] or explicit
representation formulas [6, 19, 20]. The key idea to the last method is that the
effective permittivity is a special analytic function that can be written as a Stieltjes
function. Stieltjes functions have known upper and lower bounds in the form of
continued fractions or Padé approximations. We use Padé approximations of the
power series (2.2) when the structural parameters cn possess common principal axes.
This excludes materials where the principal axis of εeff rotate as the contrast changes,
see [15].

Let εeff be one of the eigenvalues of the matrix εeff = ε2F(z). The εp,q Padé
approximant is defined as

εp,q =
a0 + ... + apz

p

1 + b1z + ...bqzq
(2.4)

whose Taylor series agrees with that of εeff up to order p + q, see [1]. Certain Padé
approximations of εeff give bounds on εeff , see [15]. When ε2 ≥ ε1 and N ≥ 1, the
N -point upper bounds εU

N are obtained by forming the approximations

εU
2M+1 = ε2εM+1,M(F), εU

2M = ε2εM,M(F) (2.5)

where the first two coefficients in the Taylor series F are c0 = I and c1 = f1I,
see [6, 21].

Lower bounds on εeff are given from Padé approximations of the series(εeff

ε1

)−1

= F̃(z), where F̃(z) =
∞∑

n=0

c̃nz
n. (2.6)

The coefficients cn and c̃n are related according to

c̃0 = I, c̃1 = f2I, c̃n = −
n−1∑
k=0

c̃kcn−k. (2.7)

The N -point lower bounds εL
N , when ε2 ≥ ε1 and N ≥ 1, are obtained from

εL
2M+1 = ε1ε

−1
M+1,M(F̃), εL

2M = ε1ε
−1
M,M(F̃). (2.8)

In the following subsections we present the N -point bounds for N = 1, 2, 3, 4. The
contrast is z = (ε1 − ε2)/ε2 and ε2 ≥ ε1 in all cases.

2.1.1 One-point bounds

The ε1,0 Padé approximant of the expansion (2.6) gives the lower bound

εL
1 =

ε1

1 + f2z
I =

(f1

ε1

+
f2

ε2

)−1

I (2.9)



4

and the ε1,0 Padé approximant of (2.2) gives the upper bound

εU
1 = (ε2 + f1ε2z)I = (f1ε1 + f2ε2)I. (2.10)

These bounds, first derived by Wiener [30], show us that the permittivity is bounded
between the harmonic and arithmetic means.

2.1.2 Two-point bounds

The ε1,1 Padé approximant of the expansion (2.6) gives the lower bound

εL
2 = ε1[f2I− c̃2z][f2I− c̃2z + f 2

2 zI]−1 (2.11)

where c̃2 = −c2 − f1f2I. The ε1,1 Padé approximant of (2.2) gives the upper bound

εU
2 = ε2[f1I− c2z + f 2

1 zI][f1I− c2z]−1. (2.12)

These bounds were first derived in [16, 27].
In the isotropic case c2 = −(f1f2/d)I the two-point bounds are equivalent to the

Hashin-Shtrikman bounds [11].

2.1.3 Three-point bounds

The ε2,1 Padé approximation of the expansions (2.6) and (2.2) gives the lower and
upper bounds

εL
3 = ε1[c̃2 − c̃3z][c̃2 + c̃2f2z + c̃2

2z
2 − c̃3z(1 + f2z)]−1, (2.13)

εU
3 = ε2[c2 + c2f1z + c2

2z
2 − c3z(1 + f1z)][c2 − c3z]−1. (2.14)

The coefficients are related according to

c̃2 = −c2 − f1f2I, c̃3 = −c3 − f2c2 − c̃2f1. (2.15)

In the case of an isotropic media we have c2 = −(f1f2/d)I and c3 = f1f2d
−2(f2 +

(d− 1)ζ1)I. The anisotropic three-point bounds then reduces to the Beran bounds
[3, 26], involving the structural parameters ζ1 and ζ2 where ζ1 + ζ2 = 1. In terms
of correlation functions, the ζ1 parameter can, in the three-dimensional case, be
calculated from

ζ1 =
9

2f1f2

∫ ∞

0

dr

∫ ∞

0

ds

∫ +1

−1

du
S3(r, s, u)

rs
P2(u) (2.16)

where P2(u) is the Legendre polynomial of order 2 and S3(r, s, u) is the probability
of a triangle, with two sides of length r and s with common angle cos−1(u), having
all three vertices lie in the component 1 material when placed randomly in the
composite, i.e., varied over all translations and solid-body rotations of the triangle.
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2.1.4 Four-point bounds

The ε2,2 Padé approximant of the expansion (2.6) gives the lower bound

εL
4 = ε1P̃2Q̃

−1
2 (2.17)

where the two polynomials are

P̃2 = c̃2
2 − c̃3f2 + c̃4f2z + c̃2

3z
2 − c̃2z(c̃3 + c̃4z), (2.18)

Q̃2 = c̃3
2z

2 + c̃2
3z

2 + c̃2
2(1 + f2z)− c̃3f2(1 + f2z)

+c̃4f2z(1 + f2z)− c̃2z(c̃3 + c̃4z + 2c̃3f2z).
(2.19)

The coefficients are related according to (2.7). The ε2,2 Padé approximant of the
expansion (2.2) gives the upper bound

εU
4 = ε2P2Q

−1
2 (2.20)

where

P2 = c3
2z

2 + c2
3z

2 + c2
2(1 + f1z)− c3f1(1 + f1z)

+c4f1z(1 + f1z)− c2z(c3 + c4z + 2c3f1z),
(2.21)

Q2 = c2
2 − c3f1 + c4f1z + c2

3z
2 − c2z(c3 + c4z). (2.22)

In the isotropic case these bounds reduce to the Milton bounds [18]. The Milton
bounds depend on the three-point parameter ζ1 in (2.16) and a four-point parameter,
see [29, p. 562].

3 Bounds on the structural parameters using lower

order parameters

Let cn be one of the diagonal elements in cn. In [25], Sen and Torquato obtained
upper and lower bounds on c2 and a lower bound on c3. In [29], Torquato derived
an upper bound on c3. We use a powerful method to get a simple proof of the
bounds on c2, c3 and to derive bounds on c4. We simply use that when varying
the free parameter cn in the n-point bounds, the bounds are forbidden to violate
the (n− 1)-bounds. We have equality for some value on cn, that provides a bound
on the parameter. In the next sections, we determine if the function εp,q(cn) is an
increasing or decreasing function of cn. This determines if the extreme value is a
minimum or a maximum. We use this method for all the bounds in the previous
section.

The volume fraction c1 is of course bounded between zero and one. The bounds
εL
2 and εU

1 are equal when c2 = 0 and the bounds εL
2 and εL

1 are equal when c2 = −f1f2.
This gives us the inequality

−f1f2 ≤ c2 ≤ 0. (3.1)
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The relation between the coefficients (2.15) implies −f1f2 ≤ c̃2 ≤ 0. In [25], the
authors give a more complicated proof of this inequality. In the same way, by
calculating when εL

3 = εL
2 and εL

3 = εU
2 , we get the inequality

cmin
3 ≤ c3 ≤ cmax

3 (3.2)

where the end points are

cmin
3 =

c2
2

f1

, cmax
3 = −c2

(
1 +

c2

f2

)
. (3.3)

Relation (2.15) and the extreme values (3.3) give us the inequality

−c̃2

(
1 +

c̃2

f1

)
≤ c̃3 ≤

c̃2
2

f2

. (3.4)

That we have obtained the correct end points are easily checked. The bounds εL
3

and εL
2 are equal when c3 = cmax

3 and εL
3 = εU

2 when c3 = cmin
3 .

Solving εL
4 = εL

3 with respect to c4 give us the lower bound cmin
4 . The algebraic

calculations are harder in the upper bound case. To simplify the algebraic calcula-
tions εU

4 = εU
3 is solved with respect to c̃4. Relation (2.7) then gives the upper bound

on c4. The result is given by
cmin
4 ≤ c4 ≤ cmax

4 (3.5)

where

cmin
4 =

c3
2 + f2c

2
2 + c2c3(f2 − f1) + c3(c3 − f1f2)

c2 + f1f2

, cmax
4 =

c2
3

c2

. (3.6)

Relation (2.7) and the extreme values (3.6) give us the inequality

c̃2
3

c̃2

≤ c̃4 ≤
c̃3
2 + f1c̃

2
2 + c̃2c̃3(f1 − f2) + c̃3(c̃3 − f2f1)

c̃2 + f2f1

. (3.7)

The same procedure can be used to limit higher order structural parameters, cn.

4 Bounds on the structural parameters using mea-

sured or calculated values of εeff

In [17], Lord Rayleigh’s technique and a certain differentiation were used to de-
termine bounds for a material composed of disks placed in a square or hexagonal
array. In [7], the Fourier transform and a continued-fraction expansion were used
to produce numerical bounds on the effective parameters. In [12], the author intro-
duced a numerical method based on the fast multipole method and the conjugate
gradient method to solve the equations in [17]. The method is shown to be very ef-
fective in the case of nearly touching disks. Numerical calculations of the structural
parameters ζ1 and µ1 have been done with high accuracy for disks and spheres [12].

The structural parameters for macroscopically anisotropic media are less studied.
In one case, where the anisotropy is the consequence of the shape of the inclusions
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the structural parameter c2 was calculated [28]. The authors compute two-point
bounds for a distribution of oriented overlapping cylinders, with a finite aspect
ratio. Two-point bounds for anisotropic second-rank laminates are found in [24].

Here we propose a method to get numerical bounds on the structural parameters
c1, c2 and c3 from computations or measurements. Moreover, this section provide
the basis for the cross-property bounds in Section 6. The functions εp,q(cn) in this
section are defined on the line segment l = {cn; cmin

n ≤ cn ≤ cmax
n } from Section 3.

The expressions are simplified using Mathematica 5 (www.wolfram.com).

4.1 One-point bounds

Write the arithmetic mean (2.10) as εU
1 (c1; ε1, ε2) = c1ε1 + (1 − c1)ε2. Regard this

upper bound εU
1 and the lower bound (2.9) as functions of the single variable c1

alone. Assume that ε2 > ε1 > 0. The c1-dependent functions

εL
1 : [0, 1] → [ε1, ε2], εU

1 : [0, 1] → [ε1, ε2] (4.1)

are then bijections and they have decreasing inverses. This gives (εU
1 )−1(εeff) ≥

c1 and (εL
1 )−1(εeff) ≤ c1, which are upper and lower bounds on c1, denoted by

cU
1 := (εU

1 )−1(εeff) ≥ c1 and cL
1 := (εL

1 )−1(εeff) ≤ c1, respectively. The procedure is
illustrated in Figure 1. Explicitly the parameter c1 is bounded by cL

1 ≤ c1 ≤ cU
1

where

cL
1 =

1/εeff − 1/ε2

1/ε1 − 1/ε2

, cU
1 =

ε2 − εeff

ε2 − ε1

. (4.2)

These bounds on the volume fraction c1 = f1 can be very narrow in the case of a
low or high contrast material. Let ε1 = 1 and ε2 = 1 + δ. Using the expansion (2.2)
the asymptotic behavior when δ → 0 is

cU
1 − cL

1 = f1f2δ + O(δ2). (4.3)

For a fixed δ, the difference is smaller when the volume fraction is low or high, i.e.,
when the c1 parameter is close to the end points cmin

1 = 0 and cmax
1 = 1.

The one-point bounds can for example be used to check the volume fraction in
experiments where it is sometimes difficult to determine the fraction from direct
measurements.

4.2 Two-point bounds

Denote by c2 one of the diagonal elements in c2. Using c̃2 = −c2−f1f2, the two-point
lower and upper bounds then are

εL
2 = ε1

(c2 + f1f2)(ε2 − ε1)− f2ε2

c2(ε2 − ε1)− f2ε1

(4.4)

and

εU
2 = ε2

c2(ε2 − ε1) + f1〈ε〉
f1ε2 + c2(ε2 − ε1)

. (4.5)
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2ε

ε1

ε

cL
1

U
1

εU
1

eff

0

ε1
L

(c )1

(c )1

c 1 c1

Figure 1: From a known value of εeff and the bounds εL
2 , εU

2 we get bounds on the
structural parameter c1.

The term 〈ε〉 denotes here the arithmetic mean f1ε1 + f2ε2.
One way of calculating c2 is by using the Taylor expansion of the effective per-

mittivity εeff given in (2.2). This gives

c2 =
1

2

∂2εeff(1, 1)

∂ε2
1

, (4.6)

and shows that c2 can be computed by varying the phases for weak contrasts. The
number of computations needed depends on the formula chosen for numerical dif-
ferentiation. We need at least three points but if the difference between the permit-
tivities ε1 and ε2 is too small, it is hard to get high accuracy on εeff . To get higher
accuracy a higher order scheme can be used, but even then the accuracy is in many
cases poor when the c2 parameter is small. This is a bad method from a numerical
point of view. The technique in [12, 17] is much better but here we suggest another
approach, providing bounds on c2 rather than a direct calculation.

Let ε2 > ε1 > 0 and regard εU
2 (c2; ε1, ε2, f1) as a function of c2 alone. The

continuous function
εU
2 : [−f1f2, 0] → [εL

1 , εU
1 ] (4.7)

is a bijection. It is simple to show that εU
2 is one to one and that it is onto follows

from (εU
2 )′(c2) > 0, εU

2 (−f1f2) = εL
1 and εU

2 (0) = εU
1 . Since (εU

2 )−1 is an increasing
function, we have cL

2 := (εU
2 )−1(εeff) ≤ c2. Using εL

2 we obtain in the same way an
upper bound cU

2 . Explicitly, the parameter c2 is bounded by cL
2 ≤ c2 ≤ cU

2 where

cL
2 =

ε2f1(ε
eff − 〈ε〉)

(ε2 − ε1)(ε2 − εeff)
, (4.8)

cU
2 =

ε1f2(ε
eff − 〈ε〉)

(ε2 − ε1)(εeff − ε1)
. (4.9)
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Let ε1 = 1 and ε2 = 1+ δ. Using the expansion (2.2), the asymptotic behavior when
δ → 0 is

cU
2 − cL

2 = −c2(c2 + f1f2)

f1f2

δ + O(δ2). (4.10)

For a fixed δ, the difference is smaller when the c2 parameter is close to the end
points (3.1). The difference is large when the volume fraction c1 = f1 is close to the
end points, but then the one-point bounds (2.9) and (2.10) are close together.

Remember that the structural parameter c2 depends on the correlation function
S2(x1, x2). The two-point function S2 can be obtained by randomly tossing line
segments of length |x1 − x2| with a specified orientation and counting the fraction
of times both end points fall in phase 1. The two-point function S2 can be computed
using various methods, see [29, Chapter 12].

4.3 Three-point bounds

Denote by c3 one of the diagonal elements in c3. Using the relations (2.15), the
three-point lower bound (2.13) is explicitly written

εL
3 = ε1

P3

Q3

, (4.11)

where the numerator and the denominator are

P3 = ε2[c3(ε1 − ε2) + c2(ε1 − 2〈ε〉) + f1f2〈ε〉],
Q3 = c2

2(ε1 − ε2)
2 − f1f2ε1ε2 + c2ε1(ε1 − ε2 − 〈ε〉) + c3(ε1 − ε2)(f2ε1 + f1ε2).

The three-point upper bound (2.14), on the diagonal element εeff , is given by

εU
3 =

c2(ε1 − ε2)
2 − c3(ε1 − ε2)〈ε〉+ c2ε2〈ε〉
c2ε2 + c3(ε2 − ε1)

. (4.12)

The structural parameter c3 can be calculated using differentiation but we need
a large number of computations and even then the accuracy in many cases is poor.
As above we suggest another approach. Regard εU

3 (c3; ε1, ε2, f1, c2) as a function of
c3 alone. Assume that c2 6= 0. As above we can prove that the continuous and
decreasing function

εU
3 : [

c2
2

f1

,−c2

(
1 +

c2

f2

)
] → [εL

2 , εU
2 ] (4.13)

is a bijection. The inverse (εU
3 )−1 is a decreasing function of c3. This gives cU

3 :=
(εU

3 )−1(εeff) ≥ c3 where

cU
3 = c2

c2(ε1 − ε2)
2 + ε2(〈ε〉 − εeff)

(ε1 − ε2)(〈ε〉 − εeff)
. (4.14)

Using εL
3 we obtain in the same way the lower bound

cL
3 =

G3

H3

, (4.15)
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where the two polynomials G3 and H3 are

G3 = c2
2ε

eff(ε1 − ε2)
2 − ε1ε2f1f2(ε

eff − 〈ε〉) + c2ε1(ε2(2〈ε〉 − ε1) + εeff(ε1 − ε2 − 〈ε〉))
H3 = (ε1 − ε2)(ε1ε2 − εeff(ε1f2 + ε2f1)).

Let ε1 = 1 and ε2 = 1+ δ. Using the expansion (2.2), the asymptotic behavior when
δ → 0 is

cU
3 − cL

3 =
(c3f1 − c2

2)(c3f2 + c2f2 + c2
2)

c2(c2 + f1f2)
δ + O(δ2). (4.16)

For a fixed δ, the difference appers to be smaller when the c3 parameter is close to
the end points (3.2). The difference is large when the c2 parameter is close to its
end points, but then the two-point bounds (2.11) and (2.12) are close together.

Alternatively we could have used that the Padé approximants are Moebius
transformations (linear fractional transformations) to show properties (invertabil-
ity, monotonicity) of the function εp,q(cn).

The structural parameter c3 depends on the two-point function S2 and the three-
point function S3. The three-point function S3(x1, x2, x3) is the probability of a tri-
angle having all three vertices in the component 1 material, when placed randomly in
the composite at fixed orientation, i.e., over all translations of the triangle. Methods
to compute the three-point function S3 are presented in [29, Chapter 12].

In the case of an isotropic medium we have c3 = f1f2d
−2(f2 + (d− 1)ζ1)I. This

gives us bounds on the parameter ζ1, using analogous methods.

5 Complex bounds on the permittivity

The εp,q Padé approximant is of the form

εp,q(cn) = α0 +
α1cn + α2

α3cn + α4

. (5.1)

Regard α0, α1, α2, α3 and α4 as complex numbers. Then (5.1) is the sum of a
translation and a Moebius transformation. The real segment l = {cn; cmin

n ≤ cn ≤
cmax
n } is easily seen to be mapped on a circle or a line segment, see [10, p. 200]. For

example we get complex bounds from the lens-shaped region bounded by

εL
3 (c̃3; ε1, ε2, c̃2), εU

3 (c3; ε1, ε2, c2) (5.2)

where the structural parameter c̃3 varying between

−c̃2

(
1 +

c̃2

f1

)
≤ c̃3 ≤

c̃2
2

f2

(5.3)

and c3 varying between
c2
2

f1

≤ c3 ≤ −c2

(
1 +

c2

f2

)
. (5.4)
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Alternatively, we can describe the bounds in terms of the points through which
the circle passes. Let Arc(z1, z2, z3) denote the arc of a circle joining the end points
z1 and z2 that when extended passes through z3. Such an arc is described by

z(t) = z1 +
1− t

1/(z2 − z1) + t/(z1 − z3)
, 0 ≤ t ≤ 1. (5.5)

The effective permittivity εeff is bounded by Arc(εL
3 , εU

3 , εL
2 ) and Arc(εL

3 , εU
3 , εU

2 ). Tight-
er bounds are given by Arc(εL

4 , εU
4 , εL

3 ) and Arc(εL
4 , εU

4 , εU
3 ). This was shown in [8, 18]

but is here given in terms of Padé approximations that relate the bounds to the
structural parameters cn.

6 Cross-property bounds

The bounds on the effective permittivity can be considerably improved if we have
information from experiments. The measurements can be on the material at a
different temperature or for a related parameter, such as the magnetic permeability
or the thermal conductivity. The important thing is that the microstructure is the
same. Assume that we know the value of the parameter at the two phases ε̂1, ε̂2 and
the effective parameter ε̂eff(ε̂1, ε̂2). The task is here to infer bounds on εeff(ε1, ε2).
The bounds incorporate knowledge from measurements of a related parameter and
they are called cross-property bounds.

Require that the cross-property bounds satisfy

εU
1 (ε1, ε2, ĉ

U
1 ) = εL

1 (ε1, ε2, ĉ
L
1 ) = ε̂eff , (6.1)

when ε1 = ε̂1 and ε2 = ε̂2. From the definition in Section 4.1 we have εU
1 = ε̂eff when

ĉU
1 = cU

1 (ε̂1, ε̂2) and εL
1 = ε̂eff when ĉL

1 = cL
1 (ε̂1, ε̂2). The one-point cross-property

bounds are then
(εL

1 )c ≤ (εeff)c ≤ (εU
1 )c (6.2)

where
(εL

1 )c = εL
1 (ε1, ε2, ĉ

L
1 ), (εU

1 )c = εU
1 (ε1, ε2, ĉ

U
1 ). (6.3)

The numerical bounds ĉL
1 and ĉU

1 from (4.2) are here functions of ε̂1, ε̂2. Explicitly,
that is

(εL
1 )c = (ĉL

1/ε1 + (1− ĉL
1 )/ε2)

−1, (εU
1 )c = ĉU

1 ε1 + (1− ĉU
1 )ε2 (6.4)

where

ĉL
1 =

1/ε̂eff − 1/ε̂2

1/ε̂1 − 1/ε̂2

, ĉU
1 =

ε̂2 − ε̂eff

ε̂2 − ε̂1

. (6.5)

This was first obtained in [5] where the author used a variational principle, see
also [21, p. 580]. The method presented above instead relates the measured values
to the bounds on the structural parameter c1.

Similarly, in the two-point case the cross-property bounds are required to satisfy

εU
2 (ε1, ε2, c1, ĉ

L
2 ) = εL

2 (ε1, ε2, c1, ĉ
U
2 ) = ε̂eff , (6.6)
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when ε1 = ε̂1 and ε2 = ε̂2. From the definition in Section 4.2 we have εU
2 = ε̂eff when

ĉL
2 = cL

2 (ε̂1, ε̂2) and εL
2 = ε̂eff when ĉU

2 = cU
2 (ε̂1, ε̂2). The two-point cross-property

bounds then are
(εL

2 )c ≤ (εeff)c ≤ (εU
2 )c (6.7)

where

(εL
2 )c = ε1

ĉU
2 (ε1 − ε2) + f2〈ε〉
f2ε1 + ĉU

2 (ε1 − ε2)
, (εU

2 )c = ε2
ĉL
2 (ε2 − ε1) + f1〈ε〉
f1ε2 + ĉL

2 (ε2 − ε1)
. (6.8)

The parameters ĉL
2 and ĉU

2 from (4.8) and (4.9) are here functions of ε̂1 and ε̂2. This
was first obtained in [23], see also [21, p. 580]. Here we use a new method that
relates the measured values to the bounds on the structural parameter c2. The
analytical bounds (3.1) can be useful to check the measured values.

The three-point cross-property bounds are also required to satisfy

εU
3 (ε1, ε2, c1, c2, ĉ

U
3 ) = εL

3 (ε1, ε2, c1, c2, ĉ
L
3 ) = ε̂eff , (6.9)

when ε1 = ε̂1 and ε2 = ε̂2. We get the tighter bounds

(εL
3 )c ≤ (εeff)c ≤ (εU

3 )c (6.10)

where
(εL

3 )c = εL
3 (ε1, ε2, c1, c2, ĉ

L
3 ), (εU

3 )c = εU
3 (ε1, ε2, c1, c2, ĉ

U
3 ). (6.11)

The parameters ĉU
3 and ĉL

3 are here functions of ε̂1, ε̂2. In the three-dimensional
isotropic case, c2 = −f1f2/3. This was shown in [5, 6, 21]. The analytical bounds
(3.1) and (3.2) can be useful to check the measured values. We can also combine
the calculations made in, for example, [28] with a measurement of some effective
parameter on the same material to get bounds from (6.10).

Similar to Section 5, the effective permittivity εeff is in the complex case bounded
by the lens-shaped region

Arc((εL
2 )c, (ε

U
2 )c, (ε

L
1 )c), Arc((εL

2 )c, (ε
U
2 )c, (ε

U
1 )c). (6.12)

Tighter bounds are given by

Arc((εL
3 )c, (ε

U
3 )c, (ε

L
2 )c), Arc((εL

3 )c, (ε
U
3 )c, (ε

U
2 )c). (6.13)

6.1 Numerical example

We give an example in the anisotropic and periodic case. Figure 2 shows the complex
cross-property bounds for εeff when f1 = 0.6, ε1 = 3 + 0.1i, ε2 = 2 + 20i, ε̂1 = 1.44,
ε̂2 = 160, and ε̂eff = 2.72 are known constants and the inclusion is placed in a square
lattice. The numerical values on ε1 and ε̂1 simulate the permittivity and the thermal
conductivity of epoxy, respectively. Simularly, the numerical values on the inclusion
corresponds to the permittivity ε2 and thermal conductivity ε̂2 of a carbon material.

The dashed line is the lens-shaped region given by (6.12), which depends on the
one-point bounds (6.5) and the two-point bounds (6.7). Tighter bounds are given
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ĉL
1 ĉU

1 c1 ĉL
2 ĉU

2 c2 ĉL
3 ĉU

3

(εL
1 )c 0.5251 - - - - - - -

(εU
1 )c - 0.9919 - - - - - -

(εL
2 )c - - 0.6 - −0.1764 - - -

(εU
2 )c - - 0.6 −0.2392 - - - -

(εL
3 )c - - 0.6 - - −0.1841 0.09234 -

(εU
3 )c - - 0.6 - - −0.1841 - 0.09931

Table 1: Illustration of which structural parameters that are used to calculate the
different cross-property bounds.

by the solid line, (6.13), which depends on the two-point bounds (6.7) and the three-
point bounds (6.10). The n-point bounds depend on the structural parameters, up
to and including cn−1, and bounds on the structural parameters ĉn. This dependency
and the numerical values are presented in Table 1.

The tighter bounds (6.13) depend on the structural parameter c2, that here
is calculated as the mean value of (4.8) and (4.9), when ε1 = 1, ε2 = 1.01 and
εeff = 1.0039817. The numerical calculation of c2 require many digits of εeff for
this small contrast. In practice, image analysis can also be used to calculate c2,
see [29, Chapter 12]. The effective parameter ε̂eff is calculated numerically, but can
also be the result of a measurement of, for example, the thermal conductivity.

The end point (εL
3 )c = 5.4091+1.0381i is close to the correct effective permittivity

εeff = 5.3837 + 1.0465i. This comes as no surprise because inclusions cannot heavily
influence the effective parameter when we are below percolation threshold, see [17].

The numerical calculations of the effective parameters from the local problem, [2,
p. 663], were done with FEMLAB (www.comsol.com).

7 Discussion and conclusions

The numerical bounds on the structural parameters in Section 4 are sometimes
broad and sometimes very narrow, depending on the contrast and the geometry.
Calculations of the structural parameters give us physical understanding on the
problem and can be used to check calculations based on image analyses.

The new analytical bounds in Section 3 give us the possibility to see which
effective parameters of the composite materials that are possible to achieve, given
some of the structural parameters cn.

The new cross-property bounds in Section 6 give us narrow bounds from one
measurement of some effective parameter together with a measurement of the two-
point correlation function S2, see (2.3).

Many of the results given here can easily be extended. Numerical calculations
and comparison with results from measurements are currently being undertaken.
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Figure 2: The applied field is oriented perpendicularly to the rods. The effective
permittivity εeff is bounded by the dashed line (6.12) and tighter bounds are given
by the solid line (6.13). The star is the effective permittivity calculated from the
local problem.
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