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Abstract

The paper discusses some research questions
related to event-based control over networks and
presents preliminary results regarding event-
based minimum-variance control of first-order
systems with specified minimum inter-event
times.

1. INTRODUCTION

Modern control systems are often built from sev-
eral smaller, standardized units that are inter-
connected by a communication network. Local
sensing and control is typically performed by
mechatronic devices that have embedded micro-
controllers, while the overall system of actua-
tors, sensors and control nodes is connected by
a wired or wireless network. In these systems,
the network bandwidth tends to be the bottle-
neck resource that limits the application perfor-
mance. Hence, ways to utilize the bandwidth as
efficiently as possible need to be researched.

One promising approach to more efficient band-
width usage in networked control loops is event-
based control. The basic idea is to transmit sen-
sor and command data only when needed. This
should be contrasted to traditional sampled-
data control (Åström and Wittenmark, 1997),
where information is transmitted at regular in-
tervals, regardless of whether anything signifi-
cant has happened since last time.

Event-based control as a technology is of course
not new. It has been used for a long time in
such diverse areas as engine control (Hendricks

et al., 1994), robot path planning (Tarn et al.,
1996), and control of industrial processes (Kwon
et al., 1999). Mostly, however, it has been ap-
plied in an ad-hoc way. This can be attributed
to the lack of a comprehensive theory, which in
turn can be explained by the mathematical diffi-
culties involved. In particular, event-based con-
trol schemes always lead to nonlinear system
descriptions.

In (Åström and Bernhardsson, 1999) event-
based minimum-variance control of first-order
systems was studied. It was shown that the
output variance could be significantly reduced
(by two-thirds for an integrator process) by
using event-based rather than periodic control.
This shows that event-based sampling has a
great potential for decreasing the bandwidth
requirements of networked controllers.

In this paper, we outline some of the research
questions that arise in the area of event-based
control over networks (Section 2). We also study
event-based minimum-variance controllers with
minimum inter-sample times and give some
preliminary results (Section 3).

2. RESEARCH QUESTIONS

We here raise a number of issues that deserve
further investigation in the area of event-based
control over networks.

What are the possible topologies? In net-
worked control systems, the sensors (S),
actuators (A), and controllers (C) may
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Fig. 1 Some possible topologies for networked SISO con-
trol loops.

reside on various nodes in the network.
Even for SISO control loops, many dif-
ferent topologies can be imagined, see
Fig. 1. The controller could reside on a
separate node or be co-located with either
the sensor or the actuator. The sensor
and actuator nodes could be very sim-
plistic or contain sophisticated observers,
depending on how much processing power
is available. Hence, the processing power
of each node could also be considered to be
part of the topology. Further, one might
ask under what conditions the topologies
in Fig. 1 are equivalent.

How to define the events? A key question in
event-based control is how the events
should be generated. For first-order sys-
tems, setting thresholds on the output as
in (Åström and Bernhardsson, 1999) may
be appropriate. For higher-order systems,
thresholds on the state vector will be both
hard to define and to monitor. Is there a
way to define the state thresholds opti-
mally? Further, care must be taken that
events are not generated arbitrarily often.

How to handle the servo problem? For
event-based control systems, is it possible
to combine feedforward reference tracking
with feedback disturbance rejection in the
same straightforward way as for periodic
control systems?

Sensitivity towards delay and jitter? If
not carefully designed, event-based
schemes may actually be more sensitive
towards delays than periodic schemes. An
unexpected delay between an event-based

sensor and an actuator may render the
system in state where no more events will
be generated. On the other hand, event-
based actuators (so called generalized hold
circuits) are known to be able to increase
the robustness towards jitter in networked
control loops (Sala, 2005).

What information to transmit? This ques-
tion is related to that of which events to
generate. Often, more information than
the event itself could be transmitted. For
instance, a sensor node could use fast
sampling of a noisy measurement signal
to get a good estimate of the plant state
vector, and then send this estimate once
an event is generated. For sensor nodes
with less computational power, it may be
reasonable to instead transmit a vector
of recorded measurement values to the
controller. Similarly, the controller might
transmit a vector of precomputed control
actions to a simple actuator node.

Implications from scheduling theory? In
scheduling theory, the utilization factor
that an aperiodic activity exhorts on a re-
source is computed as U = C/T , where C
is the worst-case usage time, and T is the
minimum inter-event time. By this defini-
tion, the event-based controller designed
in (Åström and Bernhardsson, 1999) has
infinite utilization and cannot be sched-
uled on any network. Similarly, event-
based transmissions increase the release
jitter in the receiving nodes, increasing
the CPU utilization factor as well. Hence,
for practical applications, it is necessary
to put a lower bound on the inter-event
times. (The question of how this bound
can be selected and how it affects the
performance is investigated in the next
section.)

How to design event-based observers?

Having access to fewer (on average) and
irregularly spaced measurement and com-
mand signals, another key question in
event-based control is how to design good
observers. Optimal event-based observers
were explored in the Master’s thesis (Hen-
ningsson, 2005). In general, obtaining the
optimal state estimate (expressed as a
probability density function) involves solv-
ing a set of nonlinear PDEs. The the-
sis proposes ways design suboptimal ob-
servers by the use of logarithmic concave
functions.



3. PRELIMINARY RESULTS

In (Åström and Bernhardsson, 1999) periodic
sampling and event-based sampling are com-
pared for control of first-order stochastic sys-
tems. Event-based control is realized by apply-
ing an impulse control action whenever the mag-
nitude of the system state exceeds a certain
threshold. The event-based scheme is found to
yield only a fraction of the quadratic cost as com-
pared to periodic sampling, with the same mean
time between events.

In many instances it is not reasonable to assume
that two events may occur in an arbitrarily short
time. Here, we investigate the situation when
there is a specified minimum inter-arrival time
between the events.

3.1 Control Problem

Consider the first-order system described by the
stochastic differential equation

dx = ax dt+ du+σ dw,

where x is the state, u the control signal, w is a
Wiener process with E(dw) = 0, E(dw2) = dt,
a is the pole of the system and σ is the intensity
of the process noise.

The state is assumed to be available to the
controller at all times. The control signal u is
zero, except at events where it is allowed to be
a Dirac pulse of any magnitude. After an event,
there must be a time delay of at least T before
the next event.

Given the quadratic cost function

J(t0, t1) = E
(
∫ t1

t0

c(x(t))dt+ qeNe(t0, t1)
)

,

where c(x) = qx2 is the state-dependent cost,
Ne(t0, t1) is the number of events in the interval
(t0, t1), and q and qe are weighting factors. It
is desired to find a causal control strategy that
minimizes

λ = lim
t→∞

J(0, t)
t

subject to the minimum inter-event time T .

For problem described above, it is easy to see
that the optimal controller must satisfy the
following:

• At any event, u is chosen to bring x to the
origin.

• When the time elapsed since the last event
is less than T , the controller is in the
inactive state and no event is generated.

• When the time elapsed since the last event
is greater than T , the controller is in the
active state. Whether to generate an event
or not is decided as a function of pxp.

• If in the active state an event should be
triggered when x = x1, it should also be
triggered whenever pxp ≥ px1p.

Thus, the only parameter left to specify the
optimal controller is the threshold r, such that
an event is triggered whenever the controller is
in the active state and pxp ≥ r. The threshold
should be chosen to minimize λ .

3.2 Performance as a Function of Threshold

To find the optimal threshold r, the closed-loop
system will be characterized as a function of r.
Introduce the storage function V (x) such that

E
(

c(x)dt+ dV (x)
)

= λ dt, (1)

when the controller is in the active state and
that

E

(

∫ t0+T

t0

c(x)dt+ V (x(t0 + T)) − V (x
−(t0))

)

+qe

= λT

(2)

when there is an event at time t0.

It follows from (1) that

λ = c(x)dt+ V ′(x)E(dx) +
1
2
V ′′(x)E(dx2)

= c(x)dt+ axV ′(x)dt+
1
2

σ 2V ′′(x)dt

so that

1
2

σ 2V ′′(x) + axV ′(x) + c(x) − λ = 0.

The solution of the equation

1
2

σ 2 f ′′(x) + ax f ′(x) = κ (x) (3)

with f (0) = f ′(0) = 0 can be found from

1
2

σ 2 f ′(x) = e−
a

σ2
x2
∫ x

0
e
a

σ2
y2κ (y)dy.

The storage function can now be written as

V (x) = λVλ(x) + Vc(x),

where Vλ is found by inserting κ (x) = 1 in (3)
and Vc by inserting κ (x) = −c(x).



To apply (2) the following partial results are
needed. The expected state cost during one
period of inactive state is

JT = E

(

∫ t0+T

t0

c(x)dt p x(t0) = 0,u(t) = 0

)

= qσ 2
e2aT − (1+ 2aT)

4a2
.

After one period of inactive state x has a Gaus-
sian distribution with zero mean and variance

VT = E(x(t0 + T)
2 p x(t0) = 0,u(t) = 0)

= σ 2
e2aT − 1
2a

.

Let ϕ (x) be the Gaussian probability density
with zero mean and variance VT . Then (2) can
be written as

λT = JT +

∫

ϕ (x)V (x)dx− V (r) + qe,

or

λ

(

T −

∫ r

−r

ϕ (x)(Vλ(x) − Vλ(r))dx

)

= JT + qe +

∫ r

−r

ϕ (x)(Vc(x) − Vc(r))dx,
(4)

from which λ can be solved for.

The optimal controller can be found by minimiz-
ing λ as a function of r. Although the equation
(4) may seem cumbersome, the integrals can be
easily and closely approximated by substituting
10–30 degree series expansions of the Gaussian
functions involved.

3.3 Probability Distribution of the State

The probability density f (x) of the state in the
active mode can be obtained from the diffusion
equation

1
2

σ 2 f ′′(x) − ax f ′(x) − a f (x) +ϕ (x)/Tm = 0,

where Tm is the mean time between events
and f (x) is normalized so that

∫

f (x)dx is the
probability that the controller is in the active
state.

The solution is

1
2

σ 2 f (x) =
1
Tm
e
ax2

σ2

∫ x

−r

e
−ay2

σ2

∫ 0

y

ϕ (z)dzdy.

The mean time between events can now be
solved for from the fact that

Tm = T + Tm

∫

f (x)dx.

3.4 Results for First-Order Systems

All results are presented for the case T = 1,
σ = 1, q = 3, qe = 0. With this choice r2 = λ
for the integrator case. Except for qe, the results
apply for arbitrary values of the constants when
scaled properly.

The Integrator Case. In the integrator case
(a = 0) the computations are considerably
simplified since all Gaussian functions except
ϕ (x) become unity. The results when paT p is
small (i.e. reasonably fast sampling) are similar
to the integrator case.

Fig. 2 shows λ as a function of r. Periodic
sampling corresponds to r = 0. The loss rate
λ has a minimum for some r > 0 and then
grows toward infinity (since the process is not
asymptotically stable).

The storage function V (x) is composed of two
parts, a constant value for pxp ≥ r and a varying
part for pxp < r. The boundary is where an event
is triggered when the controller is in the active
mode.

Reasonably V (x) must be nondecreasing at x =
r, for as soon as V (x) ≥ V (r) the optimal
controller would trigger an event, yielding the
storage cost V (r). Thus V ′(r) must be ≥ 0.

From the figure it is actually seen that the
optimal r is obtained when V ′(r) = 0, that is for
continuously differentiable V (x). This property
of continuous V ′(x) seems to hold generally for
the system considered.

Fig. 3 shows V (x) and the active mode density
f (x) for the optimal controller obtained from the
minimizing r above.

General First-Order Systems. Fig. 4 shows r,
λ and Tm for the optimal controller as function
of a. For a outside the range in the plot, faster
sampling should probably be considered.

The threshold increases with a, which is prob-
ably because the inactive periods when the sys-
tem runs open loop become much more costly as
a increases. Still, the variation is within a factor
of two in the wide range plotted.

The loss rate λ follows quite closely below the
loss rate of the optimal periodic controller λ p
and represents a loss reduction of about 20% for
aT < 0.5. For greater aT , the gain from event-
based control decreases. The ratio λ

λ p
actually

has a minimum for aT ( −0.5.

The mean time between events seems to set-
tle at about 1.8T for negative enough aT , cor-
responding to 80% longer time between events
than with periodic control. For the integrator
case the figure is 62% longer, and for unstable
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Fig. 2 Loss rate λ as a function of threshold r for the inte-
grator case. Also shown is the storage function deriva-
tive at the edge of the no-event region. The derivative
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Fig. 3 Storage function and probability density over the
active mode for the optimal controller when a = 0. The
density is zero for pxp > r since the system never dwells
in the active mode under this condition.

systems the mean time decreases quite quickly,
because of the short dwell time of the state
within pxp < r.

For negative enough aT , the decrease in r
makes the controller more similar to the peri-
odic case, as does the decrease in Tm for positive
enough aT . Thus it should be expected that the
event-based control differs most from the peri-
odic case for modest paT p.

Fig. 5 shows the storage function for different
values of a. Beside the effect of increasing
threshold values and increasing cost in general,
the curves look very similar.

Fig. 6 shows the probability density over the ac-
tive mode for different values of a. For negative
a the curve becomes quite sharp, whereas for
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Fig. 4 Threshold, loss rate and mean time between events
as a function of a for first order systems controlled by
the optimal controller. The rate λ p is the loss rate of
the optimal periodic controller. Notice the log-scale in
the middle plot.
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Fig. 5 Storage functions for the optimal controller with a
stepped from −1 to 1 in increments of 0.1.

positive a it becomes more and more rectangu-
lar because of the inflating effect of the unsta-
ble dynamics. Also noticeable is the decrease in
dwell time in the active mode as seen as a drop
in the area under the curve when a increases.

3.5 Event-Based Control for Less Events

The main advantage of the event-based control
scheme seems to be the increase in mean time
between events. It could be well justified to
trade the modest reduction in loss rate for a
greater reduction in rate of events.

Fig. 7 shows r and Tm for event-based con-
trollers tuned to give the same λ as in the pe-
riodic case, but maximum Tm. The r curve is
similar to the previous case, but a bit higher i
value.

For a = 0, Tm ( 2.8 corresponding to 180%
longer time between events or a 64% reduction
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for the optimal controller with a stepped from −1 to 1
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Fig. 7 Threshold and mean time between events as a
function of a for first order systems controlled by an
event-based controller tuned to give the same loss rate
as the optimal periodic one but less events.

in mean event rate. For negative a the curve
grows quickly and almost linearly, with for
instance Tm ( 3.6 for a = −0.5. For positive
a, Tm falls toward 1.

3.6 Comparison Between Periodic and
Event-Based Control

In the framework considered, it seems that
minimum-variance control with minimum inter-
event time T compares favourably to periodic
control with sampling period T . For reasonable
T , about 20% reduction in output variance and
60% longer mean time between events can be
expected, or 180% longer mean time between
events for the same output variance.

It is interesting to note that unlike periodic con-
trollers, the design of the event-based controller
depends on the process noise intensity σ in that
r scales with it. If the actual process noise is

much greater than designed for, the controller
approaches a periodic controller. If the process
noise is much smaller, the controller approaches
the case of arbitrary delay between events as
treated in (Åström and Bernhardsson, 1999).
Thus the interpretation of r as a threshold of
tolerable state error should not be overlooked.

4. CONCLUSION

The preliminary results show that event-based
control can perform better than periodic con-
trol even when considering the same network
utilization factor in the comparison. This and
many other issues in event-based control over
networks deserve further research.
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