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Abstract

One-dimensional pulse propagation in temporally dispersive dielectrics is an-
alyzed using a scalar, causal fundamental solution of the dispersive wave op-
erator (a single, retarded Green’s function). A number of exact solutions for
normal incidence on dispersive half-spaces are given, and these solutions are
compared to time-domain numerical results and to forerunners (precursors).

1 Introduction

One-dimensional propagation of pulses in homogeneous, temporally dispersive, iso-
tropic dielectrics has been analyzed in a great number of publications using both
traditional methods and time-domain techniques, see Refs 2, 12, 13, 17 for some of
the most significant results. The traditional methods are based on temporal Fourier
transformation and advanced saddle-point analysis [17]. Usually, the frequency
analysis is restricted to some special medium, e.g., the single-resonance Lorentz
medium. The time-domain methods often stress the general aspects of material
dispersion 2, 12, 13. There are, at least, three different, but intimately related,
time-domain methods that rely on so called optical wave splitting: the imbedding
method [2], the Green functions method [13], and the propagator method [10]. These
methods are applicable to stratified media as well. For homogeneous media, there
is also a time-domain method based on dispersive wave splitting [12]. This method
is no doubt the most attractive of the time-domain methods both in the theoretical
and the numerical sense.

In the present paper, the interest is focused on exact solutions at plane-wave
pulse propagation in homogeneous, temporally dispersive media. Relevant time-
domain properties are the refractive kernel, N(t), the impedance kernel, Z(t), and
the propagator kernel, P (|z|; t). At normal incidence on a dispersive half-space, the
reflection kernel, R(t), is of interest as well. For slab problems, the reflection and
transmission kernels can be expressed in terms of the kernels P (|z|; t) and R(t), see
Ref. 12. Exact solutions of these pulse propagation problems are useful for several
reasons:

• An heuristic understanding of pulse propagation in dispersive, absorbing media
may be gained. This is important since most media of interest are dispersive.

• The potential of traditional and novel numerical algorithms for solving pulse
propagation problems in dispersive media may be investigated.

• Traditional and novel techniques to obtain forerunners (precursors) may be
checked. This is an important point since numerical methods very well may fail
or may be found to be very time- and/or memory-consuming for propagation
distances as short as one micrometer.

The Lorentz model and the Debye model seem to be the most frequently used
models for material, temporal dispersion, see, e.g., Chelkowski [5, pp. 83-110] and
Kristensson [13]. The Lorentz model or the resonance model is appropriate for
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many solids and both single-resonance and multiple-resonance cases are discussed
in the literature. The Debye model or the relaxation model is employed to describe
dispersion in polar liquids such as water and alcohols for applications in the mi-
crowave regime. Both single-relaxation models and double-relaxation models have
been employed, see, e.g., Liebe et al. [15]. A third group of dispersive materials is
Debye-Lorentz media, which, to some accuracy, describe the dynamic of the charges
in the cold plasma, see, e.g., Dvorak and Dudley [6]. The Debye-Lorentz model can
be considered in the perspective of making the Debye model compatible with mi-
croscopic arguments. A fourth group of media is described by the Drude dispersion
model, which takes conductivity into consideration. It should be noted that results
for the Debye-Lorentz model and for the Drude model can be obtained as limit cases
of the results for the Lorentz model, see Section 2.

It seems hard to obtain exact solutions to pulse propagation problems in mate-
rials defined by the common dispersion models. In this paper, two novel groups of
absorbing, temporally dispersive media are introduced. The first group resembles
to Debye media and is referred to as modified Debye media. The second group re-
sembles to Lorentz media and is called modified Lorentz media. For these groups of
materials, one-dimensional pulse propagation problems are exactly solvable. Some
results for Debye media, double-Debye media, Lorentz media, double-Lorentz me-
dia, Debye-Lorentz media, and conducting media are given as well. Several of these
results can be found in the literature, see, e.g., Refs 2,7,21. In this article, they are
collected in a general context.

In Section 2, the basic theory of material, temporal dispersion is recapitulated
and the most commonly used models for such dispersion are presented. In Sec-
tion 3, the time-domain index of refraction and intrinsic impedance are introduced
and the results for the common models presented. Scalar, causal fundamental solu-
tions of one-dimensional first-order and second-order dispersive wave operators are
introduced in section 4. In Section 5, normal incidence at a plane nondispersive-
dispersive interface is discussed. Reflection kernels are introduced and the results
for the common models presented. Sommerfeld’s and Brillouin’s forerunners are
reviewed in Section 6. In Section 7, exact expressions for the refractive kernels, the
impedance kernels, and the reflection kernels are compared to numerical results in
several different cases. The propagator kernels are compared to the forerunners.
The two novel dispersion models are presented in Section 8. Exact expressions for
the characteristic kernels of these media are presented and compared to numerical
results and to precursors.

2 Common models for dispersive dielectrics

Throughout this article, Cartesian coordinates O(x, y, z) are used. The radius vector
is written r = uxx + uyy + uzz, where ux, uy, and uz are the basis vectors in the
x−direction, y−direction, and z−direction, respectively. Time is denoted by t.

The electric and magnetic field intensities at (r, t) are denoted by E(r, t) and
H(r, t), respectively, and the corresponding flux densities are D(r, t) and B(r, t).
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Each field vector is written in the form

E = uxEx(r, t) + uyEy(r, t) + uzEz(r, t).

The speed of light in vacuum is c and the intrinsic impedance of vacuum η. The
Dirac delta function is denoted by δ(t) and δ(z) and the Heaviside step function by
H(t) and H(z).

The Maxwell equations govern the dynamics of the fields in macroscopic media.
The source-free Maxwell equations are

∇× E(r, t) = −∂tB(r, t), ∇× H(r, t) = ∂tD(r, t),

where the current density, J(r, t), due to a finite conductivity has been included in
the displacement current density ∂tD(r, t). The constitutive relations of a homoge-
neous, temporally dispersive, nonmagnetic, isotropic medium are

cηD(r, t) = [Er]E(r, t), cB(r, t) = ηH(r, t), (2.1)

where
Er = (δ + χ)∗ = 1 + χ∗ (2.2)

is the relative permittivity operator and the star (∗) denotes convolution in time:

(χ ∗ E)(r, t) =

∫ t

−∞
χ(t − t′)E(r, t′) dt′.

The susceptibility kernel χ(t) vanishes for t < 0 and is assumed to be bounded and
smooth for t > 0. This implies causality: the wave-front of any non-pathological
electromagnetic field propagates through the dispersive material with the speed
of light in vacuum, see Roberts [19]. No other restrictions are imposed on the
medium. Recall that the susceptibility functions for dielectrics are often sensitive
to temperature variations, see, e.g., Ref. 15.

In the literature, the susceptibility kernel is often required to be absolutely
integrable. This property applies to absorbing, non-conducting media and ad-
mits Fourier transformation. According to the Riemann-Lesbesgue lemma, such
a medium vanishes in electromagnetical sense in the high-frequency limit. More-
over, the Kramer-Kronig relations are satisfied by definition [9, p. 310]. In some
references, the susceptibility kernel is required to be continuous as well [9, p. 310];
however, such a restriction excludes important media such as Debye media (and
conducting media). Notice also that a discontinuous susceptibility kernel is not in
conflict with causality, see Ref. 19. Finally, it is reasonable to require the medium
to be dissipative, see Karlsson and Kristensson [11] for a precise definition of this
concept. For dissipative dielectrics, the following result has been obtained [11]:

χ(+0) = 0 ⇒ χ′(+0) ≥ 0 and |χ′(t)| ≤ χ′(+0) for 0 ≤ t < ∞. (2.3)

It is not unusual to encounter more general constitutive relations for dispersive
dielectrics than (2.1). Specifically, the relative permittivity operator (2.2) may in-
clude a so called optical response, Er = εr(δ + χ)∗, where the number εr ≥ 1 is
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the relative permeability in the short-wave limit. The presence of an optical re-
sponse does not contradict the causality concept, see Ref. 19. However, an optical
response makes some important pulse propagation problems hard or impossible to
solve. Two problems of this category are total reflection at oblique incidence from an
electromagnetically “thicker” to an electromagnetically “thinner” medium and pulse
propagation in optical fibres. Finally, it should be noted that inhomogeneities, spa-
tial dispersion [18, p. 123], and nonlinearities [5] should be taken into consideration
as well in order to obtain the proper conduct of a real dielectric.

The Debye dispersion model reads

χ(t) = α exp (−βt)H(t),

where τ = β−1 > 0 is the relaxation time. The susceptibility kernel is discontinuous
and absolutely integrable.

The Lorentz model is specified by

χ(t) =
ω2

p

ν0

sin (ν0t) exp
(
−ν

2
t
)
H(t), ν0 =

√
ω2

0 −
ν2

4
, 0 <

ν

2
< ω0,

where ω0 is the natural or harmonic frequency, ωp the plasma frequency, and ν the
collision frequency. The susceptibility kernel is continuous and absolutely integrable.

The Debye-Lorentz medium

χ(t) = ω2
pt exp (−ω0t)H(t)

corresponds to the limit case ν/2 ↗ ω0 or ν0 ↘ 0 in the Lorentz model. The
susceptibility kernel is continuous and absolutely integrable.

The Drude model for dispersive, conducting media is

χ(t) =
ω2

p

ν

(
1 − exp (−νt)

)
H(t).

This model is obtained by letting the harmonic frequency ω0 in the Lorentz model
tend to zero. The susceptibility kernel is continuous and non-integrable.

The susceptibility kernel of the simple, conducting medium is

χ(t) = σcηH(t),

where σ denotes conductivity. This model is a limit case of the Drude model (put
ω2

p = σcην and let ν tend to infinity) and of the Debye model (let β tend to zero).
The susceptibility kernel is discontinuous and non-integrable.

The susceptibility kernel of the plasma in the absence of an external static mag-
netic field is

χ(t) = ω2
ptH(t),

where ωp is the plasma frequency. This model is a limit case of the Debye-Lorentz
medium (let ω0 tend to zero). This model also describes (non-material) modal dis-
persion in the closed empty wave guide (set ωp = cλn for the mode characterized by
the eigenvalue λn) [14]. The susceptibility kernel is continuous and non-integrable.
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3 Refractive index and intrinsic impedance

In Section 2, the relative permittivity operator Er was introduced, see equation (2.2).
Integral operators belonging to the class (2.2) are useful since they can be multiplied
without leaving the class. Obviously, the commutative and associative laws hold
under such multiplication (recall the properties of the susceptibility kernel). The
inverse of Er can be defined uniquely within the class (2.2) as well, see Appendix A.
This operator is referred to as the resolvent operator of Er and is denoted by E−1

r .
In the analysis of the propagation of pulses in temporally dispersive media, the
integral operators E1/2

r and E−1/2
r , which are uniquely defined within the class (2.2),

arise naturally.

3.1 The refractive index of a dispersive medium

The index of refraction of a temporally dispersive, nonmagnetic dielectric is a tem-
poral integral operator on the form

N ≡ 1 + N∗, where N 2 = Er. (3.1)

The refractive index corresponds to the complex index of refraction as a function of
angular frequency, see Brillouin [4, p. 43], Jackson [9, p. 328], and Oughstun and
Sherman [17, p. 23], and determines the propagation operators of the medium, see
Section 4.

The kernel of the index of refraction, N(t), satisfies the non-linear Volterra in-
tegral equation of the second kind

2N(t) + (N ∗ N)(t) = χ(t). (3.2)

This equation has a unique solution in the space of bounded and smooth functions
in each bounded time interval 0 < t < T . Explicitly, the refractive kernel can be
written in the form

N(t) =
∞∑

k=1

(
1
2

k

) (
(χ∗)k−1χ

)
(t).

The refractive kernel vanishes for t < 0 and has a finite jump-discontinuity at t = 0
if and only if the susceptibility kernel has such a discontinuity: N(+0) = χ(+0)/2.
In the numerical examples in Section 7 and Section 8, equation (3.2) is used to
compute the refractive kernel.

For the Debye medium, the refractive kernel is

N(t) =
α

2

(
I0

(α

2
t
)

+ I1

(α

2
t
))

exp (−γt)H(t), (3.3)

where In(x) are modified Bessel functions and

γ = β +
α

2
. (3.4)
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For the Lorentz medium, the corresponding result is

N(t) =
(
aν0H(t) + (Aν0H ∗ CωH) (t)

)
exp

(
−ν

2
t
)
, (3.5)

where

ω =
√

ν2
0 + ω2

p (3.6)

and the functions Af (t), af (t), and Cf (t) for arbitrary frequency f are defined in
Appendix B. For the Debye-Lorentz medium, the refractive kernel is

N(t) =

(∫ t

0

ω2
p

2

(
J0 (ωpt) + J2 (ωpt)

)
dt

)
exp (−ω0t)H(t),

where Jn(x) are Bessel functions of the first kind. All these results are easy to obtain
by Laplace transform technique.

Another example is given by a medium characterized by two Debye models with
different relaxation times β−1

1 ≥ 0 and β−1
2 ≥ 0:

χ(t) = α1 exp (−β1t)H(t) + α2 exp (−β2t)H(t), β1 > β2. (3.7)

The strengths α1 ≥ 0 and α2 ≥ 0 are arbitrary. This model is appropriate for
(liquid) water in the frequency range 0–1 THz [15]. The refractive kernel for the
double-Debye medium can be written in the form

N(t) = N+(t) + N−(t) +
(
N+ ∗ N−)

(t),

where

N+(t) = a+
(
I0

(
a+t

)
+ I1

(
a+t

))
exp

(
−a+t

)
exp (−β1t)H(t),

N−(t) = a− (
I0

(
a−t

)
+ I1

(
a−t

))
exp

(
−a−t

)
exp (−β2t)H(t),

and

0 ≤ 4a+ = α1 − β1 + α2 + β2 +

√
(α1 − β1 + α2 + β2)

2 + 4α1 (β1 − β2),

0 ≤ 4a− = α1 + β1 + α2 − β2 −
√

(α1 + β1 + α2 − β2)
2 − 4α2 (β1 − β2).

This result can be obtained by Laplace transform technique. Observe that the
arguments of the square roots are equal and non-negative. Notice also that a−

tends to zero and a+ to (α1 + α2)/2 when β1 − β2 approaches zero in concordance
with equation (3.3).

Finally, the refractive kernel for the double-resonance Lorentz medium is inves-
tigated. This medium exhibits two Lorentz processes:

χ(t) =
ω2

p1

ν01

sin (ν01t) exp
(
−ν1

2
t
)
H(t) +

ω2
p2

ν02

sin (ν02t) exp
(
−ν2

2
t
)
H(t). (3.8)
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For simplicity, the collision frequencies are assumed to be equal (ν1 = ν2 = ν). The
refractive index can be expressed in terms of convolutions of the functions introduced
in Appendix B:

N(t) exp (νt/2) = aν01(t)H(t) + aν02(t)H(t) + (aν01H ∗ aν02H) (t)+

+ (Aν01H ∗ Aν02H ∗ Ca+H ∗ Ca−H) (t)+

+
d

dt
(Aν01H ∗ Aν02H ∗ (Ca+H + Ca−H)) (t),

where the frequencies a± ≥ 0 are

a± =

√√√√ν2
01 + ν2

02 + ω2
p1 + ω2

p2 ±
√(

ν2
01 − ν2

02 + ω2
p1 − ω2

p2

)2
+ 4ω2

p1ω
2
p2

2
.

Notice that a− tends to zero and a+ to
√

ν2
01 + ω2

p1 when ν02 and ωp2 approach zero

in concordance with equation (3.5). The result in the general case is lengthy and
hardly useful.

3.2 The intrinsic impedance of a dispersive medium

The intrinsic impedance of a temporally dispersive, nonmagnetic dielectric is a tem-
poral integral operator on the form

Z ≡ η(1 + Z∗), where Z2/η2 = E−1
r . (3.9)

The intrinsic impedance affects the source-term in the dispersive wave equation, see
Section 4. It corresponds to the complex intrinsic impedance of the medium as a
function of angular frequency [17, p. 38]. The kernel of the intrinsic impedance,
Z(t), satisfies the non-linear Volterra integral equations of the second kind

χ + 2χ ∗ Z + χ ∗ Z ∗ Z + 2Z + Z ∗ Z = 0, 2Z + Z ∗ Z = χres,

where the resolvent kernel, χres(t) is defined in Appendix A. These equations have
unique solutions in the space of bounded and smooth functions in each bounded
time interval 0 < t < T . The impedance kernel vanishes for t < 0 and has a
finite jump-discontinuity at t = 0 if and only if the susceptibility kernel has such a
discontinuity: Z(+0) = −χ(+0)/2.

Observe that the fact that the medium is nonmagnetic can be used to obtain the
intrinsic impedance kernel (combine definitions (3.1) and (3.9)):

N(t) + Z(t) + (Z ∗ N)(t) = 0. (3.10)

In other words, Z(t) is the resolvent kernel of N(t). In the numerical examples in
Section 7 and Section 8, equation (3.10) is used to compute the impedance kernel.

For the Debye medium, the intrinsic impedance kernel is

Z(t) = −α

2

(
I0

(α

2
t
)
− I1

(α

2
t
))

exp (−γt)H(t),
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where the frequency γ is given by equation (3.4). For the single-resonance Lorentz
medium, the corresponding result is

Z(t) =
(
aω(t)H(t) + (AωH ∗ Cν0H) (t)

)
exp

(
−ν

2
t
)
,

where the functions Af (t), af (t), and Cf (t) are given by equations (B.1)–(B.3) and
the frequency ω by equation (3.6). For the Debye-Lorentz medium, the intrinsic
impedance kernel is

Z(t) = −ωpJ1 (ωpt) exp (−ω0t)H(t).

These results are easily obtained using the resolvent kernels in Appendix A. Sim-
ilarly, the impedance kernel corresponding to the double-Debye medium (3.7) and
the double-Lorentz medium (3.8) can be calculated using the resolvent kernels (A.1)
and (A.2), respectively.

4 Scalar, causal fundamental solutions for disper-

sive wave operators in one dimension

The simplest radiation problem for an unbounded, dispersive dielectric with the con-
stitutive relations (2.1) is to calculate the electromagnetic response to a transverse
current source distribution:

J(r, t) = J(z, t) = uxJx(z, t) + uyJy(z, t).

This distribution, which is assumed to be an initially quiescent, bounded, and
smooth function of time and an integrable function of the longitudinal spatial vari-
able, supports transverse electric and magnetic (TEM) waves:

E(r, t) = E(z, t) = uxEx(z, t) + uyEy(z, t),

H(r, t) = H(z, t) = uxHx(z, t) + uyHy(z, t).
(4.1)

The Maxwell equations are

∇× E = −c−1∂t(ηH), ∇× (ηH) = c−1∂t(1 + N∗)2E + ηJ

or
∂zE = c−1∂t (uz × ηH) , ∂z (uz × ηH) = ηJ + c−1∂tErE. (4.2)

The task is to obtain scalar, causal fundamental solutions of first-order and second-
order dispersive wave operators.
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4.1 The second-order wave operator

The combination of the Maxwell equations gives the dispersive wave equation for
the electric field:

1

2
c∂−1

t (1 + N∗)−1
(
−∂2

z + c−2∂2
t (1 + N∗)2

)
E = −1

2
η(1 + Z∗)J . (4.3)

The solution of this propagation problem can be given in terms of the retarded
fundamental solution of the dispersive wave operator

1

2
c∂−1

t (1 + N∗)−1
(
−∂2

z + c−2∂2
t (1 + N∗)2

)
. (4.4)

This solution is denoted by E(|z|, t) and satisfies the wave equation(
−∂2

z + c−2∂2
t (1 + N∗)2

)
E(|z|, t) = δ(z)2c−1∂t(1 + N∗) δ(t). (4.5)

The dispersive fundamental solutions play the same role for the dispersive wave
operators as the fundamental solutions do for the differential operators with constant
coefficients; thus, the solution of the dispersive wave equation (4.3) is

E(z, t) = −1

2

∫ ( ∫
E(|z − z′|; t − t′)(ZJ)(z′, t′) dt′

)
dz′. (4.6)

Formally, this fact is easily proven by letting the dispersive wave operator (4.4)
operate under the integral signs. Under suitable assumptions, the integral represen-
tation (4.6) is a consequence of Schwartz’ kernel theorem [8, pp. 128-129]. Having
obtained the electric field, Faraday’s law yields the corresponding magnetic field:

H(z, t) = −1

2

∫ ( ∫
sgn(z − z′)E(|z − z′|; t − t′)uz × J(z′, t′) dt′

)
dz′,

where sgn(z) is the sign function: sgn(z) = −1 for z < 0 and sgn(z) = +1 for z > 0.
The retarded fundamental solution of the dispersive wave operator is defined in

the following theorem.

Theorem 4.1. The distribution

E(|z|; t) = Q(|z|)
(
δ (t − |z|/c) + P (|z|; t − |z|/c)

)
, (4.7)

where the wave-front propagator, Q(|z|), satisfies the ordinary differential equation

c∂|z|Q(|z|) = −N(+0)Q(|z|), Q(0) = 1, (4.8)

and the propagator kernel, P (|z|; t), satisfies the integro-differential equation

c∂|z|P (|z|; t) = −N ′(t) −
(
N ′(·) ∗ P (|z|; ·)

)
(t), P (0; t) = 0, (4.9)

is a causal or retarded fundamental solution of the dispersive wave operator (4.4).
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Observe that P (|z|; t) = P (0; t) = 0 for t < 0; consequently E(|z|; t) = 0 for
t < |z|/c, that is, the fundamental solution E(|z|; t) is causal. Notice also that the
well known result for out-going waves in vacuum is obtained from equation (4.7) by
setting N = 0: E(|z|; t) = δ (t − |z|/c).

Two brief proofs of Theorem 4.1 are given:
Proof. Differentiating equation (4.7) and using equation (4.8), equation (4.9) and
the identity

∂|z|δ (t − |z|/c) = −c−1∂tδ (t − |z|/c) ,

give an integro-differential equation for E (z; t):

∂|z|E = −c−1∂t(1 + N∗)E , E(0; t) = δ(t). (4.10)

Differentiating this result with respect to z and using the identity

∂2
zδ (t − |z|/c) = c−2∂2

t δ (t − |z|/c) − δ(z)2c−1∂tδ(t)

yield the desired result.
Alternative proof. In this proof, it is assumed that the fundamental solution
is a temperated distribution with respect to time. Temporal Fourier transform of
equation (4.10) gives E(|z|; ω) = exp (−ik(ω) |z|), where k(ω) = ωn(ω)/c is the
complex wave number and n(ω) = 1 + N(ω) the complex refractive index. In the
Fourier space, the dispersive fundamental equation (4.5) reduces to the ordinary
differential equation − (∂2

z + k2(ω)) E(|z|; ω) = 2ik(ω)δ(z). It is straightforward to
see that E(|z|; ω) = exp (−ik(ω) |z|) satisfies this equation. This finishes the proof.

Equation (4.10) shows that the wave number

K = c−1∂tN = c−1∂t(1 + N∗) = (c−1∂tδ + c−1N(+0)H + K)∗, K(t) = c−1N ′(t)

is a relevant integro-differential operator for pulse propagation in dispersive media.
In terms of the wave number, equation (4.10) reads ∂|z|E = −KE . In the time-
harmonic analysis, the wave number K corresponds to the complex wave number [17,
p. 38].

4.2 Properties of the fundamental solution

The wave-front propagator, Q(|z|), can be calculated explicitly:

Q(|z|) = exp

(
−|z|

c
N(+0)

)
. (4.11)

A closed-form expression for the propagator kernel, P (|z|; t), cannot be obtained in
general. However, the propagator kernel can be represented by the infinite series

P (|z|; t) =
∞∑

k=1

(−|z|)k

k!

(
(K∗)k−1K

)
(t), (4.12)

which converges uniformly in each bounded time-interval. Since the wave-number
kernel, K(t), is bounded and smooth in each bounded time-interval, P (|z|; t) inherits
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these properties. Numerically, a temporal integral equation of the second kind can
be solved for the propagator kernel:

tP = −|z|tK − |z|(tK) ∗ P, P (|z|; +0) = −|z|K(+0). (4.13)

This equation is of second order Volterra type and therefore stable. The integral
equation (4.13), can be derived using the general identity for causal convolutions

t

k functions︷ ︸︸ ︷
(f ∗ . . . ∗ f)

k!
= (tf) ∗

k−1 functions︷ ︸︸ ︷
(f ∗ . . . ∗ f)

(k − 1)!
, k > 1,

which, in turn, is proved by mathematical induction. In the numerical examples
in Section 7 and Section 8, either the series expansion (4.12) or the integral equa-
tion (4.13) is employed.

Transient phenomena at one-dimensional wave-propagation in temporally dis-
persive media are completely determined by the fundamental solution E(|z|; t). Un-
fortunately, fundamental solutions of the wave operators for Debye, Lorentz, and
Debye-Lorentz media are hard to obtain analytically. However, the non-absorbing
Debye medium χ(t) = αH(t) is an exception:

E(|z|; t) =
|z|
ct

(
d

dt
+

α

2

) (
I0

(
α

2

√
t2 − z2

c2

)
exp

(
−α

2
t
)
H

(
t − |z|

c

))
or

E(|z|; t) = exp

(
−α|z|

2c

)
δ

(
t − |z|

c

)
+

+
α2|z|
8c

(
I0

(
α

2

√
t2 − z2

c2

)
− I2

(
α

2

√
t2 − z2

c2

))
exp

(
−α

2
t
)
H

(
t − |z|

c

)
.

This result follows easily by differentiating the Laplace transform

E(|z|; t) ←→ exp

(
−|z|

c

√
s(s + α)

)
with respect to the Laplace parameter s, see Abramowitz and Stegun [1]. This is
the response from a simple, conducting medium with conductivity σ = α/(cη), see,
e.g., Stratton [21, p. 320].

Similarly, by differentiating the Laplace transform

E(|z|; t) ←→ exp

(
−|z|

c

√
s2 + ω2

p)

)
with respect to the Laplace parameter s, the fundamental solution of the non-
absorbing modified Debye-Lorentz medium χ(t) = ω2

ptH(t) can be obtained exactly:

E(|z|; t) =
|z|
ct

d

dt

(
J0

(
ωp

√
t2 − z2

c2

)
H

(
t − |z|

c

))
=

= δ

(
t − |z|

c

)
−

ω2
p|z|
2c

(
J0

(
ωp

√
t2 − z2

c2

)
+ J2

(
ωp

√
t2 − z2

c2

))
H

(
t − |z|

c

)
.
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This fundamental solution is relevant for propagation of radio waves in the ionized
layers of the atmosphere, where the mean free path of the electrons is exceedingly
long, see, e.g., Felsen and Marcuvitz [7, p. 163] or Dvorak and Dudley [6]. Further-
more, it appears at mode propagation in the empty waveguide, see Kristensson [14].

4.3 First-order wave operators

Wave operators for the up-going and the down-going fields can be derived directly
from the first-order system (4.2) using a dispersive wave-splitting. The split vector
fields, E±(z, t), are defined by

E± =
1

2
(E ∓Zuz × H) . (4.14)

In terms of these fields, the electric and magnetic field strengths are

E = E+ + E−, uz × ηH = −NE+ + NE−.

Subject to the transformation (4.14), the Maxwell equations (4.2) reduce to the
dynamical equations

∂zE
± = ∓KE± ∓ZJ/2. (4.15)

Consequently, E+ represents the up-going electric field and E− the down-going
electric field in the dispersive medium.

The fundamental solutions, E±(z; t), of the dispersive wave operators, ±∂z + K,
respectively, satisfy the first-order dispersive wave equations

(±∂z + K) E± = δ(z) δ(t).

Under suitable assumptions, Schwartz’ kernel theorem [8, pp. 128-129] is applicable,
and the solutions of the propagation problems (4.15) can be written in the form

E±(z, t) = −1

2

∫ (∫
E±(z − z′; t − t′)(ZJ)(z′, t′) dt′

)
dz′.

It is straightforward to show that the fundamental solutions, E±(z; t), are

E±(z; t) = H (±z) E(|z|; t),

where E(|z|; t) is defined in Theorem 4.1. The up-going and down-going magnetic
fields are

H±(z, t) = ±uz ×NE±/η = ∓1

2

∫ (∫
E±(z − z′; t − t′)uz × J(z′, t′) dt′

)
dz′,

respectively.
In Section 5, the special case when the current source is distributed over the

plane z = 0 is referred to. In this case, J(z, t) = j0(t)δ(z). The electric fields then
satisfy the dispersive first-order equations(

±∂z + c−1∂t(1 + N∗)
)
E±(z, t) = E0(t)δ(z), (4.16)
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where E0 = −η(1 + Z∗)j0/2 is the electric field in the plane z = 0. Consequently,
a current distributed over the plane z = 0 induces electric and magnetic fields given
by

E±(z, t) =

∫
E±(z, t − t′)E0(t

′) dt′,

H±(z, t) = ∓
∫

E±(z; t − t′)H0(t
′)dt′,

(4.17)

where (1 + Z∗)ηH0 = uz × E0.

4.4 Propagation operators

In this subsection, the problem with a current distributed over the plane z = 0 is
analyzed further. Due to symmetry, it is sufficient to study the solution in the upper
half-space. Suppressing the general time-dependence, the solution (4.17) is

E(z) = P(z, 0)E(+0), z > 0,

where the propagation operator,

P(z, 0) = E(z, ·)∗,

satisfies the operator equation

∂zP(z, 0) = −KP(z, 0), z > 0, P(0, 0) = 1.

The propagation operator can be written in the form

P(z, 0) = exp (−zK) = δz/c ∗ Q(z)
(
1 + P (z; ·) ∗

)
, (4.18)

where δz/c = δ(t − z/c) the time-delayed Dirac pulse, Q(z) is the wave-front propa-
gator, and P (z; t) the propagator kernel, see Theorem 4.1.

The propagation operator takes the field at z = 0 to the field at z > 0. More
generally, a propagation operator P(z2, z1), which relates the field at z1 ≥ 0 to the
field at z2 ≥ 0, can be defined. The characteristic of the exponential,

P(z3, z1) = P(z3, z2)P(z2, z1), 0 ≤ z1 ≤ z2 ≤ z3, (4.19)

holds for this operator. In other words,

E(z3 − z1; t) = (E(z3 − z2; ·) ∗ E(z2 − z1; ·)) (t).

or

P (z3 − z1; t) = P (z3 − z2; t) + P (z2 − z1; t) + (P (z3 − z2; ·) ∗ P (z2 − z1; ·)) (t).

This rule is employed in the numerical examples below.
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z

0

Ei

Er

E+

E−

χ(t) = 0 χ(t) �= 0

Figure 1: The scattering geometry with the incident, reflected, and split electric
fields indicated. Using the dispersive wave splitting, the down-going field in the
dispersive half-space is zero.

5 Normal incidence on a dispersive half-space

A linearly polarized, electromagnetic pulse is incident normally on a plane interface
separating a simple, isotropic medium from a temporally dispersive, nonmagnetic
dielectric. For the sake of simplicity, the non-dispersive region, z < 0, is assumed to
be vacuum. The constitutive relations of the dispersive region, z > 0, are given by
equation (2.1). The scattering geometry is depicted in Figure 1.

The incident electric field at the interface z = 0 at time t is denoted by Ei(t).
This field is assumed to be initially quiescent, bounded, and smooth. By definition,
the other incident field components at the interface are

cηDi(t) = Ei(t), ηH i(t) = cBi(t) = uz × Ei(t).

TEM wave solutions (4.1) are sought. At the boundary, z = 0, the fields E(z, t)
and H(z, t) are continuous in z.

The reflected electric field at the interface at time t is denoted by Er(t). Since
the reflected plane wave propagates in the negative z-direction, the other reflected
field components at the interface are given by

cηDr(t) = Er(t), ηHr(t) = cBr(t) = −uz × Er(t).

The dispersive wave-splitting (4.14) is now applied. Due to the absence of sources
in the upper half-space, E− = 0 and E+ = E for z > 0. Evidently, the upper
equation (4.16) is appropriate for this problem. The boundary condition for the
electric field shows that

E+(z, t) =

∫
E+(z, t − t′)E+(+0, t′) dt′, E+(+0, t) = Ei(t) + Er(t),

cf equation (4.17). Suppressing the general time-dependence, the propagating elec-
tric field can be written in the form

E+(z) = P(z, 0)E+(+0), z > 0,
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where the propagation operator, P(z, 0), was defined in Section 4.
The Schwartz’ kernel theorem [8, pp. 128-129] shows that the solution of the

reflection problem can be written in the form Er = REi = R ∗ Ei, where the
reflection kernel, R(t), is independent of the excitation, Ei(t), and depends on the
susceptibility kernel, χ(t), only. The boundary conditions show that the reflection
operator is given by the operator equality

R =
(
Z + η

)−1(Z − η
)

=
(
1 + N

)−1(
1 −N

)
. (5.1)

The continuity of the electric field at the interface shows that the transmitted electric
field at z = +0 is E+(+0) = (1 + R) Ei. Therefore, the solution of propagation
problem (z > 0) reads

E(z) = (1 + R)P(z, 0)Ei,

ηH(z) = (1 −R)P(z, 0)uz × Ei,

cηD(z) = (1 −R)NP(z, 0)Ei,

cB(z) = (1 + R)NP(z, 0)uz × Ei.

Equation (5.1) shows that −R(t) is the resolvent kernel of Z(t)/2 and R(t) is
the resolvent kernel of N(t)/2:

−2R(t) + Z(t) − (Z ∗ R)(t) = 0 = 2R(t) + N(t) + (N ∗ R)(t). (5.2)

Consequently, the reflection kernel vanishes for t < 0 and is bounded and smooth in
each bounded time-interval 0 < t < T . Substituting Z/η = (1 −R)−1(1 + R) into
the operator equation (3.9) yields the reflection equation

4R + 2χ ∗ R + χ + χ ∗ R ∗ R = 0, (5.3)

which relates R(t) to χ(t) directly. This equation shows that the reflection kernel
has a finite jump-discontinuity at t = 0 if and only if χ(t) has such a discontinu-
ity: R(+0) = −χ(+0)/4. The non-linear Volterra integral equation of the second
kind (5.3) is sometimes referred to as the reflection imbedding equation [2]. In the
numerical examples in Section 7 and Section 8, the first equation (5.2) is employed
to obtain the reflection kernel.

For the Debye medium, the reflection kernel is

R(t) = −1

t
I1

(α

2
t
)

exp (−γt)H(t) = −α

4

(
I0

(α

2
t
)
− I2

(α

2
t
))

exp (−γt)H(t),

where the frequency γ is given by equation (3.4). This result has been reported by
Beezley and Krueger [2]. For the Lorentz medium, the corresponding result reads

R(t) =
2

ω2
p

(
cω(t)H(t) + cν0(t)H(t) + (CωH ∗ Cν0H) (t)

)
exp

(
−ν

2
t
)
,

where the functions Cf (t) and cf (t) are given by equations (B.3)–(B.4) and the
frequency ω by equation (3.6). Finally, for the Debye-Lorentz medium, the reflection
kernel is

R(t) = −ωp

2

(
J1 (ωpt) + J3 (ωpt)

)
exp (−ω0t)H(t).

These results are easily obtained by Laplace transform technique.
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6 Approximations to the propagation kernel

Sommerfeld’s and Brillouin’s forerunners — the first and second precursors, respec-
tively — are the most well known transients in dispersive media [4]. Initially, these
forerunners were defined for Lorentz media only [3, 20]. However, the definitions can
be extended to more or less arbitrary dispersive media, see Ref. 12.

Sommerfeld’s forerunner is the leading term of the wave-front behavior of the
propagating field and is characterized by high oscillations in the case of a resonance
medium. Brillouin’s forerunner is the leading term of the slow variations of the field
and arrives later than the first. The time at which this occurs is sometimes referred
to as the quasilatent time.

Sommerfeld showed that the first precursor can be expressed in terms of the
Bessel function J1 with argument proportional to the square root of the propagation
distance and the square root of the wave-front time. Brillouin showed that the second
precursor can be expressed in terms of the Airy function Ai, with the argument
depending on the propagation distance and the wave-front time in a more subtle
way, see the explicit expressions below. The precursors are good approximations
to the propagating field at sufficiently large propagation distances |z| only. (For
resonance frequencies in the optical regime, the propagation distance z = 10−6 m
is sufficiently large. For Debye media with relaxation times about τ = 10−10 s,
the corresponding distance is approximately one meter, see Section 7 below.) In
addition, Brillouin’s forerunner is relevant in a neighborhood of the quasilatent time
only. Corrections to the second forerunner have been obtained by Oughstun and
Sherman and later by Karlsson and Rikte using different techniques, see Refs 12,16.

Sommerfeld and Brillouin used the saddle-point method in the complex plane to
obtain their results. In the present article, the time-domain approach introduced by
Karlsson and Rikte is employed.

The jump in the wave-number kernel K(t) at t = 0 generates Sommerfeld’s
forerunner, which is a temporal integral operator on the form (cf equation (4.18))

PS(z, 0) = δ|z|/c ∗ Q(|z|)
(
1 + PS(|z|; ·) ∗

)
.

Substituting the approximation K(t) = K(+0)H(t) into the series expansion of the
propagator kernel (4.12) and using the identity(

(H∗)nH
)
(t) =

tn

n!
H(t) (6.1)

yields the forerunner kernel

PS(|z|; t) =
∞∑

k=1

(−|z|K(+0))k

k!

(
(H∗)k−1H

)
(t) = H(t)

∞∑
k=1

(−|z|K(+0))k

k!

tk−1

(k − 1)!
.

The Taylor series for Bessel functions shows that

PS(|z|; t) = −|z|K(+0)
(
I0

(
2
√
−|z|K(+0)t

)
− I2

(
2
√

−|z|K(+0)t
))

=

= −|z|K(+0)
(
J0

(
2
√

|z|K(+0)t
)

+ J2

(
2
√
|z|K(+0)t

))
,
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where the first expression is appropriate for Debye media (K(+0) < 0) and the
second for Lorentz media (K(+0) > 0). Thus, Sommerfeld’s forerunner behaves
quite differently in resonance media and in relaxation media.

Brillouin’s forerunner is given by a non-causal, temporal integral operator:

PB(z, 0) = PB(|z|; ·)∗,

where the interval of integration is −∞ < t < +∞ and the kernel PB(|z|; t) is
smooth in time. For relaxation media, Brillouin’s forerunner kernel is given by

PB(|z|; t) =
1

t2(|z|)
B2

(
t − |z|/c − t1(|z|)

t2(|z|)

)
, B2(t) =

1√
2π

exp

(
−t2

2

)
, (6.2)

where B2(t) is the normalized Gaussian. For resonance media, the corresponding
result is

PB(|z|; t) =

(
1

t2(|z|)
B2

(
·

t2(|z|)

)
∗ 1

t3(|z|)
B3

(
·

t3(|z|)

))
(t − |z|/c − t1(|z|)) ,

(6.3)
where B3(t) = Ai(−t) is the reversed Airy function. The quasilatent time is pro-
portional to the propagation depth z and to the integral of the refractive index:

t1(|z|) = |z|/c
∫

N(t) dt,

The scaling times, t2(|z|) and t3(|z|), are proportional the square root and the cubic
root of the propagation depth, respectively, see Ref. 12 for details. Corrections to
the second precursor for arbitrary resonance media can be found in Ref. 12.

7 Exact solutions versus numerical results and

forerunners

In this section, exact solutions and numerical results are compared. Four examples
are given: a simple conducting medium, a cold plasma, a Debye medium, and a
single-resonance Lorentz medium. In the two last examples, the numerical results
for the propagator kernels are compared to the forerunners.
Example 1. Normal incidence on a conducting half-space, z > 0.
The susceptibility kernel is χ(t) = σcηH(t). The propagation kernel, Q(z)P (z; t), at
fixed propagation depth, z, for a conducting medium characterized by α = 10×c/z is
depicted in Figure 2. Choosing the propagation distance to be z = 4.6×10−10 m, the
parameter α corresponds to the conductivity of copper σ = 5.81 × 107 Ohm−1 m−1.
The corresponding refractive kernel, N(t), impedance kernel, Z(t), and reflection
kernel at normal incidence, R(t), are depicted in Figure 3. Numerical results, based
on the integral equation (4.13), are given for comparison.
Example 2. Normal incidence on a cold plasma half-space, z > 0.
The susceptibility kernel is χ(t) = ω2

ptH(t). The propagation kernel, P (z; t), at fixed
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propagation depth, z, for a cold plasma is given in Figure 4. The Dvorak and Dudley
parameters z = 100 m, ωp = 107 s−1 have been used. The corresponding refractive
kernel, N(t), impedance kernel, Z(t), and reflection kernel at normal incidence, R(t),
are depicted in Figure 5. Numerical results, based on the series expansion of the
exponential (4.12), are given for comparison.
Example 3. Normal incidence on a Debye half-space, z > 0.
In this case, the susceptibility kernel is χ(t) = α exp (−βt)H(t). The propagation
kernel, Q(z)P (z; t), at fixed propagation depth, z, for a Debye half-space charac-
terized by α = 100 × c/z and β = 40 × c/z is depicted in Figure 6. Taking the
propagation distance to be z = 1 m, these parameters corresponds to the relaxation
time τ = 1/β = 8.33 × 10−11 s and the strength α = 3 × 1010 Hz. The result has
been obtained numerically using series expansion of the exponential (4.12). The
kernels χ(t), N(t), Z(t), and R(t) are given in Figure 7, where exact solutions and
numerical results are compared.

Figure 6 shows that the propagation kernel of the Debye medium can be ap-
proximated by the normalized Gaussian (6.2). The quasilatent time, t1(z), and the
scaling time, t2(z), are given by

t1(z) =

(√
1 +

α

β
− 1

)
z

c
and t2(z) =

√√√√ 1√
1 + α

β

α

β2

z

c
,

see Ref. 12.
Example 4. Normal incidence on a Lorentz half-space, z > 0.
The susceptibility kernel is χ(t) = ω2

p/ν0 sin (ν0t) exp (−ν/2t)H(t). The propagation
kernel, P (z; t), at fixed propagation depth, z, for a single-resonance Lorentz half-
space characterized by Brillouin’s parameters [4] is depicted in Figure 8 and Figure 9.
The result has been obtained numerically using the integral equation (4.13). The
propagator rule (4.19) was used once. Specifically, the propagation distance is z =
10−6 m, the plasma frequency ωp =

√
20 × 100/3 × c/z, the natural frequency

ω0 = 400/3 × c/z, and the collision frequency ν = 56/3 × c/z. Similar results
have been obtained by Oughstun and Sherman in their study of forerunners [16].
Brillouin’s forerunner is clearly distinguishable. The kernels χ(t), N(t), Z(t), and
R(t) are given in Figures 10–11. Exact solutions and numerical results are compared.

Figure 9 shows the wave-front behavior of the signal. Sommerfeld’s forerunner
is given for comparison.

Figure 8 shows that the propagation kernel of the Lorentz medium in a neighbor-
hood of the quasilatent time can be approximated by Brillouin’s forerunner (6.3).
The quasilatent time, t1(z), and the scaling times, t2(z) and t3(z), are

t1(z) =

(√
1 +

ω2
p

ω2
0

− 1

)
z

c
, t2(z) =

√√√√ 1√
1 +

ω2
p

ω2
0

νω2
p

ω4
0

z

c
,

t3(z) =


 3√

1 +
ω2

p

ω2
0


ω2

p(ω
2
0 − ν2)

ω6
0

+
ν2ω4

p

4ω8
0

1

1 +
ω2

p

ω2
0


 z

c




1
3

,
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see Ref. 12. In addition, the even better approximation derived in Ref. 12 is given.
In the interval 0.6 < tc/z < 2, this latter approximation almost coincides with the
numerical result.

8 Modified Debye and Lorentz media

In this section, two novel groups of absorbing materials are introduced, namely,
modified Debye media, which resemble Debye media, and modified Lorentz media,
which are closely related to Lorentz media. For both these materials, the normal
incidence problem is exactly solvable. This motivates the introduction.

8.1 The modified Debye medium

The refraction kernel of the modified Debye medium is

N(t) = α exp (−βt)H(t).

The corresponding susceptibility kernel is

χ(t) =
(
2α + α2t

)
exp (−βt)H(t),

the impedance kernel

Z(t) = −α exp (−(α + β)t)H(t),

and the reflection kernel

R(t) = −α

2
exp

(
−

(α

2
+ β

)
t
)
H(t).

Clearly, the dynamics of the charges in the modified Debye medium and in the Debye
medium bear a close resemblance.

Straightforward computations using series expansion and the identity (6.1) show
that the propagator kernel is

P (z; t) = a
I1

(
2
√

at
)

√
at

exp (−βt)H(t) = a
(
I0

(
2
√

at
)
− I2

(
2
√

at
))

exp (−βt)H(t),

where the frequency a(z) = αβz/c. The wave-front factor is Q(z) = exp (−αz/c).
The propagation kernel, Q(z)P (z; t), at fixed propagation depth, z, for a modified

Debye half-space characterized by α = 11 × c/z and β = 13 × c/z is depicted in
Figure 12. The numerical result has been obtained using series expansion of the
exponential. The corresponding kernels χ(t), N(t), Z(t), and R(t) are given in
Figure 13. The propagation kernel, Q(z)P (z; t), at fixed propagation depth, z, for
a modified Debye half-space characterized by α = 110 × c/z and β = 130 × c/z is
depicted in Figure 14. The numerical result has been obtained by using the series
expansion of the exponential. The corresponding kernels χ(t), N(t), Z(t), and R(t)
are given in Figure 15.
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Figure 14 shows that the propagation kernel can be approximated by the nor-
malized Gaussian (6.2), where

t1(z) =
α

β

z

c
and t2(z) =

√
2α

β2

z

c
.

Figures 6 and 14 indicate that Gaussian approximation of the propagator kernel is
appropriate for relaxation media characterized by large parameters.

8.2 The modified Lorentz medium

The modified Lorentz medium is another absorbing medium for which the normal
incidence problem is exactly solvable.

The refraction kernel is given by

N(t) =
ω2

p

ν0

sin (ν0t) exp
(
−ν

2
t
)
H(t), ν2

0 = ω2
0 −

ν2

4
.

The corresponding susceptibility kernel is

χ(t) =

((
2
ω2

p

ν0

+
ω4

p

2ν3
0

)
sin (ν0t) −

ω4
p

2ν2
0

t cos (ν0t)

)
exp

(
−ν

2
t
)
H(t).

Clearly, the dynamic of the charges in modified Lorentz medium is similar to that
in the single-resonance Lorentz medium.

The intrinsic impedance kernel Z(t) is the resolvent kernel of refractive index
kernel N(t):

Z(t) = −
ω2

p√
ν2

0 + ω2
p

sin
(√

ν2
0 + ω2

p t
)

exp
(
−ν

2
t
)
H(t).

The reflection kernel −R(t) is the resolvent kernel of Z(t)/2:

R(t) = −
ω2

p

2

√
ν2

0 +
ω2

p

2

sin

(√
ν2

0 +
ω2

p

2
t

)
exp

(
−ν

2
t
)
H(t).

The operator exp (zG) := 1 + P (z; ·)∗ can be factored as exp (zG0) exp (zG0),
where the operator

G0 =

(
bω2

p

2icν0

exp (−bt)H(t)

)
∗, b = ν/2 − iν0,

and the bar denotes the complex conjugate. Straightforward computations using
series expansion and the identity (6.1) shows that exp (zG0) = 1 + P0(z; ·)∗ where
the kernel

P0(z; t) = −a
J1

(
2
√

at
)

√
at

e−btH(t) = −a
(
J0

(
2
√

at
)

+ J2

(
2
√

at
))

e−btH(t)
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and the complex frequency

a(z) =
−bω2

pz

2icν0

=
(ν0 + iν/2)ω2

pz

2cν0

.

Consequently, the propagator kernel is

P (z; t) = P0(z; t) + P0(z; t) +
(
P0(z; ·) ∗ P0(z; ·)

)
(t).

for the modified Lorentz medium.
The propagation kernel, P (z; t), at fixed propagation depth, z, for the modified

Lorentz half-space characterized by ωp = 103×c/z, ω0 = 146×c/z, and ν = 19×c/z
is depicted in Figure 16. The parameters have been chosen such that the response
matches the response of the Lorentz medium discussed in Section 7, cf Figure 8.
The numerical result has been obtained using the integral equation (4.13). The
propagator rule (4.19) was used once. The corresponding kernels χ(t), N(t), Z(t),
and R(t) are given in Figures 17–18. Exact solutions and numerical results are
compared.

Figure 16 shows that the propagation kernel of the modified Lorentz medium
can be approximated by Brillouin’s forerunner (6.3) close to the quasilatent time.
The quasilatent time, t0(z), and the scaling times, t2(z) and t3(z), are given by

t0(z) =
ω2

p

ω2
0

z

c
=

z

2c
, t2(z) =

√
2νω2

p

ω4
0

z

c
, t3(z) =

(
3ω2

p(ω
2
0 − ν2)

ω6
0

z

c

) 1
3

in this case, see Ref. 12. Figure 16 indicates that the numerical method and Bril-
louin’s forerunner overestimate the propagating signal at the first maximum after
the quasilatent time.

In the non-absorbing case ν = 0, a(z) = ω2
pz/(2c) is real and b = −iω0 is purely

imaginary. Defining

c(z, t) = −a(z)
(
J0

(
2
√

a(z)t
)

+ J2

(
2
√

a(z)t
))

cos (ω0t)H(t),

s(z, t) = −a(z)
(
J0

(
2
√

a(z)t
)

+ J2

(
2
√

a(z)t
))

sin (ω0t)H(t),

the expression for the propagator kernel simplifies to

P (z; t) = 2c(z, t) +
(
c(z, ·) ∗ c(z, ·)

)
(t) +

(
s(z, ·) ∗ s(z, ·)

)
(t).

Letting ω0 ↘ 0 in the previous expression yields

P (z; t) = c(2z, t) = −
ω2

pz

c

(
J0

(
2ωp

√
zt

c

)
+ J2

(
2ωp

√
zt

c

))
H(t). (8.1)

This propagator kernel corresponds to the susceptibility kernel

χ(t) =

(
2ω2

pt +
ω4

pt
3

6

)
H(t)
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and the refractive kernel
N(t) = ω2

ptH(t).

The propagator kernel (8.1), the impedance kernel

Z(t) = −ωp sin (ωpt)H(t),

and the reflection kernel

R(t) = − ωp√
2

sin

(
ωp√

2
t

)
H(t)

for the case ωp = 10/3× z/c are depicted in Figure 19. Numerical results, based on
the integral equation (4.13), are given for comparison. Notice that this medium is
not dissipative, cf equation (2.3).

Conclusion

A number of exact solutions to pulse propagation problems in dispersive dielectrics
is given. These are of independent interest. The exact solutions are compared to
numerical results obtained by a time-domain propagator method based on a scalar,
causal fundamental solution of the one-dimensional dispersive wave operator. The
results also indicate that the numerical method is very efficient provided that the
propagation distance is not too large. The results indicate that the time-domain
theory for forerunners is applicable at (comparatively) large propagation depths.
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Appendix A Resolvent operators and kernels

The resolvent operator or the inverse operator of the relative permittivity opera-
tor (2.2) is an integral operator on the form

E−1
r ≡ (1 + χres∗) = (δ + χres) ∗ .

This operator satisfies the equation E−1
r Er = ErE−1

r = 1.
The resolvent kernel of χ(t) is denoted by χres(t) and satisfies the linear Volterra

integral equation of the second kind

χres(t) + χ(t) + (χres ∗ χ)(t) = 0.
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This equation has a unique solution in the space of bounded and smooth functions
in each bounded time-interval 0 < t < T . Explicitly, the resolvent kernel can be
represented by the function series

χres(t) =
∞∑

k=1

(−1)k
(
(χ∗)k−1χ

)
(t).

The resolvent kernel vanishes for t < 0 and has a finite jump-discontinuity at t = 0
if and only if χ(t) has such a discontinuity: χres(+0) = −χ(+0).

The resolvent kernel of the susceptibility kernel of the Debye model is

χres(t) = −α exp (−(α + β)t)H(t),

and the corresponding result for the Lorentz medium is

χres(t) = −
ω2

p

ω
sin (ωt) exp

(
−ν

2
t
)
H(t),

where the frequency ω is given by equation (3.6). In other words, the resolvent
kernel of a Debye kernel is a Debye kernel and the resolvent kernel of a Lorentz
kernel is a Lorentz kernel. For the Debye-Lorentz medium, the resolvent kernel of
the susceptibility kernel is

χres(t) = −ωp sin (ωpt) exp (−ω0t)H(t).

These results are easily obtained by Laplace transform technique.
Results for two more complicated dispersive materials are now presented. The

resolvent kernel of the double-Debye kernel (3.7) is another double-Debye kernel:

χres(t) = −α+ exp (−β+t)H(t) − α− exp (−β−t)H(t), (A.1)

where

2β± = α1 + β1 + α2 + β2 ±
√

(α1 − β1 + α2 + β2)
2 + 4α1 (β1 − β2),

α± =
β1 − β2

(β∓−β2)
(β±−β2)

− (β∓−β1)
(β±−β1)

.

Notice that 0 ≤ β2 < β− < β1 < β+ and that α± ≥ 0. This result is easily obtained
by observing that causal convolution of two exponentials is a linear combination
of the exponentials involved. The resolvent kernel of the double-Debye kernel may
be relevant for Maxwell Garnett mixing of two dispersive Debye materials and for
modelling fog.

The resolvent kernel of the double-Lorentz kernel (3.8) for which ν1 = ν2 = ν
and ν02 < ν01 is another double-Lorentz kernel:

χres(t) = −
(

ω2
p+

ν0+

sin (ν0+t) +
ω2

p−

ν0−
sin (ν0−t)

)
exp (−ν

2
t)H(t), (A.2)
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where

ν0± =

√√√√ν2
01 + ν2

02 + ω2
p1 + ω2

p2 ±
√(

−ν2
01 + ν2

02 + ω2
p1 + ω2

p2

)2
+ 4ω2

p1(ν
2
01 − ν2

02)

2
,

ωp± =

√
±(ν2

0∓ − ν2
02)

−1 ∓ (ν2
0∓ − ν2

01)
−1

(ν2
0+ − ν2

01)
−1(ν2

0− − ν2
02)

−1 + (ν2
0+ − ν2

02)
−1(ν2

01 − ν2
0−)−1

.

Notice that 0 ≤ ν02 < ν0− < ν01 < ν0+ and ωp− ≥ 0. The result follows from
the observation that causal convolution of two sinusoidals is a linear combination of
the sinusoidals involved. If the general case (ν02 �= ν01), the resolvent kernel of the
double-Lorentz kernel is no longer a double-Lorentz kernel.

Appendix B Special functions for Lorentz media

For brevity, the functions Af (t), af (t), Cf (t), cf (t), where f denotes an arbitrary
frequency, are introduced. These functions are

Af (t) = J0(ft) (B.1)

with time derivative

af (t) =
dAf (t)

dt
= −fJ1(ft) (B.2)

and

Cf (t) =
f

t
J1 (ft) =

f 2

2

(
J0 (ft) + J2 (ft)

)
(B.3)

with time derivative

cf (t) =
dCf (t)

dt
= −f 2

t
J2 (ft) = −f 3

4

(
J1 (ft) + J3 (ft)

)
. (B.4)

The functions Jn(x) are Bessel functions of the first kind.
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Figure 2: The propagator kernel Q(z)P (z; t) for a non-absorbing Debye half-space
characterized by α = 10×c/z = σ/(cη). 64 data points were used at the equidistant
discretization of the time interval 0 < t < 2 × z/c.
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Figure 5: The kernels N(t), Z(t), and R(t) for a non-absorbing Debye-Lorentz half-
space characterized by ωp = 10/3× c/z. 64 data points were used at the equidistant
discretization of the time interval 0 < t < 2 × z/c.
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Figure 6: The propagator kernel Q(z)P (z; t) for a Debye half-space characterized
by α = 100 × c/z and β = 40 × c/z. 4096 data points were used at the equidistant
discretization of the time interval 0 < t < 2 × z/c.
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Figure 7: The kernels χ(t), N(t), Z(t), and R(t) for a Debye half-space charac-
terized by α = 100 × c/z and β = 40 × c/z. 4096 data points were used at the
equidistant discretization of the time interval 0 < t < 2 × z/c.
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Figure 8: The propagator kernel P (z; t) for a single-resonance Lorentz half-space
characterized by Brillouin’s parameters. 32768 data points were used at the equidis-
tant discretization of the time interval 0 < t < 2 × z/c. The propagator rule was
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Figure 9: The propagator kernel P (z; t) for a single-resonance Lorentz half-space
characterized by Brillouin’s parameters.
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Figure 10: The kernels χ(t) and N(t) for a single-resonance Lorentz half-space
characterized by Brillouin’s parameters. 1024 data points were used at the equidis-
tant discretization of the time interval 0 < t < 2 × z/c.
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Figure 11: The kernels Z(t) and R(t) for a single-resonance Lorentz half-space
characterized by Brillouin’s parameters. 1024 data points were used at the equidis-
tant discretization of the time interval 0 < t < 2 × z/c.
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Figure 12: The propagator kernel Q(z)P (z; t) for a modified Debye half-space
characterized by α = 11 × c/z and β = 13 × c/z. 512 data points were used at the
equidistant discretization of the time interval 0 < t < 2 × z/c.
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Figure 13: The kernels χ(t), N(t), Z(t), and R(t) for a modified Debye half-space
characterized by α = 11 × c/z and β = 13 × c/z. 512 data points were used at the
equidistant discretization of the time interval 0 < t < 2 × z/c.
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Figure 14: The propagator kernel Q(z)P (z; t) for a modified Debye half-space
characterized by α = 110× c/z and β = 130× c/z. 8192 data points are used at the
equidistant discretization of the time interval 0 < t < 2 × z/c.
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Figure 15: The kernels χ(t), N(t), Z(t), and R(t) for a modified Debye half-space
characterized by α = 110 × c/z and β = 130 × c/z. 4096 data points were used at
the equidistant discretization of the time interval 0 < t < 2 × z/c.
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Figure 16: The propagator kernel P (z; t) for a modified Lorentz half-space char-
acterized by ωp = 103 × c/z, ω0 = 146 × c/z and ν = 19 × c/z. 16768 data points
were used at the equidistant discretization of the time interval 0 < t < z/c. The
propagator rule was used once at the calculation.
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Figure 17: The kernels χ(t) and N(t) for a modified Lorentz half-space character-
ized by ωp = 103 × c/z, ω0 = 146 × c/z and ν = 19 × c/z.
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Figure 18: The kernels Z(t) and R(t) for a modified Lorentz half-space character-
ized by ωp = 103× c/z, ω0 = 146× c/z and ν = 19× c/z. 512 data points were used
at the equidistant discretization of the time interval 0 < t < z/c.
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Figure 19: The kernels P (z; t), Z(t), and R(t) for a non-absorbing modified Lorentz
half-space characterized by ωp = 10/3 × c/z. 64 data points were used at the
equidistant discretization of the time interval 0 < t < 2 × z/c.


