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Abstract

A plane wave impinges on a laterally double-periodic inhomogeneous lossy
dielectric structure. Using a wave splitting approach, and an expansion of the
fields and permittivity in global and local basis functions, respectively, the
scattered fields are determined via a propagator. The formulation is useful
for a permittivity which varies abruptly as well as in a continuous fashion.
A subdomain basis for the constitutive parameter is preferred to an entire
domain basis. Calculated results are compared with experimental data for
a slab with domains of a piecewise homogeneous permittivity. The agree-
ment is good considering the error sources in the experiment. The results
are in a special case also compared with results obtained by an entirely dif-
ferent method showing very good agreement. The method is also used on a
pyramidal absorber-like structure.

1 Introduction

Frequency selective surfaces (FSS) have been used in antennas and radomes through-
out several decades [5–7]. The application areas are mainly filtering (with respect to
frequency and angle) and scanning. A conventional frequency selective surface usu-
ally consists of one or more thin screens of periodically distributed metallic patches
or apertures in a ground plane. The thin screens are stacked and separated by ho-
mogeneous sheets of dielectric material. Much effort, theoretical and experimental,
has been spent to increase the understanding and to develop efficient computation
models for such structures. The computational times involved in the analysis of
a conventional FSS is highly dependent upon finding efficient basis functions for
the conducting elements. Some recent developments have been reported in [8].
Experience from decades of research in the topic of conventional FSS has been sum-
marized in [3]. When considering metal screens made from commercially available
etched metal clad laminates, a model assuming an infinitely thin perfectly conduct-
ing (PEC) screen is often adequate at microwave and millimetre wave frequencies.
It is sometimes of interest though, to consider a screen with a thickness. Such PEC
screens have been analyzed in [1, 2]. Recently, comparisons between models assum-
ing an infinitely thin screen and a screen with a small thickness have been performed
in [9].

In this paper another type of frequency selective structure is considered: a di-
electric slab with 2D-periodic variation of the permittivity in the lateral direction
and arbitrary variation in a longitudinal z-direction. This structure is hereafter de-
noted a dielectric frequency selective structure. In the analysis performed here, it is
assumed that the object does not contain any PEC:s although it could be combined
with a conventional metallic screen. This paper concentrates on providing an analy-
sis method for the structures described. The numerical performance of the approach
is illustrated for some simple geometries.

Gratings and doubly periodic structures have been analyzed with other methods
than the one described here. In [10, 11] e.g. , FEM was used for the interior domain in
combination with a boundary integral equation. Inhomogeneous dielectric gratings
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that are periodic in one direction have been analyzed by Forslund and He [12, 13].
In [13] they used a Green’s function approach based on a vacuum wave-splitting to
solve the scattering problem; the paper includes calculated examples for arbitrary
incidence and continuously inhomogeneous media. In [14] a similar approach was
used but for the total tangential fields; the analysis was restricted to incidence in
the principal plane and the examples to piecewise homogeneous domains. In papers
[13, 14] the analysis also comprised bianisotropic media. Earlier, dielectric gratings
with piecewise homogeneous subdomains and 1D-variation have been analyzed and
elaborated upon in e.g. [16, 17].

The mechanism causing the frequency selectivity in a dielectric frequency se-
lective structure is in general different from that of a conventional FSS. Stacked
thin metallic screens separated by homogeneous dielectrics (typically in the order of
λ/4) can be designed to act as filters for the fundamental mode only, although for
a sparse grid or at higher frequencies, higher order modes can be excited within the
supporting slabs. Dielectric frequency selective structures obtain their selectivity
from higher order modes excited in the slab. These modes interfere destructively
and constructively with the fundamental mode. Unlike a conventional FSS, a di-
electric frequency selective structure with finite conductivity can never be designed
to obtain a bandpass response; a bandstop response can however be obtained. At
high frequencies these structures are highly dependent on the angle of incidence.
At frequencies considerably lower than cut off, the dielectric structure acts as a ho-
mogenized non-isotropic material for the fundamental mode; the material can under
these conditions be represented by an effective permittivity tensor. Homogenized
materials and gratings have been analyzed in [19, 20]. As frequency increases the
higher order modes first become surface wave modes that are bound to the slab and
then, at higher frequencies, they start to propagate in free space, i.e. they become
grating lobes.

2 Theory

2.1 Problem formulation

In this paper, a dielectric structure that is periodic in two directions is considered.
In the longitudinal direction the structure occupies the region 0 ≤ z ≤ �. It is
assumed to be isotropic, lossy, and non-magnetic (µ = 1). The complex relative
permittivity ε = ε′ + iε′′ of the slab is periodic such that

ε(rt, z) = ε(rt + d1, z) = ε(rt + d2, z), 0 ≤ z ≤ �

where rt = xx̂ + yŷ and d1 and d2 are two vectors that span the xy-plane, cf.
Figure 1, but are not necessarily orthogonal. Without loss of generality it is assumed
to be vacuum outside the slab.

In most cases an incident plane wave is of interest. However, in the case of a
cascade of several periodic structures the incident field for each structure is a sum
of Floquet modes, due to this the incident field in this paper is assumed to be a
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general sum of Floquet modes. The derivation in the following sections comprises
the following steps: definition of an orthonormal set of vector basis functions on the
cell considered; expansion of the fields in the inhomogeneous and in the homoge-
neous regions, respectively; expansion of the permittivity in local- and entire domain
basis functions, respectively; insertion of the expansions in the Maxwell equations;
derivation of a set of coupled ODE:s through the use of orthogonality relations; de-
finition of a propagator; solution of the ODE for the propagator; calculation of the
reflection- and transmission matrices by a wave splitting technique.

2.2 Vector basis functions

In order to represent the fields and the material of the problem, a suitable set of
basis functions is chosen. A time dependence e−iωt is adopted. A scalar function
Q(rt, z) that is periodic on the closed domain I defined in Figure 1 can on every
z-plane be expanded in the complete orthonormal basis

ηmn(rt) = D−1/2 eikf ;mn·r t where
kf ;mn = 2π

D
(m ẑ × d1 − n ẑ × d2) and

D = |d1 × d2|
(2.1)

see e.g. [1], D is the area of the cell and r = rt + zẑ. The fields are pseudoperiodic
when a plane wave is incident. A pseudoperiodic function

Q′(rt, z) = Q(rt, z) eikt·r t (2.2)

where Q(rt, z) is periodic and where

kt = k0 sin(θ0) (cos(ϕ0) x̂ + sin(ϕ0) ŷ) (2.3)

can be expanded in the complete orthonormal set

ψmn(rt) = ηmn(rt) eikt·r t = D−1/2 eikt;mn·r t (2.4)

where kt;mn = kt + kf ;mn and m = . . . ,−1, 0, 1 . . . and n = . . . ,−1, 0, 1 . . . . The
functions in the electromagetic case are vector valued and hence a complete set of
orthonormal vector functions are required. A set of orthonormal vector functions
are defined as

A1mn(rt) = k−1
t;mn∇ψmn(rt) × ẑ = iψmn(rt) k̂t;mn × ẑ

A2mn(rt) = k−1
t;mn∇ψmn(rt) = iψmn(rt) k̂t;mn

A3mn(rt) = ψmn(rt)ẑ

(2.5)

where k̂t;mn = kt;mn/|kt;mn| and kt;mn = |kt;mn|. These vector functions satisfy a
number of properties, see Appendix A. It is convenient to introduce

kz;mn = kz;mnẑ = ẑ

{
(k2

0 − |kt;mn|2)1/2 when k0 ≥ |kt;mn|
i(|kt;mn|2 − k2

0)
1/2 when k0 < |kt;mn|

(2.6)
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Figure 1: The periodically repeating cell.

The following normalized quantities are also introduced

γmn =
kz;mn

k0

λmn =
kt;mn

k0

A set of normalized vector wave functions are defined as

u1mn(r) = eiγmnk0zA1mn(rt) = û⊥mn(rt) eiγmnk0z

u2mn(r) =
1

k0

∇×
(
eiγmnk0zA1mn(rt)

)
= û‖mn(rt) eiγmnk0z

v1mn(r) = e−iγmnk0zA1mn(rt) = v̂⊥mn(rt) e−iγmnk0z

v2mn(r) = − 1

k0

∇×
(
e−iγmnk0zA1mn(rt)

)
= v̂‖mn(rt) e−iγmnk0z.

(2.7)

These functions are divergence free and satisfy the free space vector Helmholtz
equation

∇×
(
∇× uτmn(r)

)
− k2

0uτmn(r) = −∇2uτmn(r) − k2
0uτmn(r) = 0.

The functions uτmn(r) correspond to forward traveling waves (+z direction) and
vτmn(r) to backward traveling waves.

2.3 Derivation of ODE for quantities proportional to the
tangential E and H fields

In this section, the chosen set of basis functions is used to represent the fields. The
expressions for the fields are substituted into the Maxwell equations and a system
of ODE:s for the slab considered is obtained. In the inhomogeneous region as well
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as in free space the following expansion is made

E(r) =
∑
mn

{
g1mn(k0z)A1mn(rt) + k−1

0 ∇× g2mn(k0z)A1mn(rt)

+ g3mn(k0z)A3mn(rt)
}

=
∑
mn

{
g1mn(k0z)A1mn(rt) + g′2mn(k0z)A2mn(rt)

+
(
λmng2mn(k0z) + g3mn(k0z)

)
A3mn(rt)

}
.

(2.8)

Prime denotes differentiation with respect to k0z where k0 is the vacuum wave
number. Note that the third term, g3mn(k0z)A3mn(rt) is the only term that is not
divergence free. In free space g3mn(k0z) equals zero. The magnetic field is divergence
free and is expanded as

iη0H(r) =
∑
mn

{
h1mn(k0z)A1mn(rt) + k−1

0 ∇× (h2mn(k0z)A1mn(rt)
}

=
∑
mn

{
h1mn(k0z)A1mn(rt) + h′

2mn(k0z)A2mn(rt)

+ λmnh2mn(k0z)A3mn(rt)
}
.

(2.9)

From the Maxwell equations, a system of linear ODE:s are obtained for the expansion
coefficients. The curl of the electric field reads

∇× E(r) = k0

∑
mn

{(
λ2

mng2mn(k0z) − g′′2mn(k0z) + λmng3mn(k0z)
)
A1mn(rt)

+g′1mn(k0z)A2mn(rt) + λmng1mn(k0z)A3mn(rt)
}
.

The curl of the magnetic field reads

∇× H(r) = − i

η0

k0

∑
mn

{(
λ2

mnh2mn(k0z) − h′′
2mn(k0z)

)
A1mn(rt)

+ h′
1mn(k0z)A2mn(rt) + λmnh1mn(k0z)A3mn(rt)

}
.

The induction law and the orthogonality relation (A.1) gives

h1mn(k0z) = −g′′2mn(k0z) + λ2
mng2mn(k0z) + λmng3mn(k0z)

h2mn(k0z) = g1mn(k0z).
(2.10)

Ampere’s law gives∑
mn

{(
λ2

mng1mn(k0z) − g′′1mn(k0z)
)
A1mn(rt) + h′

1mn(k0z)A2mn(rt)

+ λmnh1mn(k0z)A3mn(rt)
}

= ε(r)
∑
mn

{
g1mn(k0z)A1mn(rt) + g′2mn(k0z)A2mn(rt)

+ λ−1
mn

(
g′′2mn(k0z) + h1mn(k0z)

)
A3mn(rt)

}
.

(2.11)
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where Eq. (2.10) has been used. From Eq. (2.11) three ODE:s are obtained for
g1mn(k0z), h1mn(k0z) and h′

2mn(k0z). In order to obtain a system of four first order
ODE:s, g′1mn(k0z) is also introduced as an independent function. The two first
equations are obtained by multiplying Eq. (2.11) by in turn A∗

1mn(rt) and A∗
2mn(rt)

and using the orthogonality. The third equation is obtained by multiplying Eq.
(2.11) by ε(r)−1A∗

3mn(rt) and using the orthogonality. The fourth equation is simply
the identity ∂zh2mn(k0z) = k0h

′
2mn(k0z). A rearranged version of the system of

equations then reads

∂

∂k0z




h1mn(k0z)

g′2mn(k0z)

g1mn(k0z)

h′
2mn(k0z)


 = Dmn




h1mn(k0z)

g′2mn(k0z)

g1mn(k0z)

h′
2mn(k0z)


 +

∑
m′n′

Cmn,m′n′




h1m′n′(k0z)

g′2m′n′(k0z)

g1m′n′(k0z)

h′
2m′n′(k0z)


 (2.12)

where the matrix D is given by

Dmn =




0 1 0 0
−γ2

mn 0 0 0
0 0 0 1
0 0 −γ2

mn 0




and the matrix C by

Cmn,m′n′ =




0 α12 α13 0
α21 0 0 0
0 0 0 0
0 α42 α43 0


 .

Note that the unknowns in (2.12) are all proportional to the tangential field com-
ponents. The coefficients α read

α12 =

∫
cell

(ε(r) − 1)A∗
2mn(rt) · A2m′n′(rt) dS

α13 =

∫
cell

ε(r)A∗
2mn(rt) · A1m′n′(rt) dS

α21 = λmnλm′n′

∫
cell

(
(ε(r))−1 − 1

)
A∗

3mn(rt) · A3m′n′(rt) dS

α42 = α13 = −
∫

cell

ε(r)A∗
1mn(rt) · A2m′n′(rt) dS

α43 = −α12 = −
∫

cell

(ε(r) − 1)A∗
1mn(rt) · A1m′n′(rt) dS.

(2.13)

It is worthwhile to make the numerical calculation of the matrix Cmn,m′n′ as efficient
as possible, since it is the most time-consuming calculation in the numerical algo-
rithm. There are several different ways to do the calculation. A straightforward
numerical integration is not efficient. It is better to expand ε(r) in a suitable set
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of basis functions. One possible set is the Floquet mode basis which is a global set
over the cell. (See Appendix B.) However, it is often better to use an expansion in
local pulse functions up such that

up(r) =

{
1 if rt ∈ Ωp

0 otherwise
(2.14)

where e.g. Ωp is a triangular subdomain of Ω and Ω is a subdomain of the entire
cell I. The pulse basis is particularly useful when having a piecewise homogeneous
medium. Assuming that the cell consists of two piecewise homogeneous domains
where say εi is the relative permittivity within a polygon shaped domain Ω and εs

is the parameter in the complementary domain I\Ω, then the matrix coefficient α12

can be calculated as

α12 = δmm′δnn′(εs − 1) +
∑

p

(εi − εs)

∫
Ωp

A∗
2mn(rt) ·A2m′n′(rt)dS. (2.15)

The other matrix coefficients can be calculated in a similar way. In this way, multiply
connected domains can easily be treated in a computer code. (Note that for a
material with more complicated constitutive relations, the matrix C will have more
elements �= 0.)

2.4 Propagator formulation

In [13] a transmission Green’s function approach is used to solve the scattering
problem for a medium varying periodically in one dimension. However, a more con-
venient approach can be obtained by defining a propagator that maps the unknown
components h1mn, g′2mn, g1mn and h′

2mn from k0z
′ to k0z. The (+ to −) propagator

K(k0z, k0z
′) is defined by


h1mn(k0z)
g′2mn(k0z)
g1mn(k0z)
h′

2mn(k0z)


 =

∑
m′n′

Kmn,m′n′(k0z, k0z
′)




h1m′n′(k0z
′)

g′2m′n′(k0z
′)

g2m′n′(k0z
′)

h′
2m′n′(k0z

′)


 (2.16)

where Kmn,m′n′ is a 4 × 4 block matrix. Notice that g1mn and g′2mn are the tan-
gential electric mode fields corresponding to TE and TM cases respectively, cf.
Eq. (2.8). Likewise h1mn(k0z) and h′

2mn(k0z) are components proportional to the
tangential magnetic mode fields corresponding to the TM and TE cases respectively,
cf Eq. (2.9).

If Eq. (2.16) is inserted into Eq. (2.12) the following differential equation is
obtained:

∂

∂k0z
K(k0z, k0z

′) = (D + C(k0z))K(k0z, k0z
′) (2.17)

with boundary condition

K(k0z
′, k0z

′) = I
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This equation is solved by backward integration from k0z
′ to k0z. Useful properties

of the propagator matrix K are

K(k0z, k0z
′)K(k0z

′, k0z
′′) = K(k0z, k0z

′′)

K(k0z, k0z
′)−1 = K(k0z

′, k0z).

Thus, cascading several slabs is straightforward and no matrix inversions are required
to derive the resulting propagator.

2.5 Wave splitting

In [13] wave splitting is adopted before solving the ODE system. Here, vacuum wave
splitting is merely used to derive the transmission and reflection matrices for the
modes. In vacuum ε(r) = 1 and the system of equations read

∂

∂k0z




h1mn(k0z)

g′2mn(k0z)

g1mn(k0z)

h′
2mn(k0z)


 = Dmn




h1mn(k0z)

g′2mn(k0z)

g1mn(k0z)

h′
2mn(k0z)


 .

This system consists of two subsystems with equal coefficient matrices

∂

∂k0z

(
h1mn(k0z)
g′2mn(k0z)

)
=

(
0 1

−γ2
mn 0

) (
h1mn(k0z)
g′2mn(k0z)

)

∂

∂k0z

(
g1mn(k0z)
h′

2mn(k0z)

)
=

(
0 1

−γ2
mn 0

) (
g1mn(k0z)
h′

2mn(k0z)

)
.

The eigenvalues of the matrices are ±iγmn and two corresponding eigenvectors(
1

iγmn

)
and

(
1

−iγmn

)
.

The wave splitting is defined by


v+
mn(k0z)

v−mn(k0z)
w+

mn(k0z)
w−

mn(k0z)


 = Pmn




h1mn(k0z)
g′2mn(k0z)
g1mn(k0z)
g′1mn(k0z)


 . (2.18)

The matrix Pmn is chosen so that that the transmission and reflection matrices can
be derived directly from it, which is shown in section 2.6.

Pmn =
1

i2γmn




iγmn 1 0 0
−iγmn 1 0 0

0 0 iγmn 1
0 0 iγmn −1


 . (2.19)
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The inverse is

P−1
mn =




1 −1 0 0
iγmn iγmn 0 0

0 0 1 1
0 0 iγmn −iγmn


 . (2.20)

The ODE system for v±mn(k0z) and w±
mn(k0z) is then diagonal in free space and has

trivial solutions.

2.6 Transmission and reflection matrices

Transmission and reflection coefficients can be defined in different ways. One way
is to define these coefficients from the tangential fields. A definition more consis-
tent with most textbooks is to define them with respect the unit vectors û‖mn(rt),
û⊥mn(rt), v̂‖mn(rt) and v̂⊥mn(rt) orthogonal to the free space propagation direc-
tion of modes mn. Denote by eTM+

mn , eTE+
mn , eTM−

mn and eTE−
mn the forward (+z) and

backward propagating electric fields for mode mn in free space. By observing that
v− = w− = 0 for forward, and v+ = w+ = 0 for backward propagating modes
respectively and by using equations (2.8) and (2.18)

eTM+
mn (rt, k0z) = v+

mn(k0z)
(
iγmnA2mn(rt) + λmnA3mn(rt)

)
= v+

mn(k0z) û‖mn(rt)

eTM−
mn (rt, k0z) = v−mn(k0z)

(
iγmnA2mn(rt) − λmnA3mn(rt)

)
= v−mn(k0z) v̂‖mn(rt)

eTE+
mn (rt, k0z) = w+

mn(k0z)A1mn(rt) = w+
mn(k0z) û⊥mn(rt)

eTE−
mn (rt, k0z) = w−

mn(k0z)A1mn(rt) = w−
mn(k0z) v̂⊥mn(rt)

(2.21)

is obtained. Thus the components of the splitting defined by (2.18) directly gives the
forward and backward propagating TM and TE modes. The modes correspond to
physically forward and backward propagating modes in free space. The transmission
and reflection matrices are now defined by(

v+
mn(k0�)

w+
mn(k0�)

)
=

∑
m′n′

Tmn,m′n′

(
v+

m′n′(0)
w+

m′n′(0)

)
(2.22)

and (
v−mn(0)
w−

mn(0)

)
=

∑
m′n′

Γmn,m′n′

(
v+

m′n′(0)
w+

m′n′(0)

)
(2.23)

where Tmn,m′n′ and Γmn,m′n′ have the 2 × 2 block structure

Tmn,m′n′ =

(
T TM,TM

mn,m′n′ T TM,TE
mn,m′n′

T TE,TM
mn,m′n′ T TE,TE

mn,m′n′

)
.

Using (2.16) and (2.18)


v+
mn(0)

v−mn(0)
w+

mn(0)
w−

mn(0)


 =

∑
m′n′

PmnKmn,m′n′(0, k0�)P−1
m′n′




v+
m′n′(k0�)

v−m′n′(k0�)
w+

m′n′(k0�)
w−

m′n′(k0�)


 (2.24)
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is obtained. Let

GAmn,m′n′ =

(
GA

11
mn,m′n′ GA

12
mn,m′n′

GA
21
mn,m′n′ GA

22
mn,m′n′

)
(2.25)

where

GA
ij
mn,m′n′ =

(
PmnKmn,m′n′(0, k0�)P−1

m′n′
)2i−1,2j−1

(2.26)

and where i = 1, 2 and j = 1, 2. Similarly define GB,GC and GD such that

GB
ij
mn,m′n′ =

(
PmnKmn,m′n′(0, k0�)P−1

m′n′
)2i−1,2j

GC
ij
mn,m′n′ =

(
PmnKmn,m′n′(0, k0�)P−1

m′n′
)2i,2j−1

GD
ij
mn,m′n′ =

(
PmnKmn,m′n′(0, k0�)P−1

m′n′
)2i,2j

.

(2.27)

The transmission matrix follows from equations (2.22), (2.24) and (2.26). Since
waves are incident from the (−) side only, (v−mn(k0�) = w−

mn(k0�) = 0)

T = GA
−1 (2.28)

is obtained. Similarly, the reflection matrix follows from (2.23), (2.24), (2.27) and
(2.28)

Γ = GC T . (2.29)

Until now it has been assumed that there is vacuum for z > �. However in the
example in section 3.3, the structure is assumed metal-backed. Thus(

v−mn(k0�)
w−

mn(k0�)

)
=

∑
m′n′

−δmm′δnn′

(
v+

m′n′(k0�)
w+

m′n′(k0�)

)
. (2.30)

Hence, in this case the reflection matrix at z = 0 is obtained from (2.23), (2.24),
(2.26), (2.27) and (2.30) as

Γ = (GC − GD)(GA − GB)−1. (2.31)

3 Numerical examples

3.1 Slab with circular holes

In this example a homogeneous slab with circular holes is considered. The cell
parameters are: d1 = d2 = 22.5 mm, α = 90◦. The slab slab thickness is 5.1 mm,
and the hole radius 7.5 mm and the permittivity of the slab ε = 3.97+i0.037. Floquet
modes with indices |m|, |n| ≤ 5 are included. The permittivity is represented in the
pulse basis (2.14).

In Figure 2, showing the magnitude of the transmission, the results calculated
by the method of the authors is compared with results obtained with a commercial
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code MAFIA version 4 (dashed line). The agreement between the different calcu-
lations is very good. The small discrepancies (at higher frequencies mainly) can
be explained by the gridding and possibly to some extent the different models for
the losses. In MAFIA an equivalent conductivity of ω0ε0ε

′′ with ω0 = 2π1010 is
assumed. The MAFIA code is based on a finite integration time domain method,
see [21, 22]. The code can only model normal incidence. Since MAFIA is based on
a completely different method the agreement between the different calculations is
a strong argument for the method and computer code developed here. The third
curve in Figure 2 shows results measured on a test panel. The agreement is good
considering the error sources of the measurements.

The measurements are performed on a square 600 × 600 mm test panel. The
panel is placed between two horn antennas, each at a distance of approximately 500
mm from the slab, see Figure 3. The antennas are connected to a vector network
analyzer. The purpose is to determine the transmission of the fundamental mode
as if the slab was of infinite extent.

Due to the excitation of higher order modes in the slab, a surface wave propagates
along the slab and reaches the edges where it is partially reflected and partially
radiated into free space, interfering with the fundamental mode transmitted through
the slab. In order to remove the disturbances caused by the reflections and radiating
edges, a software time domain gating is performed. Measurements are performed
at a number of frequencies, and the results are transformed to the time domain.
In the time domain, the disturbances are identified as arriving considerably later
than the transmitted fundamental mode. A gate is applied in the time domain
to exclude the unwanted contributions and then the result is transformed back to
the frequency domain. It is this gated curve that is shown in Figure 2. However,
the time domain gating cannot entirely separate the different contributions why the
disturbances to some extent still affect the measurements. Another source of error
is presumably a slight curvature of the slab. Furthermore the slab is not illuminated
by a plane wave of a specific direction but rather a spectrum of plane waves since
horns with rather small apertures (< 2λ) are used. Near the edges the angle of
incidence is so large that grating lobes could be excited. The directions of these
grating lobes are such that they should not interfere with the measurement. The
different angles of incidence cause e.g. the surface wave with wave vector kt;0,−1 to
have a non discrete value, causing a ’smoothing’ of the measured curve compared to
the calculated. Antennas with larger apertures as in [18] could give a more accurate
result. The error in the permittivity of the slab in the range of ±5%. A different ε
in the calculations will cause a frequency shift of the curve.

In Figures 4 and 5 a plane wave is incident at an angle θ0,0 = 20◦ and ϕ00 = 0◦.
The frequency is scanned from 8 to 12 GHz. Calculated magnitudes for the trans-
mission and reflection of the propagating modes are shown. A grating lobe occurs
at frequencies larger than 9.9 GHz as can be seen in the figures. At 12 GHz the
grating lobe angle is θ0,−1 = 50.3◦. (See illustration in Figure 6).

By numerical experiments it is found that a good result is obtained with surpris-
ingly few modes. Although the slab is piecewise homogeneous, comparisons with a
homogeneous slab are relevant. For a homogeneous slab with relative permittivity
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ε, modes propagate when k2
0ε

′ − |kt;mn|2 > 0. For an inhomogeneous slab with low
or moderate loss and a moderately large ε′, the propagating modes are definitely
enclosed by the circle given by k2

0εest − |kt;mn|2 > 0, where εest = max{ε′(r)} and
r is given by {r : rt ∈ I, 0 ≤ z ≤ �}. By including the modes within the circle
and the modes adjacent, a reasonable result is obtained. This seems to be true for
electrically thin slabs also, although the evanescent modes have larger amplitudes
when the object is thin and should affect the result more in that case. On the other
hand, in the limit of an infinitely thin slab the propagator equals the identity oper-
ator. The behaviour is thus significantly different from that of a thin PEC screen.
In the example here, modes (0, 0), (0,±1), (0,−2), (±1,±1), and (±1, 0) fall within
the circle at 12 GHz. As mentioned, all modes with indices |m|, |n| ≤ 5 are included
in the example which is more than required in the scale used. The modes above
|m|, |n| ≤ 3 only give small contributions.

In section 2.3 it is mentioned that the coefficients given in (2.14) can be calculated
using an entire domain basis (Appendix B). In general, a subdomain basis (e.g. pulse
basis) is preferred though, especially when the object is piecewise homogeneous and
Gibbs’ phenomenon occurs in the entire domain representation of the permittivity.
In that case a large number of basis functions is in general required to represent the
material which results in a large number of Floquet modes.

3.2 Conductive slab

An infinite conductivity cannot be represented in the formulation presented here.
However, large conductivities can be represented by a large imaginary part of the
permittivity. Calculated results for a perforated lossy slab are shown in Figure 7.
The cell is rectangular with d1 = 23.25 mm and d2 = 15.55 mm. The thickness is
1.1 mm and the relative permittivity ε = 1+i500. There is one rectangular aperture
per cell. The aperture size is 18.0 mm (along x) × 5.5 mm. A plane wave is incident
at θ0,0 = 60◦, ϕ00 = 90◦. Floquet modes with indices |m|, |n| ≤ 5 are included. The
permittivity is represented in the pulse basis (2.14). For TM transmission compar-
isons are made with a slab with the same geometry but consisting of a PEC (and

calculated essentially by the method in [1]). The quantity (ε′′)
1
2 t/λ0 where t is the

thickness of the slab essentially determines an upper limit for the number of modes
that can be included before the calculation of the propagator K becomes inaccu-
rate and the matrix ill-conditioned. If the maximum number of modes that can be
included is enough to represent the fields then the calculation gives a good result.
In the example here the chosen value of ε′′ corresponds to an effective conductivity
of 280 S/m at 10 GHz which is far from say the conductivity of copper (5.6 · 107

S/m) for which the PEC approximation is appropriate. For copper, the skin depth
is 6.7µm at 10 GHz while the corresponding skin depth for ε′′ = 500 is 0.3 mm.
Although the skin depths differ by a factor of 450, the skin depth 0.3 mm is small
compared to the length of the aperture which is why the shape of the curves for the
transmitted TM polarised fundamental mode agree rather well. Obviously, a lot of
absorption occurs in the skin.

Comparisons are relevant with homogeneous slabs regarding the decay of the
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modes with respect to z. The decay is governed by the eigenvalues of the ma-
trix D + C for both inhomogeneous and homogeneous slabs. For a homogeneous
medium with large losses (ωε′′ � ωε′), there is less difference between modes for
which Re(k2

0(ε
′ + iε′′) − |kt;m,n|2) is larger or less than zero compared to a low loss

medium. All modes are rapidly attenuated in the case of large losses. For a large
loss medium (and a +z wave direction) arg(kz;m,n) varies between π/4 − O(ε′/ε′′)
and π −O(ε′/ε′′) with increasing mode numbers |m|, |n|, (where O(x) < Cx when
x → 0+ and C is a positive constant). The upper limit π −O(ε′/ε′′) is not reached
until |kt;m,n|2 � k2

0ε
′′ which happens for very large mode numbers |m|, |n|, when ε′′

is large. Thus the simple guiding rule on how many modes to include suggested in
section 3.1 is of no relevance for large losses.

In comparison, for a low loss medium arg(kz;m,n) varies between O(ε′′/ε′) and
π − O(ε′′/ε′) with a distinctive jump from the lower to the upper limit when
Re(k2

0(ε
′ + iε′′) − |kt;m,n|2) passes zero.

3.3 Pyramidal-shaped absorber-like metal backed structure

A pyramidal-shaped absorber-like structure is a z−dependent geometry that can be
analyzed, see Figure 8. These types of structures are often used in e.g. anechoic
chambers. The structure is backed by a PEC and thus the reflection coefficient is
given by (2.31). The permittivity in this example is given by

ε(rt, z) =




{
2.5 + i |x| ≤ 0.4z and |y| ≤ 0.4z

1 otherwise
, 0 ≤ z < 30 mm

2.5 + i , 30 ≤ z ≤ 42 mm

(3.1)

Floquet modes with indices |m| ≤ 2, |n| ≤ 3 are included. The permittivity is
represented in the pulse basis (2.14). The ODE system is solved with an implicit
method. The magnitude of the reflection coefficients for the modes that are propa-
gating in free space are shown in Figure 8 for an incident plane wave with θ0,0 = 45◦,
and ϕ00 = 0◦. A higher order mode with index (0,−1) propagates in free space.

4 Concluding remarks

In this paper an analysis method for inhomogeneous dielectric frequency selective
structures is derived. The structures that can be analyzed are periodic and inho-
mogeneous in the lateral directions. An arbitrary dependence is assumed in the
longitudinal direction. The fields in the cell are expanded in a set of entire domain
orthonormal vector basis functions. The constitutive parameter is expanded in local
and entire domain basis respectively. The expansions are used to derive a set of
coupled ODE:s for a propagator. A wave splitting physical in free space is then used
to obtain the reflection and transmission matrices.
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Figure 2: Magnitude of transmission for the fundamental mode, normal incidence
with ϕ00 = 0◦, ε = 3.97+ i0.037, slab thickness 5.1 mm, calculations compared with
measurements (cf. Figure 6).

The permittivity is preferably expanded in a subdomain basis where a simple
pulse basis is appropriate especially for a piecewise homogeneous case. An entire
domain basis is also tried for the permittivity but found less successful.

The calculated results using the current method are, in a special case, compared
with results obtained with a time domain based method and the agreement is very
good. In the same case the results are compared with measurements; the agreement
is good considering the sources of error in the measurements. Examples are given for
a medium with small losses as well as very large losses. A metal backed pyramidal-
shaped structure is also considered.

The method presented can easily be generalized to a medium with more complex
constitutive relations.
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Figure 3: Ideal vs. actual test situation corresponding to example in section 3.1.

Appendix A Properties of the vector functions

∫
I
Aτmn(rt) · A∗

τ ′m′n′(rt)dS = δττ ′δnn′δmm′ (A.1)

∇2
tAτmn(rt) = −k2

t;mnAτmn(rt)

∇ · A1mn(rt) = 0

∇ · A2mn(rt) = −kt;mnψmn(rt)

∇ · A3mn(rt) = 0

ẑ · Aτmn(rt) = 0, τ = 1, 2

ẑ · A3mn(rt) = ψmn(rt)

ẑ × A1mn(rt) = A2mn(rt)

ẑ × A2mn(rt) = −A1mn(rt)

ẑ × A3mn = 0

∇× A1mn(rt) = kt;mnA3mn(rt)

∇× A2mn(rt) = 0

∇× A3mn(rt) = kt;mnA1mn(rt)

From these relations one easily obtain the orthogonality relations for the vector
functions uτmn and vτmn∫

I at z=z0

uτmn · u∗
τ ′m′n′dS = e−2Imγmnk0z0δττ ′δmm′δnn′
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Figure 4: Magnitude of transmission and reflection coefficients of the propagating
modes for the TE case (cf. Figure 6), ε = 3.97 + i0.037, slab thickness 5.1 mm,
oblique incidence: θ0,0 = 20◦ and ϕ00 = 0◦.

∫
I at z=z0

vτmn · v∗
τ ′m′n′dS = e2Imγmnk0z0δττ ′δmm′δnn′

∫
I at z=z0

u1mn × u∗
2m′n′dS = ie−2Imγmnk0z0δmm′δnn′(−γ∗

mnẑ + λmnk̂t;mn)

∫
I at z=z0

u2mn × u∗
1m′n′dS = ie−2Imγmnk0z0δmm′δnn′(−γmnẑ + λmnk̂t;mn)

∫
I at z=z0

v1mn × v∗
2m′n′dS = ie2Imγmnk0z0δmm′δnn′(−γ∗

mnẑ + λmnk̂t;mn)

∫
I at z=z0

v2mn × v∗
1m′n′dS = ie2Imγmnk0z0δmm′δnn′(−γmnẑ + λmnk̂t;mn)

∫
I at z=z0

u1mn × v∗
2m′n′dS = iei2Reγmnk0z0δmm′δnn′(−γ∗

mnẑ + λmnk̂t;mn)

∫
I at z=z0

u2mn × v∗
1m′n′dS = iei2Reγmnk0z0δmm′δnn′(−γmnẑ + λmnk̂t;mn)
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Figure 5: Magnitude of transmission and reflection coefficients of the propagating
modes for the TM case (cf. Figure 6), ε = 3.97 + i0.037, slab thickness 5.1 mm,
oblique incidence:θ0,0 = 20◦ and ϕ00 = 0◦.

∫
I at z=z0

v1mn × u∗
2m′n′dS = ie−i2Reγmnk0z0δmm′δnn′(−γ∗

mnẑ + λmnk̂t;mn)

∫
I at z=z0

v2mn × u∗
1m′n′dS = ie−i2Reγmnk0z0δmm′δnn′(−γmnẑ + λmnk̂t;mn)

In the region z < 0, the electric field can be expressed as

E(r) = Ei(r) + Er(r)

where the incident field is given by

Ei(r) =
2∑

τ=1

∞∑
m=−∞

∞∑
n=−∞

aτmnuτmn(r) (A.2)

If the incident wave is a plane vector wave then

Ei(r) = a100u100(r) + a200u200(r) (A.3)

Any plane wave with wave vector k0 can be obtained from this combination by
suitable choices of a100 and a200. The general incident field in equation (A.2) is
relevant for a cascade of several periodic structures. The reflected field is given by

Er(r) =
2∑

τ=1

∞∑
m=−∞

∞∑
n=−∞

bτmnvτmn(r) (A.4)
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Figure 6: Propagating modes corresponding to Figures 4 and 5.

In the half space z > � the electric field is expanded in forward going waves

Et(r) =
2∑

τ=1

∞∑
m=−∞

∞∑
n=−∞

fτmnuτmn(r) (A.5)

Since

H i(r) = − i

η0

∑
mn

a1mnu2mn + a2mnu1mn

H r(r) =
i

η0

∑
mn

b1mnv2mn + b2mnv1mn

it is seen that

Re

∫
I at z=z0

Ei × H i∗ · ẑdS =
1

η0

∑
mn

Re
(
γmne

−2Imkzmnz0
) (

|a1mn|2 + |a2mn|2
)

Re

∫
I at z=z0

Er × H r∗ · ẑdS = − 1

η0

∑
mn

Re
(
γmne

2Imkzmnz0
) (

|b1mn|2 + |b2mn|2
)

∫
I at z=z0

Ei × H r∗ · ẑdS = − 1

η0

∑
mn

(a1mnb
∗
1mnγ

∗
mn + a2mnb

∗
2mnγmn) e2iRekzmnz0

∫
I at z=z0

Er × H i∗ · ẑdS =
1

η0

∑
mn

(b1mna
∗
1mnγ

∗
mn + b2mna

∗
2mnγmn) e−2iRekzmnz0

Re

∫
I at z=z1

Et × H t∗ · ẑdS =
1

η0

∑
mn

Reγmne
−2Imkzmnz1 |f1mn|2

(A.6)

The divergence theorem gives

Re

∫
I at z=z0

(Ei + Er) × (H i∗ + H r∗) · ẑdS = Re

∫
I at z=z1

(Et × H t∗) · ẑdS
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Figure 7: Magnitude of transmission and reflection coefficients of the fundamental
modes for a perforated lossy slab with ε = 1 + i500 and slab thickness 1.1 mm,
comparisons with a perfect electric conductor (PEC), oblique incidence:θ0,0 = 60◦

and ϕ00 = 90◦.

The energy relation then follows from the relations in Eq. (A.6)∑
τmn

Re(γmne
−2Imkzmnz0)|aτmn|2 −

∑
τmn

Re(γmne
−2Imkzmnz1)|fτmn|2

−
∑
τmn

Re(γmne
2Imkzmnz0)|bτmn|2

= 2(−1)τ−1
∑
τmn

Im (γmn) Im
(
aτmnb

∗
τmne

2iRekzmnz0
)

When the surrounding medium is lossless the left hand side is a summation over the
propagating modes and the right hand side is a summation over non-propagating
modes. Since the periodic structure is embedded in vacuum in this paper it is seen
that

δmm′δnn′ −
∑
m′′n′′

Γmn,m′′n′′Γ∗
m′′n′′,m′n′ −

∑
m′′n′′

T †
mn,m′′n′′Tm′′n′′,m′n′ = 0 (A.7)

where † denotes Hermite conjugate and the summation is over the propagating mode
indices. It is also seen that

ImΓmn,m′n′ = 0 (A.8)

for mode indices mn corresponding to non-propagating modes.
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Figure 8: Magnitude of reflection coefficients for in free space propagating modes
for a metal-backed lossy pyramidal-shaped structure with ε = 2.5 + i, oblique inci-
dence: θ0,0 = 45◦ and ϕ00 = 0◦.

Appendix B Expansion coefficients for the con-

stitutive parameters in the entire domain basis

The integrals in Eq. (2.13) can be handled in some different ways. One way is to
expand ε(r) − 1 and (ε(r))−1 − 1 as

ε(r) − 1 =
∑
mn

cmn(k0z)ηmn(rt)

(ε(r))−1 − 1 =
∑
mn

fmn(k0z)ηmn(rt)

cf. Eq. (2.1). Thus

α12(z) =
∑
m′′n′′

cm′′n′′(z)

∫
I
ηm′′n′′(rt)A

∗
2mn(rt) · A2m′n′(rt) dS

α13(z) =
∑
m′′n′′

cm′′n′′(z)

∫
I
ηm′′n′′(rt)A

∗
2mn(rt) · A1m′n′(rt) dS

α21(z) =
∑
m′′n′′

fm′′n′′(z)λmnλm′n′

∫
I
ηm′′n′′(rt)A

∗
3mn(rt) · A3m′n′(rt) dS
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α42(z) = −
∑
m′′n′′

cm′′n′′(z)

∫
I
ηm′′n′′(rt)A

∗
1mn(rt) · A2m′n′(rt) dS

α43(z) = −
∑
m′′n′′

cm′′n′′(z)

∫
I
ηm′′n′′(rt)A

∗
1mn(rt) · A1m′n′(rt) dS

and these are reduced to

α12(z) = k̂t;mn · k̂t;m′n′
∑
m′′n′′

cm′′n′′(z)Wmnm′n′m′′n′′

α13(z) = ẑ · (k̂t;mn × k̂t;m′n′)
∑
m′′n′′

cm′′n′′(z)Wmnm′n′m′′n′′

α21(z) = λmnλm′n′
∑
m′′n′′

fm′′n′′(z)Wmnm′n′m′′n′′

α42(z) = α13(z)

α43(z) = −α12(z)

The matrix W reads

Wmnm′n′m′′n′′ =

∫
I
η∗mn(rt)ηm′n′(rt)ηm′′n′′(rt) dS

=
1√
D

δm,m′+m′′δn,n′+n′′

Thus

α12(z) =
1√
D

k̂t;mn · k̂t;m′n′ cm−m′,n−n′(z) = −α43

α13(z) =
1√
D

ẑ · (k̂t;mn × k̂t;m′n′) cm−m′,n−n′(z) = α42

α21(z) =
1√
D

λmnλm′n′ fm−m′,n−n′(z)
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