
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Rewriting JGrafchart with Rewritable Reference Attribute Grammars

Theorin, Alfred; Årzén, Karl-Erik; Johnsson, Charlotta

2012

Link to publication

Citation for published version (APA):
Theorin, A., Årzén, K.-E., & Johnsson, C. (2012). Rewriting JGrafchart with Rewritable Reference Attribute
Grammars. Paper presented at Industrial Track of Software Language Engineering 2012, Dresden, Germany.

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/971310c1-038c-4015-af79-1339ff766f60


Rewriting JGrafchart with

Rewritable Reference Attribute Grammars

Alfred Theorin, Karl-Erik Årzén, and Charlotta Johnsson

Department of Automatic Control, Lund, Sweden
{alfred.theorin,karlerik,charlotta.johnsson}@control.lth.se

Abstract. Grafchart is a graphical programming language for sequen-
tial control applications. It exists in two versions: the basic version (BV)
and the high-level version (HLV). The currently used Grafchart tool,
JGrafchart, only supports BV. To enable further research on HLV, it
must be supported by JGrafchart. Since HLV is a superset of BV it is
desirable to add it as an extension to the current implementation of BV.

Rewritable Reference Attribute Grammars (ReRAGs) have been suc-
cessfully used to implement several other extensible compilers. Grafchart
consists of one graphical and two textual sub-languages. This paper fo-
cuses on making the two textual sub-languages extensible by rewriting
them using ReRAGs. The sup notation is added as an extension to the
ReRAGs implementation to confirm extensibility.

1 Introduction

Grafchart is a graphical programming language for sequential control applica-
tions that has been developed at Lund University. It is based on Grafcet/Sequen-
tial Function Charts (SFC) and is suitable both for applications on the local and
on the supervisory level [9], as well as on both the Business and the Manufac-
turing Execution System (MES) layers, and in all phases from process-planning
to execution [5]. Furthermore, Grafchart is easy to use and understand and it
has potential for formal descriptions, validation, and analysis [7].

Grafchart exists in two versions: the basic version (BV) and the high-level
version (HLV). BV is based on Grafcet and has extended syntax and facili-
tates additional abstractions. HLV contains additional high-level programming
language constructs as well as features inspired by high-level Petri nets. These
constructs make HLV very expressive and well suited for a wide variety of control
applications, e.g. it has been used to create convenient batch control applications
which otherwise tend to become very complicated [7].

Toolboxes for both BV and HLV have been implemented in G2 [4]. BV is
also implemented as a freeware, standalone Java program, JGrafchart, which
supports editing, compilation, and interactive interpreted execution. For various
reasons, the G2 toolboxes are no longer used. Instead JGrafchart is the tool of
choice and is used both in education and research.



2 The Problem

To enable further research on HLV, JGrafchart must first support the already
existing HLV features. It is desirable to retain a pure BV as well. Since HLV is a
superset of BV it is desirable to re-use the BV implementation as a base for the
HLV implementation to avoid code duplication and to improve maintainability.
This imposes an extensibility requirement on both the editor and the compilers.

3 ReRAGs

Rewritable Reference Attribute Grammars (ReRAGs) extend the attribute gram-
mars introduced by Donald Knuth [8], adding several new concepts such as ref-
erence, collection, and parametrized attributes and node rewrites. ReRAGs are
implemented in the open source compiler compiler system JastAdd [6].

The main difference between attribute grammars and traditional compiler
techniques is that attribute grammars are declarative while traditional compil-
ers are imperative. Instead of explicit abstract syntax tree (AST) traversal, the
semantics are specified using equations. One big advantage with declarative pro-
gramming is that one does not have to consider the order in which the properties
are calculated since this is handled automatically by the evaluation framework.

JastAdd has been used to successfully implement other extensible compil-
ers for a wide variety of purposes, e.g. the JastAdd Java Compiler (JastAddJ)
that is written as a Java 1.4 compiler with a Java 1.5 extension [3], Control
Module Language with object oriented extension [2], and the Optimica exten-
sion to Modelica [1]. It thus appeared to be a suitable candidate for making the
JGrafchart compilers extensible.

4 Grafchart

Graphical languages are popular in the automation community, e.g. three of the
five languages in the PLC standard IEC 61131-3 are graphical. The advantages
of graphical programming languages are simplicity and declarativeness and they
often allow programming in the same way as people model problems.

Interactive, graphical execution makes it easy for the operator, i.e. the in-
tended typical user, to monitor the current execution state. To make it even
more appealing to the operators it is also possible to create more intuitive oper-
ator interfaces using the many graphical elements in JGrafchart. Typically the
operator interface resembles the controlled process, e.g. a set of tanks connected
by piping, with indicators and interactive elements added, see Figure 1.

Grafchart is based on the graphical syntax of SFC, one of the graphical lan-
guages of IEC 61131-1, which is well-accepted by the industry today. Grafchart
has also incorporated ideas from statecharts, high-level Petri nets, and ordinary
object oriented programming languages to extend the rather low-level SFC lan-
guage with constructs for hierarchical structuring and exception handling. This
makes it possible to create large, well structured, and maintainable applications
with support for formal analysis.



Fig. 1. A dummy control application and operator interface created in JGrafchart.

4.1 Syntax

Grafchart consists of steps, representing states, and transitions, representing the
change of state. Steps and transitions are connected by arcs. The current state is
indicated by tokens in the steps and a step is active if it contains tokens. Associ-
ated with the steps are actions that are executed at certain times, e.g. when the
step is activated (S action) or deactivated (X action). The N action associates
setting/resetting of a boolean variable with the step activation/deactivation. To
each transition a boolean condition is associated. A transition is enabled when
all its previous steps are active. An enabled transition fires if its condition is true,
meaning that its previous steps are deactivated and its next steps are activated.

The hierarchical constructs which can be used to group sub-sequences are
the macro step and the procedure. A macro step is a step containing a sub-
sequence while the procedure is not a step but is instead re-usable and can be
called from procedure steps and process steps. Procedure steps are similar to
function calls in ordinary programming languages. Process steps on the other
hand spawn a separate execution thread for the procedure execution upon each
activation and do not have to wait for the called procedure to reach its final
state before proceeding to the next step.

In BV there is essentially only one token while in HLV it is possible to have
several tokens, and to spawn and consume tokens dynamically. It is also possible
for the tokens in HLV to contain data (compare to colored Petri nets) that may
be used in the actions and conditions.



4.2 Example Application

The application in Figure 2 implements a controller for a batch tank that is
filled until full, then emptied until empty. This sequence is repeated, and each
time the filling is initiated the cycles counter is incremented. In the current
execution state the 4th filling has just been initiated.

Fig. 2. A Grafchart batch tank control application and its AST with references.



4.3 Inputs and Outputs

JGrafchart contains a wide variety of means of connecting various I/O to interact
with the external environment. One way is with custom Java implementations
of analog and digital I/O. More general I/O can be implemented using Socket
I/O. Devices Profile for Web Services (DPWS) devices can also be used without
a priori knowledge about their capabilities and without any custom code [10].

This means that JGrafchart can be connected to practically any external
environment, in most cases with only a small or moderate effort.

4.4 Language

The Grafchart language consists of three sub-languages: The function chart lan-
guage (graphical), the actions language (textual), and the conditions language
(textual). The function chart language contains the steps, transitions, and other
graphical elements such as variables, I/O, and procedures. The actions language
is used for the actions of the steps. The conditions language is used for the
transitions specifying when to move from one step to another. It consists of the
expressions subset of the actions language with flank and event detection added.

It is only the extensibility of the textual sub-languages of Grafchart that is
considered in this paper.

5 Refactoring

The compilers for the actions and conditions languages were previously written
using traditional compiler construction techniques and tools. Using JavaCC the
scanner and parser specifications were used to generate classes for scanning,
parsing, and building the AST. The language semantics were then added by
inserting code into the generated files. Interpreter code for execution was also
added to the same files. This approach has the following drawbacks:

– The semantics code, the interpreter code, and the generated code are inter-
mixed making it hard to distinguish the different parts.

– The functionalities are hard to overview since they are split up in all con-
tributing Java classes.

– The semantics are written using imperative programming and are thus in-
herently hard to extend.

Trying to create an extension under these circumstances would be error-
prone. Instead the following strategy for refactoring was used:

1. Separate the hand-written code from the generated code.
2. Split the hand-written code into logical modules based on functionality.
3. Simplify the semantics analysis by using ReRAGs.

These steps were applied to both the actions and the conditions language
implementation in turn, for convenience the conditions language was considered
first as it is almost a subset of the actions language.



5.1 Step 1: Separation

Separating the hand-written from the generated code was straightforward. The
parser was re-generated into an empty directory and then compared to the cur-
rent code. The code that was not present in the re-generated files was considered
hand-written and moved into one single, large JastAdd module. For this to work
in JastAdd, the AST node types also had to be specified. As a starting point
the AST specification was simply a listing of all the AST node types. Later it
was rewritten to make the AST structure explicit.

5.2 Step 2: Split Into Modules

The modules chosen for both language implementations were Compiler, Inter-
preter and Utilities. The Compiler module handles the compilation of the AST,
the Interpreter module handles interpreted execution of the compiled AST, and
the Utilities module contains helper functions that are not specifically related to
any other module.

A part of the actions and conditions language implementations were the
built-in functions and methods such as abs(), min(), and getWidth(). These
were compiled and executed separately by each language implementation in the
old implementation. However, they do not fit in either module since information
about them is required during compilation and their implementation is required
during execution. Since most built-in functions and methods are available both
in the actions and conditions languages it is also more appropriate to only have
them implemented once. Therefore they were instead extracted to a separate
package that is used by both language implementations during both compilation
and execution.

5.3 Step 3: Simplification

After the split into modules, the Compiler modules were transformed piece by
piece to ReRAG equations in parallel with creating JUnit tests for verification.

In the old implementation, a one pass traversal of the entire AST was per-
formed. Compilation messages were sent directly to the editor during the traver-
sal, and to know if the compilation was successful, a separate boolean variable
was propagated upwards in the tree and returned by the root node.

The new implementation uses a collection attribute in the root node for the
compilation messages. This means that the compilation success status does not
have to be propagated through the tree as it is sufficient for the root node to
check if there are any error messages in the collection attribute. In fact, in the
new implementation receiving the compilation context and checking for error
messages among the compilation messages is all that is done.

The Interpreter modules received less attention and were conveniently kept
as imperative code.



6 Evaluation

6.1 Proving Extensibility

The sup notation is a construct that makes it possible for a sub-workspace to
access its enclosing environment. It is similar to Java’s super that is used to access
overridden functions. sup was available in the G2 toolboxes and was always
required when accessing the enclosing environment. JGrafchart on the other
hand uses scoping rules similar to those of ordinary programming languages,
making the sup notation unnecessary in most cases. It is however still useful for
example when there is a local variable with the same name as a variable in the
enclosing environment, see Figure 3.

Fig. 3. Variable binding with sup.

After rewriting the language implementations, adding the sup notation as an
extension was straightforward and only required 53 lines of code, of which 20
lines for the scanners and parsers, and 33 lines for the semantics.

Note that the sup extension only affects the lookup and thus only the Com-
piler modules are affected. Other extensions might also extend or alter the inter-
preter behavior. Extending the Interpreter would be trivial and altering it would
also be possible by using JastAdd’s refine.

6.2 Code Size Comparison

A metric that is commonly used to compare the size of software programs is
source lines of code (SLOC). The metric has many disadvantages and must be
used with care. It has been chosen just to show the difference in implementation
size between the old and the new implementation. For simplicity all lines were
counted regardless of whether they were statements, comments, or empty lines.

When writing the new implementation the focus has been to make it as
understandable and maintainable as possible. An equivalent new implementation
was created by making it equally compact as the old implementation, i.e. with
a similar part of comments and empty lines. This is denoted Neweq in table 1.



Since the functionalities in the old implementation are mixed up, both with
each other and with the generated code, distinguishing what is what was far
from trivial. To determine which lines corresponded to which functionality a
thorough analysis of the old implementation was performed.

To make the comparison as fair as possible, files and functions that were
found to be dead code are not counted to their otherwise corresponding func-
tionality and files that only contain generated code is considered a separate
category. Import statements in the old implementation have been counted sep-
arately while the includes in the new implementation have been counted with
the corresponding module.

Table 1. SLOC comparison of the old and the new implementation. Neweq is equivalent
to New, but written equally compact as Old. In Totalexcl Built-ins are considered
as libraries, and are thus excluded. In Totalfair Separate Generated has also been
excluded.

Old New Neweq

Compiler 1537 380 209
Interpreter 1389 1089 983
Built-ins 3462 3514 -
Utilities 110 134 126
AST 2 114 52
Includes 230 - -
Mixed Generated 1513 - -
Separate Generated 6628 - -
Dead 723 - -

Total 15594 5231 -
Totalexcl 12132 - 1370
Totalfair 5504 - 1370

sup - 53 38

The AST specification is required by the JastAdd tool to be able to verify that
the equations are valid. In the old language implementations the AST structure
was mostly implicit according to the parser specification together with the JJTree
stack implementation. The two lines that are counted as AST specification in
the old implementation are modifications that had been made to the generated
code to specify a non-implicit AST structure.

The new Compiler modules are 75% smaller than the old ones. Also the new
implementation is not as compact as the old one. Comparing the old implemen-
tation with the equally compact Neweq implementation is even 86% smaller.
Another thing to point out is that the new Compiler modules have been en-
hanced with several new compiler checks and additional attribution has been
added to make the interpretation easier.

The Interpreter modules have not received much attention. The main reason
why they are now smaller is that duplicated code has been removed. With all



the interpreter code gathered the code duplication was easy to detect and elimi-
nate. The Interpreter modules in the new implementation is also somewhat less
compact than the old implementation and the new implementation has also been
enhanced, e.g. multiple dereferences within an expression is now supported.

In the old implementation the built-in functions and methods were imple-
mented in both the actions and the conditions language. In the new implementa-
tion there is only one implementation but it has been split up into public classes
for better maintainability. Earlier they were anonymous classes which require
considerably less overhead. This is the reason why the new implementation is
much larger than, as would be expected, half the size of the old implementation.

The mixed generated code lines in the old implementation make up roughly
20% of the lines in the manually maintained mixed files. With the new imple-
mentation no generated files have to be maintained.

The most fair comparison should be Totalfair, where the implementations
are equally compact, and separate generated files and built-ins are excluded.
Then the new implementation is then 75% smaller than the old one.

6.3 Performance Comparison

The compilation code of the old and the new implementation of JGrafchart were
instrumenting manually, compilation was performed 100 times in a burst, and the
best compilation time of these was considered. The Online Tutorial application
was used since it is fairly large and contains a wide variety of constructs.

The compilation time was 17.3 ms and 39.3 ms for the old and the new
implementation respectively. The new implementation performs more checks and
it has also been rewritten to use a more extensible and maintainable, but worse
performing name lookup. The rewritten lookup alone added 7 ms. Still, the new
implementation takes roughly twice as long as the old implementation.

Interpreted performance has also been analyzed since it is currently the only
way to execute JGrafchart applications. Profiling of the interpreters was also
performed on the Online Tutorial, with the scan cycle time reduced to 10 ms. The
execution code was instrumented manually and the execution time was added
during approximately 5.7 million scan cycles. The average execution time per
scan cycle were 0.204 ms and 0.212 ms for the old and the new implementation
respectively. The execution performance is practically the same with the new
and the old implementation. Better handling of dots and references weigh up
the performance loss due to larger overhead and the new lookup. Lookup is
involved since dereferencing performs dynamic name lookup during execution.

7 Summary

To enable further research on HLV, it must be supported by JGrafchart, and it
is desirable to also keep a pure BV. Since HLV is a superset of BV it is desirable
to re-use the BV implementation as a base, meaning that all aspects of the BV
implementation must be extensible. ReRAGs and JastAdd have been used to



make the JGrafchart implementation of the textual sub-languages extensible. To
confirm extensibility, the sup notation was added as an extension to the rewritten
implementation of BV. The sup extension was easy to add and required only a
few lines of code.

This confirms that using ReRAGs is a good way to create extensible compil-
ers. In summary the pros and cons of the new implementation are:

• Extensibility
• Improved maintainability
• Modularized functionalities
• Fewer lines of code
• Increased robustness
• Degraded compiler performance
• Developers must understand attribute grammars

Improved maintainability and increased robustness lead to fewer bugs and
better quality which in most cases is more important than performance.

In conclusion, the new JGrafchart implementation of the textual sub-languages
should be ready for implementation of HLV as an extension. Related future work
include making an extensible compiler for the function chart sub-language, inves-
tigating how to extend the editor in a suitable way, adding HLV as an extension,
and finally evaluating new constructs for HLV.

Acknowledgements. Financial support from the Swedish Research Council
through the LCCC Linnaeus grant is gratefully acknowledged.

References

1. Åkesson, J.: Optimica—an extension of modelica supporting dynamic optimization.
In: Proceedings of Modelica’2008. Bielefeld, Germany (March 2008)

2. Ekman, T.: Design and implementation of object-oriented extensions to the Control
Module language. In: Proceedings of NWPER’2004. Turku, Finland (August 2004)

3. Ekman, T., Hedin, G.: The jastadd extensible java compiler. SIGPLAN Not. 42,
1–18 (October 2007)

4. http://www.gensym.com/product/G2 as of 2012-09-05
5. Gerber, T., Theorin, A., Johnsson, C.: Towards a seamless integration between

process modeling descriptions at business and production levels - work in progress.
In: Proceedings of INCOM’2012. Bucharest, Romania (May 2012)

6. Hedin, G.: An introductory tutorial on jastadd attribute grammars. In: Generative
and Transformational Techniques in Software Engineering III. Springer (2011)

7. Johnsson, C.: A Graphical Language for Batch Control. Ph.D. thesis, Department
of Automatic Control, Lund University, Sweden (Mar 1999)

8. Knuth, D.E.: Semantics of context-free languages. Theory of Computing Systems
2(2), 127–145 (June 1968)

9. Olsson, R.: Batch Control and Diagnosis. Ph.D. thesis, Department of Automatic
Control, Lund University, Sweden (June 2005)

10. Theorin, A., Ollinger, L., Johnsson, C.: Service-oriented process control with
grafchart and the devices profile for web services. In: Proceedings of INCOM’2012.
Bucharest, Romania (May 2012)


