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Abstract 
A complex multiplier has been designed fo r  use in 
a pipelined fast  fourier transform processor. The  
performance in terms  of throughput of the processor 
is limited by the multiplication. Therefore, the 
multiplier i s  optimized to  make the input to  output 
delay as short as possible. A new architecture based 
o n  distributed arithmetic and Wallace-trees has been 
developed and i s  compared t o  a previous multiplier 
realized as a regular distributed arithmetic array. 
The  simulated gain i n  speed f o r  the presented mul- 
tiplier is approximately 100%. For verification, the 
multiplier is currently under fabrication in a three 
metal-layer 0 . 5 ~  CMOS process using a standard 
cell library. 

1. Introduction 
A pipelined Fast Fourier Transform (FFT) proces- 
sor has been designed for use in an Orthogonal Fre- 
quency Division Multiplex (OFDM) system. Mul- 
tiplication is often the most time-critical and area 
consuming operation in a digital signal processor. 
Therefore, effort has to be made to decrease the 
number of multipliers and to increase their speed. 
In the designed FFT processor the critical path con- 
sists of a complex multiplier in series with a butterfly 
performing addition and subtraction. A part of the 
FFT pipeline is shown in figure 1. Since the butterfly 
processors are much faster than the complex multi- 
plier, the maximum clock frequency of the processor 
strongly depends of the multiplier delay. 
This paper present a novel multiplier architec- 
ture based on distributed arithmetic and Wallace 
trees. The new architecture is compared to a 
multiplier realized as a regular array and the speed 
improvement is 100% while power consumption is 
decreased. The multiplier is fully parameterized, so 
any configuration of input and output wordlengths 
could be elaborated. Both the array and the tree 
multiplier are under fabrication on the same die and 
will be evaluated for speed and power consumption 
on return. 
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Figure 1: Part of the FFT processor pipeline. The but- 
terfly processors are named “BF I” and “BF 11”. Shaded 
boxes are combinatorial logic. 

2. The FFT processor 
In the early versions of the FFT-processor, a complex 
array multiplier was used [2]. The array multiplier 
is a highly regular structure resulting in a minimal 
wire-length, which is important for high-speed design 
in sub-micron processes where wiring delay gives a 
significant contribution to the overall delay. How- 
ever, in a process where cell delay dominates wire 
delay, the logic depth of the design is more important 
than regularity. In the complex array multiplier the 
logic depth is proportional to the input wordlength 
N .  In the adder tree multiplier, on the other hand, 
the depth is proportional to logN [3]. Even for a 
small wordlength, this is a significant improvement. 
This also affects the amount of energy per opera- 
tion for the multiplier. A lower logic depth will lead 
to a lower power consumption since the unnecessary 
switching activity is reduced. 

A way to decrease the critical path of the FFT pro- 
cessor would be to pipeline the multiplier in two or 
more stages. However, due to the pipelined struc- 
ture of the FFT processor, complexity of the control- 
ling hardware would increase [l]. Furthermore, the 
word lengths of the data paths are wide due to the 
application of the processor and the usage of com- 
plex arithmetic. A multiplier in this application has 
between 44 and 52 inputs, and a pipeline register 
inserted somewhere in the middle of the multiplier 
would need a word length of more than a hundred 
bits. This would increase area, routing and clock 
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load and is not a preferable solution. Instead, the 
multiply operation is entirely combinatorial. 
The FFT processor is implemented using the 
R22DIF FFT-algorithm 111. In this algorithm, 
every second multiplication can be exchanged to a 
multiply by - j ,  which for an 8192-point FFT leaves 
only six complex multipliers. This is to be compared 
to thirteen using a straightforward implementation. 
The multiplication by - j  is realized without a 
multiply by real-imaginary swap and negation of the 
imaginary part. This is the reason for two different 
butterfly processors, “BF I” and “BF 11” in figure 1. 
By using this algorithm, the number of instanciated 
multipliers is minimized compared to an ordinary 
radix-2 FFT without any loss in throughput. 

3. Multiplier algorithm 
A complex multiplier calculates two inner products, 

ZR = ARWR - AIWI { ZI  = ARWI + AIWR. 

In the case of the FFT-processor, W = WR +jWr are 
the twiddle-factors stored in a ROM. The wordlength 
of WR and WI is denoted M .  According to equa- 
tion (l), four real multiplications and two additions 
are needed. 
There are two methods to decrease multiplication de- 
lay if it is assumed that multiplication is performed 
by summation of partial products, with the excep- 
tion of logic minimization. The first is to reduce the 
number of partial products, and the second is to use 
a faster adder strategy to sum all the partial prod- 
ucts together [3]. Both methods have been combined 
in the presented architecture. 
Distributed arithmetic [4] was chosen as a means to 
reduce the number of partial products, and a Wal- 
lace tree adder was selected for adding the partial 
products together. By using distributed arithmetic, 
the complex multiplication is treated as two inde- 
pendent inner products ZR and 21. Each of the in- 
ner products will be calculated using one distributed 
arithmetic multiplier, as explained in section 3. This 
should be compared to a multiplier realized using 
equation ( l ) ,  in which case four real multipliers are 
needed. 
As an alternative to distributed arithmetic, modi- 
fied Booth-encoding was considered. However, as 
the number of partial products are about the same 
for both methods, modified Booth-encoding requires 
more logic gates to implement. This is due to that in 
the modified Booth algorithm, three variables have 
to be decoded to select the proper partial product. 
In a complex multiplier based on distributed arith- 
metic, a simple two-input xor-gate does the selection. 

(1) 

When using distributed arithmetic, the twiddle- 
factors have to be transformed from WR and WI to 
Ws and WO, where 

(2) 
WS = WR + WI { W D  = WR - WI 

This transformation does not cause any problems 
in the implementation, since the twiddle-factors are 
pre-calculated in the WS and WD format before 
realization. However, it is important that Ws and 
WD are calculated using floating-point arithmetic 
before they are converted to fixed point. Otherwise, 
accuracy is reduced. 

4. Mathematical background 
This section gives a mathematical background to the 
operation of the multiplier. In the equations that fol- 
low a bit-variable is treated as a variable holding the 
arithmetic value 0 or 1. In this way bits can be used 
together with arithmetic variables and operators. If 
A is an N-bit fractional number in two’s complement, 
the value of A is calculated as 

N-1 

A = -a0 + ai 2-i. (3) 
i=l 

By using the identity 

1 
2 

A = - [ A  - (-A)] (4) 

and the rule for negating a two’s complement number 

- A  = + 2--(N-1), (5) 
equation (3) can be written as 

N-1 

A = -(a0 --%) 2-1 + (ai -z) 2-i-1 -2-N. (6) 

Introduce a0 = (G - ao), and for IC # 0,  CY^ = 
(uk - a). Note that all cyk E (-1, +l). Using this 
notation, A can be written as 

i=l 

A = A’ - zwN, (7) 

A‘ = cyi 2-a-l. (8) 

where 
N-1 

i=O 

The relationship between ai and ai is 

(9) 
+1 , if a+o = 1 or a0 = 0 { -1 , if a+o = 0 or a0 = 1 

ai = 

Using this encoding the complex product can be writ- 
ten as 

N - 1  

ZR = x(wfiaRi-wIar<) z-‘-’-(wR-wI) 2 - N  (10) 
i=O 
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Figure 2 :  The multiplier for ZR or 21. The complete 
complex multiplier consists of two of these. Partial inner 
product generator at top, adder tree in the middle and 
fast carry-lookahead adder at the bottom. 

N - 1  

2 1  = x ( m a R i + W R a r i )  2 - " ' - ( m + W R )  2 - N .  (11) 
i=O 

The expression WIaRi +WRaIi is for z # 0 examined 
in the following table. ;; 2: 1 a i i  a;i 1 W I ~ R I ~ : ~  a ~ i  

Where Ws and WD were introduced in equation 2. 
From the table it is clear that p = ( a ~ i  @ a ~ i )  can 
be used to select Ws or WO. Using p ,  Ws and WD, 
equation (10) and (11) can be written as 

-1 - WD 
1 WS 

N-I 

ZR = ( - 1 ) q I W s  VpWo] 2-i-' - WO 2-N = 
i=O 

N - 1  

(=@ [pws v FWD] f G) 2-2-l -WO 2-N (12) 
i=O 

N - 1  

ZI = (-1)""i~pwD V ~ W ~ I  2-"' - WS 2 - N  = 
i=O 

N - 1  

(G@[PWo V P W s ] + G )  2-i-1-Ws 2 - N .  (13) 

When evaluating the sum, the powers G and ali 
should be replaced with U R ~  and a ~ i  for the case 
i = 0, since these bits represent the sign in two's 
complement representation. The partial inner prod- 
uct 

i=O 

(14) 
- 
aRi @ [PWD v pWS] f G 

M + N - l  
.......... .......... . . . . . . . . . . .  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... ................ .......... 

Figure 3: All partial product bits by significance for ZR 
or 21. Input wordlength is N and coefficient wordlength 
is M .  

is suitable for hardware mapping. It is realized as 
a multiplexer selecting &Ws or &WO, depending on 
the value of p = ( a ~ i  @ a ~ i ) .  If UR+O = 0 (or URO = 
l ) ,  an inverted version of the coefficients is chosen, 
and a '1' in the least significant position is added, 
corresponding to a two's complement negation. The 
expression 

is treated similarly. Figure 3 shows all the partial 
product bits that has to be added to generate ZR 
or 21. The wordlength for the twiddle factor, W, 
is M bits and for the data, A, it is N bits, in this 
case 10 and 16 bits respectively. The top sixteen 
lines in the figure is the partial products generated 
inside the sum of equation (12) or (13), and the 
third line from bottom is the ones that form the 
corresponding two's complement of these products. 
The last two lines is the - W s l ~ 2 - ~  term. 

5. Implementation 
The proposed multiplier consists of two distributed 
arithmetic blocks, one calculating ZR, and the other 
21. The two blocks are similar and the difference 
is basically the sign in equation (1). Each block is 
divided into three parts, partial inner product gen- 
erator, adder tree and carry lookahead adder, see 
figure 2. 
The multiplier is synthesized to a 0 . 5 ~  cell library 
that does not contain any dedicated half or full adder 
cells. Estimated delay for a 10+10 by 16+16 mul- 
tiplier using a worst case industrial environment is 
about 16 nanoseconds, compared to 34 nanoseconds 
for the array multiplier. About 55% of this delay is 
due to the adder tree. The partial inner-product gen- 
erator takes 20% and the carry-lookahead adder uses 
25% of the total delay. Most of the delay is spent in 
the adder tree, and by using dedicated adder cells 
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this delay could be decreased. However, the target 
cell-library does not contain any such cells and such 
improvements have not been made. 

When designing the adder tree, a generic tree gener- 
ator was used. This generator produces a tree with 
y inputs of wordlength x, that is a rectangle of x by 
y input bits. This rectangle has to be large enough 
to cover all the partial product bits of figure 3, i.e. 
x = M + N - 1 and y = N + 3. For certain sizes of 
N and M ,  the two last lines in figure 3 can be joined 
with two of the N first lines, minimizing y to N + 1. 
Unfortunately a lot of inputs to the adder tree are 
unused, and extra logic will be generated. There- 
fore, the area for the tree multiplier is about 75% 
larger than for the array multiplier. The number of 
gates for the array multiplier is 3000, while the tree 
multiplier uses 6200 gates, of which 4400 belongs to 
the two adder trees. Theoretically for a dedicated 
tree generator, the area should be only slightly larger 
than for the array multiplier. Both multipliers are 
currently under fabrication and the layout plots are 
shown in figure 4. 

When data flows through the pipeline of the FFT 
processor, the wordlength has to increase to keep ac- 
curacy in the calculations. For the current applica- 
tion the input wordlength is 12+12 bits (real + imag- 
inary) and the output wordlength is 16+16 bits. The 
twiddle-factors are kept constant at 10+10 bits at all 
stages of the pipeline. Different wordlengths in the 
datapath means that a set of multipliers of differ- 
ent wordlengths has to be instantiated if the longest 
wordlength is not to be used for all multipliers with 
a corresponding increase in area. Also, as FFT pro- 
cessors will be built for different applications the 
wordlength is subject to change. Therefore, the mul- 
tiplier is fully parameterized and a multiplier of spe- 
cific wordlength can be elaborated when needed. 

For our application, the output wordlength should 
equal the input wordlength, that is, some of the least 
significant bits of the result are cut away. A simple 
rounding scheme is applied to lower the distorsion 
when the output is truncated. A rounding bit is 
added to the right of the rightmost bit to be kept 
after truncation, causing a carry to propagate when 
the most significant position of the bits cut away is 
a one. A feature of the adder tree is that this bit 
can be inserted together with the partial inner prod- 
ucts at the top of the tree, see figure 3. In the array 
multiplier, an additional row of half-adders had to be 
included to handle rounding. As rounding includes 
addition of a one with the product, arithmetic over- 
flow at the output is possible. Therefore, a saturation 
unit is placed at the output of the carry-lookahead 
adder. This unit checks the most significant bits of 

Figure 4: Plots of the two multipliers. Tree multiplier to 
the left and array multiplier to the right. The pad-frames 
are 3.2x2.9 mm2 and equal for both designs. 

the result and modifies the output if an overflow has 
occurred. 

5.  Conclusion 
A Wallace-tree based complex multiplier has been 
designed and simulated with a speed improvement 
of approximately 100% compared to a previously de- 
signed array multiplier. In a worst case industrial en- 
vironment, the delay of a 10+10 by 16+16 multiplier 
is about 16 nanoseconds. This is when synthesized to 
a three metal-layer 0 . 5 , ~  process with a standard cell 
library that does not contain any dedicated half- or 
full-adder cells. The figure is an estimation without 
post-layout delay information. Under equal condi- 
tions the complex array multiplier currently being 
used has a delay of 34 nanoseconds. 
Since the multiplier together with an 
adder/subtractor is located in the critical path 
of the FFT-processor, throughput is expected to 
increase with approximately 80% while energy 
per operation is decreased. The multiplier is 
fully parameterized so any configuration of input 
and output wordlengths can be elaborated and 
synthesized. Both the array and the tree multi- 
plier are currently under fabrication on the same die. 
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