
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A complex multiplier with low logic depth

Berkeman, Anders; Öwall, Viktor; Torkelson, Mats

Published in:
[Host publication title missing]

DOI:
10.1109/ICECS.1998.813933

1998

Link to publication

Citation for published version (APA):
Berkeman, A., Öwall, V., & Torkelson, M. (1998). A complex multiplier with low logic depth. In [Host publication
title missing] (Vol. 3, pp. 47-50) https://doi.org/10.1109/ICECS.1998.813933

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ICECS.1998.813933
https://portal.research.lu.se/en/publications/cbfaf821-9193-4ca8-9e60-112b95480f1f
https://doi.org/10.1109/ICECS.1998.813933

Download date: 09. Feb. 2026

A Complex Multiplier with Low Logic Depth

Anders Berkeman, Viktor Owall and Mats Torkelson
Department of Applied Electronics, Lund University

Box 118, SE-221 00 Lund, Sweden
Tel. $46 46 2229377, Fax. +46 46 129948

E-mail: Anders.Berkeman@ t de .It h.se

Abstract
A complex multiplier has been designed fo r use in
a pipelined fast fourier transform processor. The
performance in terms of throughput of the processor
is limited by the multiplication. Therefore, the
multiplier i s optimized to make the input to output
delay as short as possible. A new architecture based
o n distributed arithmetic and Wallace-trees has been
developed and i s compared t o a previous multiplier
realized as a regular distributed arithmetic array.
The simulated gain i n speed f o r the presented mul-
tiplier is approximately 100%. For verification, the
multiplier is currently under fabrication in a three
metal-layer 0 . 5 ~ CMOS process using a standard
cell library.

1. Introduction
A pipelined Fast Fourier Transform (FFT) proces-
sor has been designed for use in an Orthogonal Fre-
quency Division Multiplex (OFDM) system. Mul-
tiplication is often the most time-critical and area
consuming operation in a digital signal processor.
Therefore, effort has to be made to decrease the
number of multipliers and to increase their speed.
In the designed FFT processor the critical path con-
sists of a complex multiplier in series with a butterfly
performing addition and subtraction. A part of the
FFT pipeline is shown in figure 1. Since the butterfly
processors are much faster than the complex multi-
plier, the maximum clock frequency of the processor
strongly depends of the multiplier delay.
This paper present a novel multiplier architec-
ture based on distributed arithmetic and Wallace
trees. The new architecture is compared to a
multiplier realized as a regular array and the speed
improvement is 100% while power consumption is
decreased. The multiplier is fully parameterized, so
any configuration of input and output wordlengths
could be elaborated. Both the array and the tree
multiplier are under fabrication on the same die and
will be evaluated for speed and power consumption
on return.

47

w
Figure 1: Part of the FFT processor pipeline. The but-
terfly processors are named “BF I” and “BF 11”. Shaded
boxes are combinatorial logic.

2. The FFT processor
In the early versions of the FFT-processor, a complex
array multiplier was used [2]. The array multiplier
is a highly regular structure resulting in a minimal
wire-length, which is important for high-speed design
in sub-micron processes where wiring delay gives a
significant contribution to the overall delay. How-
ever, in a process where cell delay dominates wire
delay, the logic depth of the design is more important
than regularity. In the complex array multiplier the
logic depth is proportional to the input wordlength
N . In the adder tree multiplier, on the other hand,
the depth is proportional to logN [3]. Even for a
small wordlength, this is a significant improvement.
This also affects the amount of energy per opera-
tion for the multiplier. A lower logic depth will lead
to a lower power consumption since the unnecessary
switching activity is reduced.

A way to decrease the critical path of the FFT pro-
cessor would be to pipeline the multiplier in two or
more stages. However, due to the pipelined struc-
ture of the FFT processor, complexity of the control-
ling hardware would increase [l]. Furthermore, the
word lengths of the data paths are wide due to the
application of the processor and the usage of com-
plex arithmetic. A multiplier in this application has
between 44 and 52 inputs, and a pipeline register
inserted somewhere in the middle of the multiplier
would need a word length of more than a hundred
bits. This would increase area, routing and clock

0-7803-5008-1/98/$10.0001998 EEE.

load and is not a preferable solution. Instead, the
multiply operation is entirely combinatorial.
The FFT processor is implemented using the
R22DIF FFT-algorithm 111. In this algorithm,
every second multiplication can be exchanged to a
multiply by - j , which for an 8192-point FFT leaves
only six complex multipliers. This is to be compared
to thirteen using a straightforward implementation.
The multiplication by - j is realized without a
multiply by real-imaginary swap and negation of the
imaginary part. This is the reason for two different
butterfly processors, “BF I” and “BF 11” in figure 1.
By using this algorithm, the number of instanciated
multipliers is minimized compared to an ordinary
radix-2 FFT without any loss in throughput.

3. Multiplier algorithm
A complex multiplier calculates two inner products,

ZR = ARWR - AIWI { ZI = ARWI + AIWR.

In the case of the FFT-processor, W = WR +jWr are
the twiddle-factors stored in a ROM. The wordlength
of WR and WI is denoted M . According to equa-
tion (l), four real multiplications and two additions
are needed.
There are two methods to decrease multiplication de-
lay if it is assumed that multiplication is performed
by summation of partial products, with the excep-
tion of logic minimization. The first is to reduce the
number of partial products, and the second is to use
a faster adder strategy to sum all the partial prod-
ucts together [3]. Both methods have been combined
in the presented architecture.
Distributed arithmetic [4] was chosen as a means to
reduce the number of partial products, and a Wal-
lace tree adder was selected for adding the partial
products together. By using distributed arithmetic,
the complex multiplication is treated as two inde-
pendent inner products ZR and 21. Each of the in-
ner products will be calculated using one distributed
arithmetic multiplier, as explained in section 3. This
should be compared to a multiplier realized using
equation (l) , in which case four real multipliers are
needed.
As an alternative to distributed arithmetic, modi-
fied Booth-encoding was considered. However, as
the number of partial products are about the same
for both methods, modified Booth-encoding requires
more logic gates to implement. This is due to that in
the modified Booth algorithm, three variables have
to be decoded to select the proper partial product.
In a complex multiplier based on distributed arith-
metic, a simple two-input xor-gate does the selection.

(1)

When using distributed arithmetic, the twiddle-
factors have to be transformed from WR and WI to
Ws and WO, where

(2)
WS = WR + WI { W D = WR - WI

This transformation does not cause any problems
in the implementation, since the twiddle-factors are
pre-calculated in the WS and WD format before
realization. However, it is important that Ws and
WD are calculated using floating-point arithmetic
before they are converted to fixed point. Otherwise,
accuracy is reduced.

4. Mathematical background
This section gives a mathematical background to the
operation of the multiplier. In the equations that fol-
low a bit-variable is treated as a variable holding the
arithmetic value 0 or 1. In this way bits can be used
together with arithmetic variables and operators. If
A is an N-bit fractional number in two’s complement,
the value of A is calculated as

N-1

A = -a0 + ai 2-i. (3)
i=l

By using the identity

1
2

A = - [A - (-A)] (4)

and the rule for negating a two’s complement number

- A = + 2--(N-1), (5)
equation (3) can be written as

N-1

A = -(a0 --%) 2-1 + (ai -z) 2-i-1 -2-N. (6)

Introduce a0 = (G - ao), and for IC # 0, CY^ =
(uk - a). Note that all cyk E (-1, +l). Using this
notation, A can be written as

i=l

A = A’ - zwN, (7)

A‘ = cyi 2-a-l. (8)

where
N-1

i=O

The relationship between ai and ai is

(9)
+1 , if a+o = 1 or a0 = 0 { -1 , if a+o = 0 or a0 = 1

ai =

Using this encoding the complex product can be writ-
ten as

N - 1

ZR = x(wfiaRi-wIar<) z-‘-’-(wR-wI) 2 - N (10)
i=O

48

N

Figure 2 : The multiplier for ZR or 21. The complete
complex multiplier consists of two of these. Partial inner
product generator at top, adder tree in the middle and
fast carry-lookahead adder at the bottom.

N - 1

2 1 = x (m a R i + W R a r i) 2 - " ' - (m + W R) 2 - N . (11)
i=O

The expression WIaRi +WRaIi is for z # 0 examined
in the following table. ;; 2: 1 a i i a;i 1 W I ~ R I ~ : ~ a ~ i

Where Ws and WD were introduced in equation 2.
From the table it is clear that p = (a ~ i @ a ~ i) can
be used to select Ws or WO. Using p , Ws and WD,
equation (10) and (11) can be written as

-1 - WD
1 WS

N-I

ZR = (- 1) q I W s VpWo] 2-i-' - WO 2-N =
i=O

N - 1

(=@ [pws v FWD] f G) 2-2-l -WO 2-N (12)
i=O

N - 1

ZI = (-1)""i~pwD V ~ W ~ I 2-"' - WS 2 - N =
i=O

N - 1

(G@[PWo V P W s] + G) 2-i-1-Ws 2 - N . (13)

When evaluating the sum, the powers G and ali
should be replaced with U R ~ and a ~ i for the case
i = 0, since these bits represent the sign in two's
complement representation. The partial inner prod-
uct

i=O

(14)
-
aRi @ [PWD v pWS] f G

M + N - l
..........

Figure 3: All partial product bits by significance for ZR
or 21. Input wordlength is N and coefficient wordlength
is M .

is suitable for hardware mapping. It is realized as
a multiplexer selecting &Ws or &WO, depending on
the value of p = (a ~ i @ a ~ i) . If UR+O = 0 (or URO =
l) , an inverted version of the coefficients is chosen,
and a '1' in the least significant position is added,
corresponding to a two's complement negation. The
expression

is treated similarly. Figure 3 shows all the partial
product bits that has to be added to generate ZR
or 21. The wordlength for the twiddle factor, W,
is M bits and for the data, A, it is N bits, in this
case 10 and 16 bits respectively. The top sixteen
lines in the figure is the partial products generated
inside the sum of equation (12) or (13), and the
third line from bottom is the ones that form the
corresponding two's complement of these products.
The last two lines is the - W s l ~ 2 - ~ term.

5. Implementation
The proposed multiplier consists of two distributed
arithmetic blocks, one calculating ZR, and the other
21. The two blocks are similar and the difference
is basically the sign in equation (1). Each block is
divided into three parts, partial inner product gen-
erator, adder tree and carry lookahead adder, see
figure 2.
The multiplier is synthesized to a 0 . 5 ~ cell library
that does not contain any dedicated half or full adder
cells. Estimated delay for a 10+10 by 16+16 mul-
tiplier using a worst case industrial environment is
about 16 nanoseconds, compared to 34 nanoseconds
for the array multiplier. About 55% of this delay is
due to the adder tree. The partial inner-product gen-
erator takes 20% and the carry-lookahead adder uses
25% of the total delay. Most of the delay is spent in
the adder tree, and by using dedicated adder cells

49

this delay could be decreased. However, the target
cell-library does not contain any such cells and such
improvements have not been made.

When designing the adder tree, a generic tree gener-
ator was used. This generator produces a tree with
y inputs of wordlength x, that is a rectangle of x by
y input bits. This rectangle has to be large enough
to cover all the partial product bits of figure 3, i.e.
x = M + N - 1 and y = N + 3. For certain sizes of
N and M , the two last lines in figure 3 can be joined
with two of the N first lines, minimizing y to N + 1.
Unfortunately a lot of inputs to the adder tree are
unused, and extra logic will be generated. There-
fore, the area for the tree multiplier is about 75%
larger than for the array multiplier. The number of
gates for the array multiplier is 3000, while the tree
multiplier uses 6200 gates, of which 4400 belongs to
the two adder trees. Theoretically for a dedicated
tree generator, the area should be only slightly larger
than for the array multiplier. Both multipliers are
currently under fabrication and the layout plots are
shown in figure 4.

When data flows through the pipeline of the FFT
processor, the wordlength has to increase to keep ac-
curacy in the calculations. For the current applica-
tion the input wordlength is 12+12 bits (real + imag-
inary) and the output wordlength is 16+16 bits. The
twiddle-factors are kept constant at 10+10 bits at all
stages of the pipeline. Different wordlengths in the
datapath means that a set of multipliers of differ-
ent wordlengths has to be instantiated if the longest
wordlength is not to be used for all multipliers with
a corresponding increase in area. Also, as FFT pro-
cessors will be built for different applications the
wordlength is subject to change. Therefore, the mul-
tiplier is fully parameterized and a multiplier of spe-
cific wordlength can be elaborated when needed.

For our application, the output wordlength should
equal the input wordlength, that is, some of the least
significant bits of the result are cut away. A simple
rounding scheme is applied to lower the distorsion
when the output is truncated. A rounding bit is
added to the right of the rightmost bit to be kept
after truncation, causing a carry to propagate when
the most significant position of the bits cut away is
a one. A feature of the adder tree is that this bit
can be inserted together with the partial inner prod-
ucts at the top of the tree, see figure 3. In the array
multiplier, an additional row of half-adders had to be
included to handle rounding. As rounding includes
addition of a one with the product, arithmetic over-
flow at the output is possible. Therefore, a saturation
unit is placed at the output of the carry-lookahead
adder. This unit checks the most significant bits of

Figure 4: Plots of the two multipliers. Tree multiplier to
the left and array multiplier to the right. The pad-frames
are 3.2x2.9 mm2 and equal for both designs.

the result and modifies the output if an overflow has
occurred.

5. Conclusion
A Wallace-tree based complex multiplier has been
designed and simulated with a speed improvement
of approximately 100% compared to a previously de-
signed array multiplier. In a worst case industrial en-
vironment, the delay of a 10+10 by 16+16 multiplier
is about 16 nanoseconds. This is when synthesized to
a three metal-layer 0 . 5 , ~ process with a standard cell
library that does not contain any dedicated half- or
full-adder cells. The figure is an estimation without
post-layout delay information. Under equal condi-
tions the complex array multiplier currently being
used has a delay of 34 nanoseconds.
Since the multiplier together with an
adder/subtractor is located in the critical path
of the FFT-processor, throughput is expected to
increase with approximately 80% while energy
per operation is decreased. The multiplier is
fully parameterized so any configuration of input
and output wordlengths can be elaborated and
synthesized. Both the array and the tree multi-
plier are currently under fabrication on the same die.

References

S. He and M. Torkelson. “A New Approach to
Pipeline FFT Processor”. In Proc. of IEEE Inter-
national Parallel Processing Symposium, 1996.
S. He and M. Torkelson. “A Complex Array Mul-
tiplier Using Distributed Arithmetic”. In Proc. of
IEEE Custom Integrated Circuits Conference, 1991.
C.S. Wallace. “A Suggestion for a Fast Multiplier”.
IEEE Transactions on Electronic Components, Vol.
EC-13, Feb 1964.
S.G. Smith and P.B. Denyer. “Efficient Bit-Serial
Complex Multiplication and Sum-Of Products Com-
putation Using Distributed Arithmetic”. In Proc. of
IEEE ICASSP, 1986.

50

