
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Procedural Generation of 3D Caves for Games on the GPU

Mark, Benjamin; Berechet, Tudor; Mahlmann, Tobias; Togelius, Julian

2015

Link to publication

Citation for published version (APA):
Mark, B., Berechet, T., Mahlmann, T., & Togelius, J. (2015). Procedural Generation of 3D Caves for Games on
the GPU. Paper presented at Foundations of Digital Games, United States.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/eba6bc5f-c20b-467f-b30a-ce3a463c1566

Procedural Generation of 3D Caves for Games on the GPU

Benjamin Mark
ITU Copenhagen
bmar@itu.dk

Tudor Berechet
ITU Copenhagen
tbde@itu.dk

Tobias Mahlmann
Lund University

tobias.mahlmann@lucs.lu.se

Julian Togelius
NY University

julian.togelius@nyu.edu

ABSTRACT
Procedural Content Generation in Games (PCG) is a thriv-
ing field of research and application. Recent presented ex-
amples range from levels, stories and race tracks to complete
rulesets for games. However, there is not much research to
date on procedural 3D modeling of caves, and similar en-
closed natural spaces. In this paper, we present a modular
pipeline to procedurally generate underground caves in real-
time, to be used as part of larger landscapes in game worlds.
We propose a three step approach, which can be fully im-
plemented using General-Purpose Computing on Graphics
Processing (GPGPU) technology: 1) an L-System to em-
ulate the expanded cracks and passages which form cave
structures in nature, 2) a noise-perturbed metaball approach
for virtual 3D carving, and 3) a rendering component for
isosurface extraction of the modeled voxel data, and fur-
ther mesh enhancement through shader programming. We
demonstrate how the interaction between these components
produce results comparable to real world caves, and show
that the solution is viable for video game environments. For
this, we present the findings of a user study we conducted
among indie-game developers and players, using our results.

1. INTRODUCTION
Nearly every game contains some sort of landscape. Some-

times it is an integral and functionally crucial part of game-
play, constraining and affording player action. Other times
it is mere backdrop, or something in between. Large and
costly efforts are therefore made during game production to
provide believable, functional and enjoyable environments
for the player.

The automatic generation of landscapes is relatively well-
studied within procedural content generation (PCG). PCG
refers to the algorithmic creation of game content with no or
little human input; game content here could mean anything
that is not part of the game engine itself, textures, levels,
characters and stories, or the rules of the game itself [24].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FDG ’15 Pacific Grove, CA USA
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Here, we normally distinguish between offline (while the
game is being developed) and online (while the game is be-
ing played) content generation. While the offline creation
often allows more control over “what” procedural content
makes it into the game, online creation augments the game
with a wider variety of game content, adding replayability to
the game, and offers the opportunity to make the creation
process adaptive to the gameplay.

A special case of landscapes are underground worlds, i.e.
caverns. While most our actual lives happen overground, it
is surprising how many plots in literature, film, and espe-
cially games take place in underground locations. Under-
ground cities, cavernous dungeons, or “the cave behind the
waterfall” are common tropes, especially in the role-playing
game genre. Recent notable examples, which make promi-
nent use of caves, are Skyrim and Dragon Age 2. These
games feature a range of caves, crafted by a human a de-
signer, which are being re-used as dungeons or hideouts
throughout the game world.

Though there have been notable publications concerning
the procedural generation of 3D geometry (including land-
scapes), and also of maze-like angular environments (“dun-
geons”) [23], little attention has been given to generating
caves as game content. There are important reasons for in-
cluding runtime generation of life-like caves in games, in par-
ticular introducing variety. Reusing caves or parts of caves
puts a strain on the suspension of disbelief of the player.
While the creation of a larger variety of caves by human de-
signers is clearly possible, this would raise production time
and cost significantly. Instead, we propose an algorithmic
solution to this problem, providing an easy method for game
makers to enrich their game worlds with a large variety of
believable and interesting caves.

In this paper, we address the procedural generation of
caves as part of a game world. In contrast to mimicking
actual caves with all their properties and details, we focus
on providing “believable” caves in the context of games, i.e.
caves are believable as long as they “work” in a game, which
in return is not that afar from actual caves. Our generated
caves can stand as a game world on their own or be inte-
grated into a larger context. In the following, we will outline
in more detail the paradigms after which our caves are gen-
erated, and then present our methodology in the following.
We will conclude this paper with presenting our findings and
discussing the implications of our result.

1.1 Design choices
When approaching a PCG task, there are several prop-

erties to consider. From a recently proposed model for as-
sessing content generators [26], we would like to discuss a
relevant subset of properties for our solution. We choose be-
lievability and expressivity over reliability, i.e. we consider
a wider range of caves, which don’t break the immersion of
the game, more desirable than hard constraints of control
on the generator. The challenge therefore is to balance the
procedures such that the results remain visually coherent
and never cease to suspend disbelief in the portrayed envi-
ronment. Artificial and “weird” shapes will exist and may
be even desired, as long as they do not break the immersion.
To maintain believability we will attempt to constrain the
generator to a spectrum of shapes identified from a set of
natural phenomena, which will be described in more detail
in section 2.1.

Despite our focus on believability and expressivity, speed
and controllability are also important to some degree. While
very quick generation of caves is not required per se, online
generation would require a high computational efficiency to
produce the cave environment faster than the player can
explore it. Furthermore, as not all types and shapes of caves
are fit for every game environment, it is desirable to be able
to tweak various parameters of the generation process to
achieve just the style of cave that fits a specific application
and style.

2. RELATED WORK
As we try to generate “believable” caves, it seems natural

to review literature regarding the actual generation (in na-
ture) of caves. Furthermore, we would like to set our work
into context of previous attempts of 3D terrain generation.

2.1 Natural Caves
As mentioned in the introduction, one of our main goals is

the creation of believable caves for games. Here, “believable”
refers to a resemblance of natural caves, so that the player
accepts the game world as “natural” in the context of the
game they are playing. It is useful to compare the method we
propose here with the features that compose a natural cave,
and the processes by which natural caves develop. While it is
beyond the scope of this paper to representatively survey the
geological literature on caves, we would like to mention on
two phenomena here: the creation of passageways in cracks,
and the creation of stalagmites and stalactites.

While a general introduction into the creation of Phreatic-
and Vadose-passages can be found in [3], we would like to
mention the work by Boggus and Crawfis [2]. The authors
presented a method to procedurally create caves that real-
istically mimic the overall structure of real cave networks.
Their initial work used emulate acidic water erosion, but
only used noise and 2D heightmaps, which are not suffi-
cient for our problem of generating 3D caves. However,
interesting here is their research on natural phenomena in
the formation of natural caves. They identify that approx-
imately 99% of caves are formed due to expansion of large
pre-existing fractures or partings, and that the dissolution
process, which creates the caverns, can form either Phreatic-
passages, Vadose-passages, or a combination of both (Fig-
ure 2). Furthermore, patterns of these expanded passages in
fractures can be seen in Figure 1. Another aspect of caves
that we would like to recreate are stalagmites and stalactites.
Again, a thorough discussion of the geological phenomenon
is beyond the scope of our work. In short, stalagmites and

Figure 1: Common natural cave patterns [2, 20]

Figure 2: Front view slice of the main types of passages
found in caves [7].

stalactites are accumulations of material through water drip-
pings that grow over time from cave ceilings or floors. For a
more thorough description, please refer to [10].

2.2 3D Terrain Generation
In contrast to 3D cave generation, the generation of 3D

landscapes and flora is a well-studied problem. While the
original L-System model [13] is certainly a form of land-
scape modelling already, discussing all approaches on the
general topic would be beyond the scope of this paper. As
a starting point on procedural terrain generation, we would
like to refer to a recent survey paper by Smelik et al. from
2009 [25]. In summary, there exist three main approaches
for terrain generation: fractal landscape modelling, physi-
cal erosion simulation and terrain synthesis from images or
sample terrain patches [21]. We would like to point out
though, that our work follows more the needs of the en-
tertainment industry, which differ from geoscientific domain
substantially: although they represent similar natural phe-
nomena, the former one puts emphasis on interactive realis-
tic visual appearance (or playability), the latter one focuses
on the correctness from the geoscientific point of view [17].

The most notable approaches are probably heightmap-
based methods, and many of the algorithms that are dedi-
cated to generating heightmap-based terrain are based on a
fractal approach [8, 1, 16]. But while applying heightmaps
to two-dimensional meshes offer a compact and easy way of
storing terrain data, a 3D terrain generator would require
a voxel-based approach. In a voxel-based approach, data
about the world is stored in a set of voxels that are posi-
tioned in a 3D grid. The main two benefits of this is that
it is possible to effortlessly create caves and overhangs, and
that data is available about each cube on the world grid.

Landscapes and even flora or buildings can be represented
in volumetric textures created through fractals, grammars,
or noise functions [18]. While this technique was popular
in the early 90s in the gaming industry for rendering game
worlds, it became a rather academical approach with the
saturation of the consumer market with 3D accelerator hard-
ware later that decade, which relies on 3D polygon geometry
instead. However, the results of using noise to make high
quality terrain, even with overhangs, has previously been
documented [19]. However, specific arches and overhangs
prove to be difficult to produce with just noise.

A more sophisticated solution is presented by Greeff [9].
This solution estimates erosion on landscapes, and generates
rivers and mountains. However, to generate more advanced
geometry like caves and overhangs, a mixed initiative PCG
terrain system is developed, essentially leaving these com-
plex features up to the designer to define. It is argued that
a pure fractal or noise approach offers little control over the
structure and desired features, and can only provide super-
ficially realistic results.

Greeff also presents a method to allow a designer to model
the overall flow of the landscape or to build a specific land-
mark at a specific location. The principle is inspired by how
an artist or a designer would build the initial rough skeleton
of a clay sculpture out of metal wires, to provide an overall
structure onto which to apply the finer details.

While there are many publications on using erosion mod-
elling to generate 3D landscape, we would exemplary like to
mention the work by Kristof et al [12]. There, the authors
used particle based hydrodynamics to model hydraulic ero-
sion. But although the use of fluid simulation seems a potent
technique to generate realistic looking caves, their design
choice of using a 2D world model prevents the generation of
actual underground caves.

Publications on 3D cave generation exist fewer, but are
mainly voxel and grammar based [5, 4, 27] with the excep-
tion of Johnson et al. [11], who used cellular automata. How-
ever, Johnson focussed more and playability aspects than
generating believable caves, which is closer to our work even
though we’re not generating assets with a specific game type
in mind.

3. METHODOLOGY
The overall structure of the cave generation pipeline con-

sists of 3 major components as follows:

1. The structural component uses an L-system to
generate a set of structural points.

2. The tunnel generation builds the actual cave tun-
nels around the structural points.

3. The renderer extracts a mesh from the voxel data

(a) The basic alphabet

F Move forward

R Yaw clockwise

L Yaw counterclockwise

U Pitch up

D Pitch down

O Increase the angle

A Decrease the angle

B Step increase

S Step decrease

Z The tip of a branch

0 Stop connecting other
branches

[] Start/End branch

(b) The macros used

C A curve

H A vertical ascent that
returns to horizontal

Q A branching structure
that generates a room

T Similar to the H sym-
bol, but splits into two
curves

I Represents a straight
line

Table 1: The L-System

and applies materials and shaders.

The pipeline loads structural points into a voxel volume
in a video card’s memory, where it is processed by a set of
DirectX 11 Compute Shaders [15]. This includes a voxel
carving shader and a stalactite growing shader. The latter
runs over multiple frames as it uses Cellular Automata.

The split between the overall layout of the tunnels and the
actual carving, allows both components to run autonomous
from each other. This simplifies the overall process, and al-
lows for interesting emergent behaviour when the two com-
ponents interact.

3.1 Generating the Overall Structure
As seen in Figure 1, natural caves generally have an or-

ganic structure similar to that of vegetation. Due to this
similarity, L-systems are the go-to method for generating
vegetation, and were chosen to generate the structural frame-
work of the cave. The L-system we used is a basic bracketed
L-system, with the symbols seen in Table 1(a). Its alpha-
bet is interpreted as drawing instructions for a virtual tur-
tle (turtle graphics), with symbols controlling direction and
movement. This turtle generates a number of structural
points, which are traversed as seen in 3.2. Furthermore,
the alphabet also allows for an alteration of the turtle’s be-
haviour without the need for a fully fledged parametric L-
system. On top of this basic alphabet, there is a set of macro
symbols (Table 1(b)). These symbols encapsulate a string
of basic alphabet symbols. Before each rewriting step, any
macro symbol within a production rule is substituted by its
sequence of axiomatic characters, which allows for a very
simple representation of a long production rule. Each of
these macros represent a different type of structure such as a
curve, a straight line, a room or similar. The macros also add
a stochastic element to the expansion of the L-system ax-
iom, as each macro can encapsulate several different strings
of symbols. This is shown in Figure 3, where two different
strings, both encapsulated within the macro representing a
room (Q), are drawn. When a macro encapsulates several
strings like this, the string that replaces the macro at any
given time is determined by a weighted randomised process.

The main purpose of macro symbols, apart from intro-
ducing a stochastic element, is to allow the representation

Figure 3: Two different room structures seen from above.
Both are represented by the macro Q

(a) (b)

Figure 4: An L-system expanded from the randomly gener-
ated rule: Z → I[Q[C[T [TQ]]]]. Seen from above (a) and
the side (b)

of complex shapes with a single symbol. This prevents
bloated production rules, while still retaining a certain level
of control over the structure of the L-system. We favoured
long production rules with few rewrites, generally 2-3, over
shorter production rules: shorter rules with many rewrites
appeared very ordered and self-similar in nature and resem-
ble structures of plants. While caves also somewhat resem-
ble vegetation, their structure can be much more chaotic
and unstructured in nature, as seen in Figure 1. With a
longer production rule and fewer rewrites, the self-similarity
of the cave is reduced, but not eliminated, allowing for a
more chaotic structure.

Even with the stochastic element described above, it is not
possible to achieve the desired expressivity of the generator.
To overcome this, the ability to randomly generate produc-
tion rules was introduced. These randomly generated rules
consist entirely of macro symbols, which are randomly cho-
sen based on their associated weights, and brackets which
are placed randomly at a frequency specified by the user.
However, randomly generated rules expand the expressive
range but at the cost of reliability. Nevertheless, with the
way that the macro system is structured, we retain a certain
level of reliability. As each macro symbol represents a set
of structures and every randomly generated cave is simply a
set of these macros, caves are guaranteed to be constructed
out of meaningful building blocks (rather than a random set
of instructions).

A problem with using L-systems to create the structure is
that they’re inherently tree-like in nature. This potentially
results in a lot of dead ends, which could be a problem for
gameplay (e.g. player frustration). Our approach to this is
to connect a certain percentage of the dead ends with each
other. The percentage of ends to connect is a user defined
parameter, while the endpoints are selected randomly. Con-

nections here are done by drawing a distorted line between
them. The distortion is applied through curl noise, and turns
the unnatural straight line into a winding tunnel 5.

To allow for control over the structure of the cave, the
behaviour of the elements described above can be adjusted:
production rules and macro strings and parameters such as
the turtle’s turning angle or the number of connected dead
ends, can be configured. It is also possible to constrain the
structure to a specific volume and to influence its direction.
As mentioned, the user may specify the number of dead
ends a cave may have. However, a location base selection of
tunnels to connect is part of ongoing-work.

3.2 The warping Meta-Ball approach
A common approach, with the procedurally modelling of

terrain in real-time on the GPU, is to apply various noise
functions to the voxel data. In our approach, the voxels store
values between -1 and 1, but the values are not determined
by a noise function. The voxel values are instead populated
by applying noise-distorted metaballs. The metaball moves
through the voxel volume, jumping from one structural point
to the next. The behaviour is analogous to a user applying
various intersecting 3D brush strokes to a solid block of voxel
terrain.

A metaball here is a smooth energy field, represented by
a gradient of values between ”empty” at its centre and “full”
at its outer horizon. A spherical metaball however would
not yield a satisfactory simulation of cave walls. Therefore,
a warping function was created to perturb the metaball to
match the outlines of the patterns identified from the studied
natural phenomena.

This function runs in parallel on the GPU: for every voxel
found under the radius of a metaball. It smoothly distorts
the measured distance between the metaball’s centre and
the current voxel in order to artificially lower or increase the
metaball’s influence on the voxel. The function provides con-
sistent distortion by using a combination of Simplex noise
and Voronoi noise, applied to the worldspace coordinates of
the voxels. A precomputed Curl noise value, stored inside
each structural point, is also used to provide overarching
variation, and to create very short or very tall tunnels. Fig-
ure 6 illustrates (in mesh form) some of the shapes that a
metaball can take after being distorted by our function. Sim-
plex noise and a layer of high frequency Voronoi noise were
chosen to simulate scallops, and two more Voronoi noise lay-
ers of lower frequency and higher amplitudes were added to
simulate sharp rocky outlines of cave walls.

The structural points are never further apart from each
other than the minimum diameter of a warped metaball.
This ensures tunnel connectivity, and intersecting metaballs
further contribute to the emergence of a more advanced
topology. Figure 7 shows an example of a voxel volume
after a number of metaballs have partially been applied to
the same region.

Parts of the L-System were designed to provide patterns
which exhibit paths that intersect or go around each other,
as well as spontaneously intersecting with other branches.
This, coupled with the varying shape and size of the meta-
ball, allows for various landmarks (e.g. columns, hoodoos)
and more advanced shapes to emerge from the procedural
carving.

Figure 5: Two endpoints (red) connected via a curl noise in the 3D view and from inside the cave.

3.3 Populating the environment with objects
based on noise and world position

Caves in games are rarely empty, hence we developed a
method to populate them with objects (stalactites and sta-
lagmites in this example):

1. A low frequency noise value is computed for each voxel,
on the GPU, and any voxel’s value that falls within a
predefined noise range is picked as a potential spawn
point. This essentially marks worldspace volumes as
placement sites.

2. A high frequency noise value is computed for the voxels
chosen above, and voxels falling within another prede-
fined range are chosen as actual spawn points. The
height of the frequency of this noise computation de-
termines how densely populated the feature-pockets
will be.

3. The object or feature is placed based on its type. For
stalactites and stalagmites this involves using Cellu-
lar Automata for detecting the floor and ceiling of the
cave, and then using CA again for growing these fea-
tures from there.

The result of this method can be seen in Figure 8. While
we only used this method to place stalactites, it could easily
be extended to other types of objects, such as game relevant
objects (e.g. treasures, monsters, etc.). A similar approach
can be used on the fragment shader to display procedural de-
cals or to provide worldspace progression between one type
of texture and another.

3.4 Rendering
To display the cave voxel volumes in a state-of-the-art

game engine, they ideally have to be converted into 3D ge-
ometry data. To achieve this, voxels created by the meta-
balls and exhibiting a sign change are processed by a March-
ing Cubes algorithm [14]. This was done to retain simplicity

Figure 6: Voxel data created by warping metaball.

Figure 7: Volume of voxel data, after a series of metaball
“brush strokes” have been applied to it. Green represents
empty space, dark blue “filled” space.

and flexibiliy for our method, but could be replaced with a
Dual Grid method, such as Dual Contouring [22].

Then, the mesh normals are calculated by sampling the
density values of the neighbouring voxels. The flat normal of
each mesh vertex inside the current Marching Cubes cube,
is bent on each axis based on how “full” or how “empty”
the neighbouring cubes on that axis are. This requires us
to just sample the 6 neighbours of each cube, instead of
26. Further smoothing is achieved by averaging the normals
of the current cube, by a factor of the face normals found
in the neighbouring cubes already being analysed for the
aforementioned method.

To apply textures to the resulting mesh, triplanar pro-
jection is used to texture the uv-less procedural meshes. To
achieve a canyon stratification appearance, a tileable texture
with parallel lines is used as a base, and is procedurally per-
turbed into a more interesting Solid Texture [6] before the
lookups. This is done by perturbing each fragment’s world
position with a vertex-interpolated Curl noise value before
sampling for the current planar projection.

As a final step, bump mapping is added by using the same
principles and perturbing the interpolated normals before
applying the Lambert lighting equation.

Parameters of the shader can be tweaked to dramatically
modify the results, demonstrating versatility. For example,
an ice texture can be achieved by just tweaking the frequency
and amplitude of the Curl noise, reversing the bumpmap

Figure 8: Stalactite and Stalagmite distribution and con-
struction test run.

Figure 9: Changing the shader parameters can easily redress
the caves.

and texture scale and colours, changing the scene’s lighting.
Furthermore, a simple refraction simulation was achieved by
animating the seed value of the Curl noise based on camera
rotation and movement (Figure 9).

4. RESULTS AND EVALUATION
To evaluate our work, we would like to discuss two points:

the expressivity of the generator and its controllability, and
how users perceived the generated caves, i.e. are our caves
believable “enough”.

4.1 Expressive Range of the Generator
A quantitative evaluation over the range of expressed fea-

tures proved to be extremely difficult. Ideally, we would
employ pattern recognition and comparing our caves with
3D data from real caves, but this is beyond the scope of our
current work. Instead, we chose to discuss a few significant
features below.

Figure 10: A generated feature which mimics overarching
riverbed networks and islands.

The strength of the presented solution is the interaction
between the structural and detailing components. Due to
the differing shapes of a metaball on neighbouring struc-
tural points, multiple landscape patterns can emerge easily,
e.g. hills or sharp peaks, plateaus or small mesas. Addition-
ally, depending on whether the structural guidelines gener-
ated by the L-System overlap, or diverge, chasms, walkways,
arches, and hoodoos appear, as well as cracks or windows
through thin walls. As overlapping caves are explicitly de-
sired, we implemented no measures to prevent crossing L-
System branches. This however would require the L-System
to be aware of the metaball size to limit the allowed symbols
upon branch extension.

We have designed the L-system to augment the metaball
detailing, by creating patterns for columns, skeletal struc-
tures for rooms etc. Figure 11, shows an example of this
behaviour, where a relatively dense structural representa-
tion allows metaballs to overlap and create a long room
structure. Additionally, by raising a single structural line
slightly, a walkway is created on one side of the room. One
might argue, that with the addition of more macros, a more
skilled designer may even achieve more advanced results and
a greater variety.

4.2 User Evaluation
Ultimately, we are most interested in how well the gener-

ated caves stand as game content. To ascertain the viability
of the generator as a part of an actual game, we gathered
feedback from 30 individuals using an online survey. We re-
cruited our participants from social media and game related
websites, and users were presented with random cave envi-
ronments they could explore. As the data was generated on
the users’ computer, each user saw a different set of caves.

The self-reported data indicated a general positive recep-
tion of our caves. Most participants found the caves natu-
ral looking. Furthermore, participants generally appreciated
the shapes and art style. Also, the majority of users would
be interested in playing a game using our environments as
a part of it. Yet, it requires further research to isolate the
impact of the caves’ geometry from other aesthetic aspects
like textures, control scheme, etc.

Even though most of the feedback was positive, some users
suggested adding more variety, with a few users mentioning
specifically what elements they perceived as repetitive. The
first issue was the lack of very tight passages, as although
local variation in tunnel size exists, the metaball has a cer-
tain minimum radius to prevent blockages. This limited its
ability to create deep cracks and tiny corridors. The second

(a)

(b)

Figure 11: A room with a raised walkway (by the right
wall) (a), created by the interaction between the structural
representation (b) and the metaball.

issue identified by the users, was that the same texture was
used throughout the entire cave. This lowers the perceived
variety even if the shapes and patterns are varied. This issue
can be minimized by including texture generation into the
procedural content generation pipeline.

However, we theorize that further factors might have con-
tributed to the generally lack of game resemblance, starting
with the sparseness of our caves. Our environments were
generally empty, despite a player’s natural expectations of
seeing a populated game world. Secondly, for the sake of
a clear topology showcase, everything was evenly lit by a
directional light. Certainly, these factors differentiate our
experiment from an actual game, where for instance the
play of light and shadow over the walls, might help make
the caves appear more interesting and mysterious. Also, our
caves’ geometry aren’t very complex compared to geometry
found in modern AAA titles with billions of polygons.

5. DISCUSSION AND FUTURE WORK
Our solution presented in this paper is an effective way

to generate believable detailed 3D underground landscapes.
With our approach of designing a virtual 3D brush, and
guiding it to carve out a cave, we can effectively immitate the
shapes and patterns found in natural caves.Furthermore, the
generally positive responses to our survey indicate that our
approach is suitable for actual game projects, either as part
of an asset pipeline or as part of a procedurally generated
world.

As part of a standard asset pipeline (“offline generation”),
our cave generation tool could speed up creation of caves for
all types of games, in a similar fashion to what SpeedTree
does for vegetation. As with most PCG solutions, this would
increase the efficiency and variety in the content creation

Figure 12: Vadose passage created by stacked parallel L-
System lines.

process. In a mixed-initiative approach, a human designer
could draw a guiding graph to edit the structural points cur-
rently generated by our L-System, that are then processed
by the metaball, and would probably achieve best results.

If we think beyond the design process, our tool is also
suitable for online landscape generation, in generally more
procedural games such as Minecraft. So far, the world gen-
eration in Minecraft is composed of relative simple methods,
as it is designed a discrete world made of cubes. For a high
fidelity 3D game, a tool like the one presented in this paper,
would be required for a more immersive experience.

However, depending on the particular use case a deployed
version of our tool might require controllability beyond what
we have implemented so far: while our caves follow some
constraints, e.g. a limit of verticality through the restriction
of the maximum possible slope that a tunnel can have, or
the number of dead ends by connecting branches together,
a human game designer may want to have more control over
things such as difficulty of navigation, speed of traversal,
and other gameplay related aspects.

On the implementation side, marching Cubes, even though
it is a flexible and convenient mesh extraction solution, does
not accurately represent the voxel topology, especially on
fine details. Our future work will therefore focus on adapt-
ing our solution to Hermite data and a Dual Contouring or
a Dual Marching Cubes method. We see two possible solu-
tions with regard to handling Hermite data. The first, is to
attempt to procedurally represent the expressive range of the
noise-distorted metaball, into a set of constructive solid ge-
ometry operations. This would easily provide normals with-
out intensive gradient computation. The second method is
to pre-compute static volumes of the types of noise which
are plugged into our metaball warping equation, as well as
to pre-compute their corresponding gradient values. The
metaball would then be distorted at runtime by 3D texture
lookups, and the normals would similarly be looked up and
then blended into the final warped surface used to carve the
voxels with. Furthermore, to allow efficient online genera-
tion, the system has to rely on faster data structures such
as octrees like used by Cui et al. [5].

As described above, several users found the caves to be
lacking in variety. One solution for this is to introduce
context-awareness into the structural generation. This could,
for instance, be done by changing the L-system to be para-
metric, and introduce parameters that change various as-
pects of the detailing and rendering components. An ex-

ample is to change the texture gradually throughout the
cave, to create different looking environments as the caves
progress. A further enhancement would be to change tunnel
size on a larger scale from within the L-system, instead of
completely relying on the metaball’s noise-based size varia-
tion. This would provide areas with very narrow tunnels and
areas with cavernous tunnels without the risk of blockages.

Finally, a designer-friendly frontend for the metaball warp-
ing equation should be built. A user should be able to plug in
their choice of perturbation noise types, and tweak their re-
lationships, frequencies and amplitudes, while having a live
preview of the resulting metaball’s range of shapes. Simi-
larly, an L-System frontend would be desirable, to visually
customize the rules, macros and various parameters such as
end-point connectivity, range of angles, volume and direc-
tion constraints etc.

6. REFERENCES
[1] D. A. Ashlock, S. P. Gent, and K. M. Bryden.

Evolution of l-systems for compact virtual landscape
generation. In Proceedings of IEEE Congress on
Evolutionary Computing, pages 2760–2767, 2005.

[2] M. Boggus and R. Crawfis. Procedural Creation of 3D
Solution Cave Models. The Ohio State University,
2009.

[3] J. H. Bretz. Vadose and phreatic features of limestone
caverns. The journal of Geology, L(6):675–811, August
1942.

[4] J. Cui, Y.-W. Chow, and M. Zhang. Procedural
generation of 3d cave models with stalactites and
stalagmites. IJCSNS, 11(8):94, 2011.

[5] J. Cui, Y.-W. Chow, and M. Zhang. A voxel-based
octree construction approach for procedural cave
generation. International Journal of Computer Science
and Network Security, 11(6):160–168, 2011.

[6] D. S. Ebert. Texturing & modeling: a procedural
approach. Morgan Kaufmann, 2003.

[7] S. A. Engel and A. S. Engel. A geology and archeology
field guide. Rockcastle Karst Conservancy, 1998.

[8] A. Fournier, D. Fussel, and L. Carpenter. Computer
Rendering of Stochastic Models. Communications of
the ACM, 25:371-384, 1982.

[9] G. Greeff. Interactive voxel terrain design using
procedural techniques. Master’s thesis, Stellenbosch
University, 2009.

[10] F. L. Hicks. Formation and mineralogy of stalactites
and stalagmites. National Speleological Society
Bulletin, 12:63–72, 1950.

[11] L. Johnson, G. N. Yannakakis, and J. Togelius.
Cellular automata for real-time generation of infinite
cave levels. In Proceedings of the 2010 Workshop on
Procedural Content Generation in Games, page 10.
ACM, 2010.

[12] P. Krǐstof, B. Beneš, J. Křivánek, and O. Št’ava.
Hydraulic erosion using smoothed particle
hydrodynamics. In Computer Graphics Forum,
volume 28, pages 219–228. Wiley Online Library, 2009.

[13] A. Lindenmayer. Mathematical models for cellular
interactions in development 1. filaments with
one-sided inputs. Journal of theoretical biology,
18(3):280–299, 1968.

[14] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm. In
ACM Siggraph Computer Graphics, volume 21, pages
163–169. ACM, 1987.

[15] Microsoft Corporation. Direct Compute API.

[16] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The
Synthesis and Rendering of Eroded Fractal Terrains.
Computer Graphics, 23(3), 1989.

[17] M. Natali, E. Lidal, J. Parulek, I. Viola, and D. Patel.
Modeling terrains and subsurface geology. Proceedings
of EuroGraphics 2013 State of the Art Reports
(STARs), pages 155–173, 2013.

[18] F. Neyret. Synthesizing verdant landscapes using
volumetric textures. In X. Pueyo and P. Schröder,
editors, Rendering Techniques ’96, Eurographics,
pages 215–224. Springer Vienna, 1996.

[19] H. Nguyen. GPU Gems 3, chapter 1. Addison-Wesley
Professional, 2007.

[20] A. N. Palmer. Cave geology, volume 454. Cave books
Dayton, OH, 2007.

[21] A. Peytavie, E. Galin, J. Grosjean, and S. Merillou.
Arches: a framework for modeling complex terrains.
Computer Graphics Forum, 28(2):457–467, 2009.

[22] S. Schaefer and J. Warren. Dual marching cubes:
Primal contouring of dual grids. In Computer Graphics
and Applications, 2004. PG 2004. Proceedings. 12th
Pacific Conference on, pages 70–76. IEEE, 2004.

[23] N. Shaker, A. Liapis, J. Togelius, R. Lopes, and
R. Bidarra. Constructive generation methods for
dungeons and levels. In N. Shaker, J. Togelius, and
M. J. Nelson, editors, Procedural Content Generation
in Games: A Textbook and an Overview of Current
Research. Springer, 2014.

[24] N. Shaker, J. Togelius, and M. J. Nelson. Procedural
Content Generation in Games: A Textbook and an
Overview of Current Research. Springer, 2014.

[25] R. M. Smelik, K. J. de Kraker, T. Tutenel, R. Bidarra,
and S. A. Groenewegen. A survey of procedural
methods for terrain modelling. In Proceedings of the
CASA Workshop on 3D Advanced Media In Gaming
And Simulation (3AMIGAS), 2009.

[26] J. Togelius, E. Kastbjerg, D. Schedl, and G. N.
Yannakakis. What is procedural content generation?
mario on the borderline. In Proceedings of the 2nd
Workshop on Procedural Content Generation in
Games, 2011.

[27] T. Zawadzki, S. Nikiel, and K. Warszawski. Hybrid of
shape grammar and morphing for procedural modeling
of 3d caves. Transactions in GIS, 16(5):619–633, 2012.

