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Abstract

A statistical signal analysis for the inverse source problem of electromagnet-

ics is given. We consider the problem of estimating either the near �eld or

the radiating current distribution from a measurement of the far �eld. The

solution is derived via a linear operator formalism, and the ill-posedness of

the reconstruction is quanti�ed by using the Cramer-Rao lower bound which

is explicitly given in terms of the multipole expansion of the electromagnetic

�eld. A numerical study is included to illustrate the theoretical results.

1 Introduction

In this paper we demonstrate that the combination of electromagnetic theory, an-
tenna theory and statistical signal processing yields simple and very useful tools for
analyzing and quantifying the ill-posedness of the inverse source problem of elec-
tromagnetics. In particular, we derive the Cramer-Rao lower bound for estimating
either the near �eld or the radiating current distribution from a measurement of the
far �eld. From an engineering point of view, these inverse problems are important
in the design and validation of high-performance radar antennas, radomes etc, see
e.g. [11�13, 15, 19, 20].

The classical theory of radiating Q uses spherical vector modes (or multipoles)
and equivalent circuits to analyze the properties of a hypothetical antenna inside a
sphere, c.f. [2, 4, 7]. Hence, by considering an antenna of a given size and bandwidth,
together with theQ-values which are computable for each mode, the maximum useful
multipole order can be estimated by using the Fano broadband matching theory, see
e.g. [5, 6, 17, 18]. From a radiating point of view, the high-order vector modes give
the high-resolution aspects of the radiation pattern. As is well known, any attempt
to accomplish supergain will result in high currents and near �elds, thereby setting
a practical limit to the gain available from an antenna of a given size, see also [9].

In [11], the minimum L2 (minimum energy) solution to the inverse source problem
is given for the full vector case where the source is a time harmonic three-dimensional
current distribution con�ned within a sphere. The solution is derived via a linear
operator formalism and is explicitly given in terms of the multipole expansion of
the electromagnetic �eld [1, 8, 16]. In [12], the minimum energy solution is revived
and extended to include a reactive power constraint using a Lagrangian formula-
tion which can be optimized even more compactly using variational principles. In
a measurement situation, the solution can be obtained by using the pseudoinverse,
and the ill-posedness of the inverse problem is manifested by the exponential decay
of the singular values for large mode orders. Thus, in practice, one can only recon-
struct the low-order multipole components of the minimum energy representation of
the source. In this paper, the ill-posedness and hence the resolution capabilities of
the reconstruction given in [11] is quanti�ed by using the Cramer-Rao lower bound
which is explicitly given in terms of the multipole expansion of the electromagnetic
�eld. The pseudoinverse as described in [11] does not necessarily exist when dealing
with noisy data, and regularization theory is proposed as a remedy to this situation.
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In our formulation, the regularization is obtained by setting a constraint on the max-
imum mode order, and hence the pseudoinverse does always exist. Furthermore, this
is to our knowledge the �rst explicit statistical signal analysis of the inverse source
problem employing estimation theory and the Cramer-Rao lower bound. In our
view, the analysis technique is general and could be employed for investigating the
sensitivity of many inverse problems including e.g. the reactive power constrained
minimum energy solution derived in [12].

The investigation covers the two cases of in�nite and �nite measurements and
includes a numerical study to illustrate the theoretical results.

2 The Cramer-Rao Lower Bound for Near Field Es-

timation

Assume that all sources are contained inside a sphere of radius r = a, and let k = ω/c
denote the wave number, ω = 2πf the angular frequency, e−iωt the time-convention,
and c and η the speed of light and the wave impedance of free space, respectively.
The transmitted electric and magnetic �elds, E(r) and H(r), can then be expanded
in outgoing spherical vector waves uτml(kr) for r > a as [1, 8, 16]

E(r) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

fτmluτml(kr) (2.1)

H(r) =
1

iη

∞∑
l=1

l∑
m=−l

2∑
τ=1

fτmluτ̄ml(kr) (2.2)

where fτml are the expansion coe�cients or multipole moments and τ̄ denotes the
complementary index. Here τ = 1 (τ̄ = 2) corresponds to a transversal electric (TE)
wave and τ = 2 (τ̄ = 1) corresponds to a transversal magnetic (TM) wave. The
other indices are l = 1, 2, . . . ,∞ and m = −l . . . , l where l denotes the order of that
mode.

The outgoing spherical vector waves are given by

u1ml(kr) = h
(1)
l (kr)A1ml(r̂)

u2ml(kr) =
1

k
∇× u1ml(kr) =

(krh
(1)
l (kr))′

kr
A2ml(r̂) +

√
l(l + 1)

h
(1)
l (kr)

kr
A3ml(r̂)

(2.3)

where Aτml(r̂) are the spherical vector harmonics and h
(1)
l (x) the spherical Hankel

functions of the �rst kind, see [1, 8, 16]. The spherical vector harmonics Aτml(r̂) are
given by

A1ml(r̂) =
1√

l(l + 1)
∇× (rYml(r̂))

A2ml(r̂) = r̂ ×A1ml(r̂)
A3ml(r̂) = r̂Yml(r̂)

(2.4)
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where Yml(r̂) are the scalar spherical harmonics given by

Yml(θ, φ) = (−1)m

√
2l + 1

4π

√
(l −m)!

(l + m)!
Pm

l (cos θ)eimφ (2.5)

and where Pm
l (x) are the associated Legendre functions [1]. For negative m-indices,

the scalar waves satis�es the symmetry Y−m,l(r̂) = (−1)mY∗
ml(r̂), and hence

Aτ,−m,l(r̂) = (−1)mA∗
τml(r̂). (2.6)

It can be shown that in the far �eld when r →∞, the electric �eld is given by

E(r) =
eikr

kr
F (r̂) (2.7)

where F (r̂) is the far �eld amplitude given by

F (r̂) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

i−l−2+τfτmlAτml(r̂). (2.8)

By the orthonormality of the spherical vector harmonics on the unit sphere, the
multipoles are given by

fτml = il+2−τ

∫
A∗

τml(r̂) · F (r̂) dΩ. (2.9)

Suppose now that the measured far �eld F m(r̂) is impaired by additive noise

F m(r̂) = F (r̂) + N (r̂) (2.10)

where N (r̂) is a spatially uncorrelated complex Gaussian random process [14] with
zero mean and dyadic covariance function

E{N (r̂)N ∗(r̂′)} = σ2
nδ(r̂ − r̂′)I (2.11)

where E{·} denotes the expectation, σ2
n the variance, δ(r̂) the impulse function

on the unit sphere and I the identity dyad. From (2.9), the measured multipole
moments are thus given by

fm
τml = il+2−τ

∫
A∗

τml(r̂) · F m(r̂) dΩ = fτml + nτml (2.12)

where the noise term is

nτml = il+2−τ

∫
A∗

τml(r̂) ·N (r̂) dΩ (2.13)

and the estimated electric �eld is given by

Em(r) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

fm
τmluτml(kr). (2.14)



4

Using (2.11) and the orthonormality of the spherical vector harmonics, we see
that the noise term nτml is an uncorrelated zero mean complex Gaussian random
sequence with covariance function

E {n∗τmlnτ ′m′l′} = σ2
nδττ ′δmm′δll′ . (2.15)

The Cramer-Rao lower bound [10] for estimating the multipole moments in (2.12)
is given by

E
{
|fm

τml − fτml|2
}
≥ σ2

n

2
. (2.16)

Since fm
τml is an uncorrelated random sequence, we �nd that the variance of the

estimated electric �eld is given by

E
{
|Em(r)−E(r)|2

}
=

∞∑
l=1

l∑
m=−l

2∑
τ=1

E
{
|fm

τml − fτml|2
}
|uτml(kr)|2 (2.17)

and the Cramer-Rao lower bound (2.16) give us

E
{
|Em(r)−E(r)|2

}
≥ σ2

n

2

∞∑
l=1

l∑
m=−l

2∑
τ=1

|uτml(kr)|2 (2.18)

for r > a.
In principle, the lower bound in (2.18) is in�nite, a notion which is re�ecting up on

the fact that it is impossible to estimate the near �eld from a far �eld measurement.
However, for all practical purposes the maximum useful order lmax is �nite and can be
estimated as follows. The classical theory of radiating Q uses spherical vector modes
and equivalent circuits to analyze the properties of a hypothetical antenna inside a
sphere, c.f. [2, 4, 7]. Hence, by considering an antenna of a given electrical size ka
and fractional bandwidth B, together with the Q-values which are computable for
each mode order l [4], we can estimate lmax by using the Fano broadband matching
theory and the expression

|Γl| ≥ e
− π

Ql

1−B2/4
B (2.19)

where Γl is the optimum re�ection coe�cient for a particular mode, see e.g. [5, 6,
17, 18]. Suppose e.g. that we are only interested in the modes (τ,m, l) contributing
to the far �eld with coe�cients |fτml|2 ≤ ε. The maximum useful order lmax then
satis�es

|fτml|2 ≤ (1− |Γl|2)Pin ≤ ε (2.20)

where Pin is the (appropriately scaled) input power. We note also that the optimum
directivity is given by [9]

Dopt =
lmax(lmax + 2)

2
. (2.21)

Hence, if we consider an estimation situation con�ned to the class of optimum an-
tennas with directivity less then Dopt, this is another option of determining lmax.
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The corresponding Cramer-Rao lower bound for estimating the near �eld modulo

the higher order terms > lmax, is �nally given by

E
{
|Em(r)−E(r)|2

}
≥ σ2

n

2

lmax∑
l=1

l∑
m=−l

2∑
τ=1

|uτml(kr)|2 =

= σ2
n

2

lmax∑
l=1

2l + 1

4π

∣∣∣h(1)
l (kr)

∣∣∣2 +

∣∣∣∣∣(krh
(1)
l (kr))′

kr

∣∣∣∣∣
2

+ l(l + 1)

∣∣∣∣∣h(1)
l (kr)

kr

∣∣∣∣∣
2
 (2.22)

for r > a, and where we have employed the addition theorem for vector spherical
harmonics [1] to obtain the equality. It is noted that the right hand side of (2.22)
is independent of the spherical angles (θ, φ) and the same inequality will thus apply
to the error norm

E
{
‖Em(r)−E(r)‖2

}
= E

{
1

4π

∫
|Em(r)−E(r)|2 dΩ

}
(2.23)

where dΩ is the di�erential solid angle and the integral is de�ned over a sphere of
radius r.

Suppose now that we make a �nite measurement of I points in the far �eld,

F m(r̂i) = F (r̂i) + N (r̂i) (2.24)

for i = 1, . . . , I. The Fisher Information Matrix [10] for measuring the multipole
moments in this situation is given by

[I]τml,τ ′m′l′ =
2

σ2
n

I∑
i=1

∂F ∗(r̂i)

∂fτml

· ∂F (r̂i)

∂fτ ′m′l′
=

2

σ2
n

I∑
i=1

A∗
τml(r̂i) ·Aτ ′m′l′(r̂i) (2.25)

and the corresponding Cramer-Rao lower bound for estimating the near �eld modulo
the higher order terms > lmax, is �nally given by

E
{
|Em(r)−E(r)|2

}
≥

lmax∑
l=1

l∑
m=−l

2∑
τ=1

lmax∑
l′=1

l′∑
m′=−l′

2∑
τ ′=1

ετml,τ ′m′l′(kr) (2.26)

for r > a, where

ετml,τ ′m′l′(kr) = [I−1]τml,τ ′m′l′u
∗
τml(kr) · uτ ′m′l′(kr). (2.27)

3 The Cramer-Rao Lower Bound for Source Esti-

mation

Next, we derive the Cramer-Rao lower bound for the inverse source problem of
electromagnetics as described in [11]. A brief review of the results in [11] is �rst
given in order to accommodate the notation to the present more compact formulation
using spherical vector waves.
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It is assumed that all sources are contained inside a sphere of radius r = a. It
is further assumed that the corresponding current distribution J(r) is su�ciently
regular and satis�es the following wave equation for the electric and magnetic �elds(

∇2 + k2
)
E(r) = −i

(
ωµ0J(r) +

1

ωε0

∇∇ · J(r)

)
(3.1)(

∇2 + k2
)
H(r) = −∇× J(r) (3.2)

where ε0 and µ0 are the permittivity and permeability of free-space, respectively, and
k = ω

√
µ0ε0 and η =

√
µ0/ε0 the corresponding wave number and wave impedance,

respectively. Now, the multipole moments generated by the current J(r) are given
by

fτml = −k2η

∫
χ(r′)v∗τml(kr′) · J(r′) dv′ (3.3)

where χ(r) = 1 for r ≤ a and zero elsewhere, and vτml(r) are the regular spherical
vector waves de�ned by

v1ml(kr) = jl(kr)A1ml(r̂) (3.4)

v2ml(kr) =
1

k
∇× v1ml(kr) (3.5)

where jl(x) is the spherical Bessel function of order l, cf. [1, 3, 11].
Let J(r) ∈ X where X is the Hilbert space of L2 measurable vector func-

tions con�ned within r ≤ a, and equipped with the scalar product 〈J1, J2〉X =∫
χ(r)J∗

1(r) · J2(r) dv (volyme integral over r ≤ a) where dv is the di�erential
volyme element. Further, let F (r̂) ∈ Y where Y is a �nite dimensional Hilbert
space of L2 measurable transverse vector functions with r̂ ·F (r̂) = 0, and equipped
with the scalar product 〈F 1, F 2〉Y =

∫
F ∗

1(r̂) · F 2(r̂) dΩ (surface integral over the
unit sphere) where dΩ is the di�erential solid angle. It is further assumed that
the �nite dimensional subspace Y is spanned by the orthonormal spherical vector
harmonics Aτml(r̂) up to and including the order lmax.

A linear dyadic operator L : X → Y that maps the space X onto the space Y is
obtained by combining (2.8) (using lmax) and (3.3)

(LJ(r)) (r̂) = −k2η
lmax∑
l=1

l∑
m=−l

2∑
τ=1

i−l−2+τAτml(r̂)

∫
χ(r′)v∗τml(kr′) · J(r′) dv′.

(3.6)
It is noted that the current J(r) may contain terms that belong to the nullspace of
the operator L. In particular, if we write v2ml(kr) = a(r)A2ml(r̂) + b(r)A3ml(r̂),
then L{−b(r)A2ml(r̂) + a(r)A3ml(r̂)} = 0. Note that in the present formulation,
the nullspace of L also contains the vector waves vτml(kr) for τ = 1, 2 and l > lmax.

The Hilbert adjoint operator L† is de�ned by 〈F ,LJ〉Y = 〈L†F , J〉X , and is
obtained by using (2.8) (using lmax) and (3.6) and the orthonormality of the spherical
vector harmonics. The result is(

L†F (r̂)
)
(r) = −k2ηχ(r)

lmax∑
l=1

l∑
m=−l

2∑
τ=1

fτmlvτml(kr) (3.7)
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where fτml are the multipole moments corresponding to the far �eld amplitude F (r̂).
The minimum norm solution to the operator equation LJ(r) = F (r̂) is given

by J †(r) = L†
(
LL†

)−1
F (r̂). The inverse operator

(
LL†

)−1
is found by considering

the relation LL†F̃ (r̂) = F (r̂) where F (r̂) ∈ Y and F̃ (r̂) ∈ Y with corresponding
coe�cients fτml and f̃τml de�ned as in (2.8). Hence, by using (3.6) and (3.7), it is

found that the inverse operator
(
LL†

)−1
is represented by

f̃τml =
1

(k2η)2

fτml

σ2
τml

(3.8)

where the singular values σ2
τml are given by

σ2
τml =

∫
χ(r)|vτml(kr)|2 dv. (3.9)

It should be noted that the singular values σ2
τml can be explicitely calculated [11],

and that they do not depend on the m-index and could thus be written σ2
τml = σ2

τl.
The minimum norm solution is �nally given by

J †(r) = L†F̃ (r̂) = − 1

k2η
χ(r)

lmax∑
l=1

l∑
m=−l

2∑
τ=1

fτml

σ2
τml

vτml(kr). (3.10)

Suppose that F m(r̂) is the measured far �eld amplitude as in (2.10). The
pseudosolution to the operator equation

LJ(r) = F m(r̂) (3.11)

is then given by

J+(r) = − 1

k2η
χ(r)

lmax∑
l=1

l∑
m=−l

2∑
τ=1

fm
τml

σ2
τml

vτml(kr) (3.12)

where fm
τml is given by (2.12) and represents the projection of the measured far

�eld amplitude F m(r̂) onto the �nite dimensional subspace Y . Treating fm
τml as a

stochastic variable as above, we see that E{J+(r)} = J †(r), and the variance of the
estimation error is

E
{∣∣J+(r)− J †(r)

∣∣2} =
1

(k2η)2

lmax∑
l=1

l∑
m=−l

2∑
τ=1

E {|fm
τml − fτml|2}

σ4
τml

|vτml(kr)|2

(3.13)
for r ≤ a. Using the Cramer-Rao lower bound associated with the estimation
of multipoles given in (2.16), we get the following Cramer-Rao lower bound for
estimating J †(r)

E
{∣∣J+(r)− J †(r)

∣∣2} ≥ 1

(k2η)2

σ2
n

2

lmax∑
l=1

l∑
m=−l

2∑
τ=1

1

σ4
τml

|vτml(kr)|2 (3.14)
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for r ≤ a. Note that the summation over m-index can be performed explicitly in the
same manner as with (2.22) by using the addition theorem for the vector spherical
harmonics [1]. The result is

E
{∣∣J+(r)− J †(r)

∣∣2} ≥
1

(k2η)2

σ2
n

2

lmax∑
l=1

2l + 1

4π

(
1

σ4
1l

|jl(kr)|2 +
1

σ4
2l

∣∣∣∣(krjl(kr))′

kr

∣∣∣∣2 +
1

σ4
2l

l(l + 1)

∣∣∣∣ jl(kr)

kr

∣∣∣∣2
)

.

(3.15)
Again, since the right hand side of (3.15) depends only on r, this result is also valid
for the norm E

{
‖J+(r)− J †(r)‖2

}
de�ned as in (2.23).

In the case with �nite measurements as in (2.24), the Fisher information for
measuring the multipoles is given by (2.25) and the corresponding Cramer-Rao
lower bound is �nally given by

E
{∣∣J+(r)− J †(r)

∣∣2} ≥ 1

(k2η)2

lmax∑
l=1

l∑
m=−l

2∑
τ=1

lmax∑
l′=1

l′∑
m′=−l′

2∑
τ ′=1

ετml,τ ′m′l′(kr)

σ2
τmlσ

2
τ ′m′l′

(3.16)

for r ≤ a, where

ετml,τ ′m′l′(kr) = [I−1]τml,τ ′m′l′v
∗
τml(kr) · vτ ′m′l′(kr). (3.17)

Note that the singular values σ2
τml in the reconstruction formulas (3.10) and

(3.12) decay exponentially fast for l � ka con�rming ill-posedness of the inverse
problem [11]. To this end, the Cramer-Rao lower bounds of (3.14) and (3.16) can
be used to explicitly quantify the corresponding estimation accuracy.

4 Numerical examples

A numerical study has been performed in order to illustrate how the Cramer-Rao
lower bound can be used as a means of quantifying and investigating the ill-posedness
of the reconstruction (3.12).

In the examples below we focus on the Cramer-Rao lower bound for measuring
J †(r) given by (3.15) and repeated here as 1

E
{∣∣J+(r)− J †(r)

∣∣2} ≥ σ2
nk

2

2η2
Fa(ka, kr, lmax) (4.1)

where Fa(ka, kr, lmax) is the CRB-accuracy factor given by

Fa(ka, kr, lmax) =

1

(ka)6

lmax∑
l=1

2l + 1

4π

(
1

σ̃4
1l

|jl(kr)|2 +
1

σ̃4
2l

∣∣∣∣(krjl(kr))′

kr

∣∣∣∣2 +
1

σ̃4
2l

l(l + 1)

∣∣∣∣ jl(kr)

kr

∣∣∣∣2
)

.
(4.2)

1Note that we have made no assumptions about the frequency dependence of the noise variance

σ2
n which is present in the factor

σ2
nk2

2η2 .
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Figure 1: Normalized singular values σ̃2
τl as a function of multipole order l. Solid

line is σ̃2
1l and dashed line is σ̃2

2l. Electrical size is ka = 0.1, 0.3, 1, 3, 10.

Here, the normalized singular values σ̃2
τl are de�ned by σ2

τl = a3σ̃2
τl and calculated

as

σ̃2
1l =

1

2

(
j2l (ka)− jl−1(ka)jl+1(ka)

)
σ̃2

2l =
1

2l + 1

(
(l + 1)σ̃2

1,l−1 + lσ̃2
1,l+1

) (4.3)

following the derivation made in [11].
In Figure 1, the ill-posedness of the reconstruction is clearly displayed in view

of the asymptotic exponential decay of the normalized singular values σ̃2
τl. Figure

2 shows the corresponding CRB-accuracy factor Fa(ka, kr, lmax) as a function of
maximum multipole order lmax when r = a/2 and for di�erent electrical sizes ka.
These plots clearly illustrate the di�culties of estimating the reconstruction as lmax

increases and ka is small.
Figure 3 shows the CRB-accuracy factor Fa(ka, kr, lmax) as a function of relative

radius r/a when ka = 1 and for di�erent multipole orders lmax. Again, the plot
illustrates the di�culties of estimating the reconstruction as lmax increases. The plot
further illustrates how the estimation performance improves closer to the center of
the sphere. Even though this behaviour can be well explained from the expression
(4.2) as kr → 0, the result may �rst seem odd from a physical point of view.
However, remembering that our investigation is restricted to the minimum norm
solution J † modulo the higher order modes l > lmax, it is clear that the estimation
performance as kr → 0 will tend to the optimum variance of estimating only the
�rst order modes with l = 1.
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Figure 2: CRB-accuracy factor Fa(ka, kr, lmax) as a function of maximum multipole
order lmax. Here r = a/2 and ka = 0.1, 0.3, 1, 3, 10.

5 Conclusion and future work

Although imaging and inverse scattering problems have been thoroughly studied
during the last century there is only a partial understanding of these complex prob-
lems. Most of the e�orts have been placed on the development of e�cient inversion
algorithms and mathematical uniqueness results. In comparison, there are very few
results and a limited knowledge about the information content in the inversion data.

In this paper we provide the Cramer-Rao lower bound for the inverse source
problem of electromagnetics which was presented in [11, 12]. We consider the prob-
lem of estimating either the near �eld or the radiating current distribution from a
measurement of the far �eld. The solution is derived via a linear operator formalism
and is explicitly given in terms of the multipole expansion of the electromagnetic
�eld. The ill-posedness and hence the resolution capabilities of the reconstruction is
explicitly quanti�ed by using the Cramer-Rao lower bound. In particular, only the
low order multipole components can be employed if the data is not perfect.

Future research is focused on establishing and merging tools and methods from
statistical signal processing such as the Fisher information to quantify the quality of
data in inverse scattering problems. Using these tools, the objective is furthermore
to analyze fundamental properties of the inverse scattering problems with respect
to various parameters of the system setup and of the physical model itself. Finally,
given an objective function based on the Fisher information measure, we will also
exploit and develop new convex interior point optimization techniques for e�cient
optimization of the system parameters such as suitable measurement positions, fre-
quency bands etc.
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