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Abstract

We compute the Cramér-Rao lower bounds for determination of isotropic per-

mittivity and permeability in slabs using scattering data such as re�ection and

transmission coe�cients. Assuming only the fundamental mode is propagat-

ing in the slab, the results are formally the same regardless if the slab is in free

space, or inside a rectangular or coaxial waveguide. The bounds depend only

on signal quality and not the actual inversion method used, making them suit-

able to evaluate a particular measurement setup. The results are illustrated

with several measurements in a rectangular waveguide setting.

1 Introduction

When measuring the electromagnetic properties of materials, it is common to man-
ufacture a sample in the form of a planar slab and measure the re�ection and trans-
mission through the slab [2, 6]. Three common measurement setups are in a hollow
rectangular waveguide, in a coaxial cable, or as a free space measurement. As long
as only one mode can be expected in the waveguide or coaxial cable, all three setups
have very similar mathematical models. In the waveguide, there is always some dis-
persion due to the con�ned geometry, which corresponds to the free space case where
the angle of incidence is varying with frequency in such a way that the transverse
wave number is constant [8, 19].

In order to estimate the permittivity and permeability from re�ection and trans-
mission measurements, the Nicolson-Ross-Weir method is commonly used [18, 22].
This is an explicit inversion of the scattering parameters to obtain the material
parameters ε and µ, the only point of ambiguity being to determine how many
wavelengths that can �t inside the slab. This ambiguity can often be resolved by
unwrapping the phase information in the transmission data starting from low fre-
quencies, where the number of wavelengths inside the slab can be assumed less than
one if the slab is thin enough. Another classical shortcoming of the NRW method
is that it breaks down when the slab is lossless and half a wavelength in thickness.
Several methods have been proposed to deal with this problem [1, 3, 5]. In this paper
we clarify that the problem does not depend on the inversion algorithm as such, but
is due to poor signal quality in re�ection data, since there is perfect transmission
through a half wavelength slab. If the inversion is based on transmission data only,
no problem occurs.

Alternative inversion methods are often based on optimization approaches, set-
ting up a material model with suitable degrees of freedom and computing synthetic
scattering parameters. These scattering parameters are then compared with the
measured ones, and the material parameters are tuned to minimize the di�erence [1].
This procedure has the advantage that it is possible to enforce material models with
a physically reasonable frequency dependence satisfying the Kramers-Kronig rela-
tions [10, 15, 17].

Although di�erent inversion procedures have been around for a long time, there
is still limited understanding of their inherent limitations, such as what errors can be
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expected in di�erent parameter regions when noise is present. This question has a
precise answer in the case when all systematic errors have been eliminated. We can
then study the Fisher information matrix, the inverse of which gives us the variance
of the parameters we wish to estimate [16]. This provides a theoretical framework for
the error analysis in [3], which can be generalized to other measurement situations,
for instance involving more complex material parameters [7, 9, 13, 14, 20].

2 The Fisher information matrix

Assume we can measure complex re�ection and transmission coe�cients r and t
for an isotropic slab with thickness d at a certain frequency. The electromagnetic
material parameters for the slab are the relative complex permittivity ε and the
relative complex permeability µ, and we wish to estimate them from r and t. The
Fisher information matrix is [16, 21]
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where σr is the noise level for the re�ection coe�cient, and σt is the noise level
for the transmission coe�cient. Note that the matrix is hermitian symmetric by
construction. The Cramér-Rao lower bound is [12, 16]

var(ε) ≥ [I−1]εε (2.3)

var(µ) ≥ [I−1]µµ (2.4)

which can be used to compute the limit of the accuracy for the parameters estimated
from the measurement. When plotting the bounds in Figures 2 and 3, we plot the
bound for the standard deviation (the square root of the variance), i.e., ([I−1]εε)

1/2

and ([I−1]µµ)1/2 in dB scale.
To compute the Fisher information matrix, we need an explicit expression for

the re�ection and transmission coe�cients. These are given by [4]

r =
r0(1− e−2jβd)

1− r2
0e−2jβd

(2.5)

t =
(1− r2

0)e−jβd

1− r2
0e−2jβd

(2.6)

for a slab surrounded by free space. If the slab is backed by metal, the re�ection
coe�cient is

rPEC =
r0 − e−2jβd

1− r0e−2jβd
(2.7)

The re�ection and transmission coe�cients depend in their turn on the interface
re�ection coe�cient r0 = (Z − Z0)/(Z + Z0) and the wave number in the material
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β, where Z and Z0 are the wave impedances in the slab and in the surrounding free
space, respectively. The detailed dependence of the wave parameters Z and β on
the material parameters ε and µ depend on polarization and measurement setup,
and can be found in Appendix A, where also the explicit formulas for the relevant
derivatives can be found.

Instead of calculating the information matrix with respect to the material param-
eters ε and µ, we could compute it with respect to the wave parameters β and Z, or
more preferably their normalized values β̄ = β/k0 and Z̄ = Z/η0, where k0 = ω

√
ε0µ0

is the wave number in free space and η0 =
√
µ0/ε0 is the wave impedance in free

space. The Fisher information matrix is then
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where the derivatives are computed from the derivatives in Appendix A as
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This allows us to calculate the Cramér-Rao lower bounds for the variance of the
normalized wave parameters β̄ and Z̄ as

var(β̄) ≥ [I−1
wave]β̄β̄ (2.11)

var(Z̄) ≥ [I−1
wave]Z̄Z̄ (2.12)

When plotting these bounds in Figures 2 and 3, we plot the bounds corresponding
to the standard deviations, i.e., ([I−1]β̄β̄)1/2 and ([I−1]Z̄Z̄)1/2 in dB scale. In the
inversion algorithm, β̄ basically involves the product εµ and Z̄ involves primarily
the ratio µ/ε, although the case is complicated at oblique incidence as can be seen
from the explicit expressions for β and Z in Appendix A.

3 Computer program

The Cramér-Rao lower bounds have been implemented with a GUI in python,1 see
Figure 1. The code is available by contacting the authors. Using this program, the
in�uence of a number of parameters can be studied. Three measurement setups are
implemented:

• Rectangular waveguide (with arbitrary width)

• Coaxial cable

1http://www.python.org
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Figure 1: Screen shot of python implementation of the Cramér-Rao lower bound.
Using the menus and the sliders, many di�erent combinations of parameters can be
investigated. The resulting �gures can be saved in a variety of vector or bitmap
formats.

• Free space plane wave (with arbitrary angle of incidence and TE or TM po-
larization)

The coaxial cable case is mathematically identical to the free space plane wave for
normal incidence, but is included for convenience since it is a common measurement
setup. Furthermore, the noise levels in re�ection and transmission can be set sep-
arately. The Cramér-Rao lower bounds can be plotted for either ε and µ or β/k0

and Z/η0, against any of the parameters Re(ε), Im(ε), Re(µ), Im(µ), thickness d,
frequency f , or (in the plane wave case) angle of incidence θ.

Using this program, graphs such as those shown in Figure 2 can be generated.
The curves should be interpreted such that the standard deviation of the estimation
of each parameter can not be less than the values given by the corresponding curve,
at a given noise level. The bounds are plotted at unit noise level (σr = σt = 0 dB),
and changing the noise level only shifts the curves up or down by the corresponding
amount. For instance, the bound for ε at 10GHz is at about 14 dB in Figure 2. This
means that in order to get an estimation of ε with two digits of accuracy (relative
error of at most 0.05 or −13 dB), the noise level must be kept below −27 dB.

In Figure 2 it is seen that the Cramér-Rao lower bounds for the material param-
eters ε and µ increase at two frequencies: the cuto� frequency for the waveguide,
and the resonance frequency where the length of the slab corresponds to one half
wavelength in the material. It is also seen that only the bound for the normalized
wave impedance Z̄ = Z/η0 increases at the resonance frequency. Thus, the inherent
di�culty in determining both ε and µ at this frequency is due only to the di�culty
in determining one of the wave parameters β and Z. In other words, this means
that knowledge of one parameter (for instance µ = 1 for non-magnetic materials),
means the other parameter can be determined in a stable way.
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Figure 2: Cramér-Rao lower bounds for material parameters (left) and wave pa-
rameters (right), for a lossless dielectric slab in a rectangular waveguide. It is seen
that the bounds for both ε and µ are increased at cuto� frequency (6.55GHz) and
resonance frequency (half wavelength slab, 12GHz). However, it is seen that only
the bound for the wave impedance is increased at the resonance frequency.

At the resonance frequency, the re�ection is low (ideally zero), making it di�cult
to estimate the wave impedance Z̄. This is an artefact of lossless slabs; by introduc-
ing losses, the peak in the Cramér-Rao lower bound for Z̄ is signi�cantly lowered,
see Figure 3.

4 Measurements

To verify the theoretical predictions of the Cramér-Rao lower bounds, the following
experimental test has been performed. The S-parameters for several dielectric slabs
were measured in an X-band (8�12GHz) waveguide �xture using a Performance
Network Analyzer (PNA). The measurements were repeated for di�erent source
power levels in order to vary the signal to noise ratio. A TRL calibration [11] was
performed for each source power level before the measurement. Samples of epoxy
and Macor R© were used in the measurements. Macor has a dielectric constant of 5.67
and a loss tangent of 7.1 · 10−3 at 8.5GHz.2 The resulting data was evaluated with
the Nicolson-Ross-Weir method [18, 22] to calculate the material parameters ε and
µ, as well as the wave parameters β̄ and Z̄. The measurement system is shown in
Figure 4.

The results for a reference epoxy slab, known to have virtually constant material
parameters in the X-band, are shown in Figure 5. It is seen that all parameters of
interest are very smooth functions of frequency. There is no resonance, since the
slab is shorter than half a wavelength in the entire frequency band.

In Figure 6 the results for a thick slab of Macor is shown. Here, a clear resonance
occurs at about 8.5GHz, corresponding to a thickness of half a wavelength in the

2http://www.corning.com/docs/specialtymaterials/pisheets/Macor.pdf
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Figure 3: Cramér-Rao lower bounds for the same case as in Figure 2, except that
some dielectric losses have been added. The peaks at the resonance are signi�cantly
lower than in Figure 2.

Figure 4: The measurement system. A network analyzer is connected to two
waveguide segments, joined by a sample holder containing the material under test.



7

-Imf²g

-Imf¹g

Ref²g

Ref¹g
5

4

3

2

1

0

-1

7 12111098

f/GHz

7 12111098

f/GHz
0.0

2.0

1.5

1.0

0.5

Ref  ̄    �      =k g0
-Imf  ̄    �      =k g0
RefZ = ���  ´   g0
-ImfZ = ���  ´   g0

Figure 5: The measured material and wave parameters for a slab of epoxy with
length 5.1mm, which is short enough not to cause any resonances in the frequency
interval considered. To the left is the determination of the material parameters
ε and µ, and to the right is the determination of the wave parameters β/k0 and
Z/η0. Measurement data is only available in the interval where one single mode is
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Figure 6: The measured material parameters for a thick slab of Macor (` =
8.0 mm), where a resonance occurs at about 8.5GHz. To the left is the full de-
termination of both ε and µ, and to the right it is assumed that the material is
non-magnetic, µ = 1.
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material. It is clearly seen that both the material parameters permittivity and per-
meability are di�cult to determine accurately in the vicinity of this frequency. The
algorithm even generates an imaginary part of ε with the wrong sign (passive mate-
rials must have constant sign in the imaginary part of ε and µ). When considering
the wave parameters, only the relative impedance Z̄ = Z/η0 is resonant, whereas
the relative wavenumber β̄ = β/k0 behaves smoothly throughout the interval, see
Figure 7. The di�culties in determining ε disappear if we assume that the material
is non-magnetic (µ = 1), and compute ε from the wave number β only. The result
is the graph to the right in Figure 6.

We �nally consider the in�uence of noise. In Figure 7, the measured material
and wave parameters are shown for varying signal-to-noise levels. It is seen that the
noise causes most problems in the region around the resonance, and the wave number
β/k0 remains relatively well determined even though the simultaneous computation
of ε and µ produces bad results. Thus, the permittivity ε can be determined with
precision for non-magnetic materials, even with noisy data, by enforcing a priori

knowledge of the permeability µ = 1.

5 Conclusions

The Cramér-Rao lower bound describes how well we can estimate a certain parame-
ter from measurement data. We have calculated the explicit bounds for determining
permittivity and permeability from re�ection and transmission data for slabs. Fur-
thermore, we have shown that the frequency variation of the bounds agrees with
basic physical phenomena, such as the cuto� frequency phenomenon in waveguides,
and the half wavelength resonance in slabs. Using these bounds, it is possible to esti-
mate the minimum signal to noise ratio needed to estimate the material parameters
with a given accuracy.

A drawback of the Cramér-Rao lower bounds, is that they only apply to a situa-
tion where all the systematic errors have been eliminated and (Gaussian zero-mean)
noise is the only remaining source of error. The systematic error is di�cult to sup-
press in real situations, and the eventual success of the measurement is very much
linked to the calibration procedure.

A particular result of this paper is that the half wavelength resonance in slabs
in�uences only the impedance and not the estimation of the wave number in the
slab. We can not extract any information on wave impedance for this frequency
unless a slab with di�erent thickness is used, or if we combine information from
neighboring frequency points with a hypothesis that the material properties do not
change very much. However, this leads to an arbitrariness which is undesirable in
real measurement systems.
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10

Appendix A Calculation of some derivatives

In this Appendix we calculate the explicit expressions for the derivatives that make
up the Fisher information matrix in (2.2) and (2.8). The re�ection and transmission
coe�cients for a slab surrounded by free space are [4]

r =
r0(1− e−2jβd)

1− r2
0e−2jβd

(A.1)

t =
(1− r2

0)e−jβd

1− r2
0e−2jβd

(A.2)

If the slab is backed by metal, the re�ection coe�cient is

rPEC =
r0 − e−2jβd

1− r0e−2jβd
(A.3)

The parameters involved are

r0 =
Z − Z0

Z + Z0

(A.4)

Z =

{
ηk
β

= η0
k0µ
β

TE
ηβ
k

= η0
β
k0ε

TM
(A.5)

Z0 =

{
η0k0
β0

TE
η0β0

k0
TM

(A.6)

where ε0 and µ0 are the permittivity and permeability of free space, ε and µ are
the relative permittivity and permeability of the material, k0 = ω

√
ε0µ0 and k =

k0
√
εµ are the wave numbers in free space and in the material, η0 =

√
µ0/ε0 and

η = η0

√
µ/ε are the wave impedances in free space and in the material, β0 =√

k2
0 − k2

t and β =
√
k2 − k2

t are the longitudinal wavenumbers in free space and
in the material, and kt is the transverse wavenumber. For the TE10 mode in a
rectangular waveguide, we have kt = π/a, where a is the width of the waveguide,
and for a plane wave normally incident on a slab we have kt = k0 sin θ, where θ is
the angle of incidence.

Using the chain rule, we now have

∂r

∂ε
=

∂r

∂r0

∂r0

∂Z

∂Z

∂ε
+
∂r

∂β

∂β

∂ε
(A.7)

which shows that all derivatives can be computed from a few canonical derivatives.
These are as follows.
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=
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)
(A.9)



11

∂t

∂r0

=
∂

∂r0

(1− r2
0)e−jβd

1− r2
0e−2jβd

=
−2r0e−jβd

1− r2
0e−2jβd

+
2r0e−2jβd(1− r2

0)e−jβd

(1− r2
0e−2jβd)2

(A.10)

∂t

∂β
=

∂

∂β

(1− r2
0)e−jβd

1− r2
0e−2jβd

= jd

(
−(1− r2

0)e−jβd

1− r2
0e−2jβd

− (1− r2
0)e−jβdr2

02e−2jβd

(1− r2
0e−2jβd)2

)
(A.11)

∂r0

∂Z
=

∂

∂Z

Z − Z0

Z + Z0

=
1

Z + Z0

− Z − Z0

(Z + Z0)2
=

2Z0

(Z + Z0)2
(A.12)

∂ZTE

∂ε
= η0

∂

∂ε

k0µ

β
= −η0

k0µ

β2

∂β

∂ε
= −Z

β

∂β

∂ε
(A.13)

∂ZTM

∂ε
= η0

∂

∂ε

β

k0ε
= η0

(
− β

k0ε2
+

1

k0ε

∂β

∂ε

)
= −Z

ε
+
Z

β

∂β

∂ε
(A.14)

∂ZTE

∂µ
= η0

∂

∂µ

k0µ

β
= η0

(
k0

β
− k0µ

β2

∂β

∂µ

)
=
Z

µ
− Z

β

∂β

∂µ
(A.15)

∂ZTM

∂µ
= η0

∂

∂µ

β

k0ε
= η0

1

k0ε

∂β

∂µ
=
Z

β

∂β

∂µ
(A.16)

∂β

∂ε
=

∂

∂ε

√
k2 − k2

t =
1

2

2k√
k2 − k2

t

∂k

∂ε
=
k

β
k0
√
µ

1

2
√
ε

=
k2

2βε
(A.17)

∂β

∂µ
=

∂

∂µ

√
k2 − k2

t =
1

2

2k√
k2 − k2

t

∂k

∂µ
=
k

β
k0

√
ε

1

2
√
µ

=
k2

2βµ
(A.18)

For a metal backed slab we also need the derivatives
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