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Abstract: This is a survey of different calendar intercalation schemes, mainly in Southeast Asia.  The Thai and 

Burmese Calendars, superficially very similar, are shown to have quite different and interesting intercalation 
schemes.  We also investigate similarities between the original Burmese Calendar and the Romakasiddhânta from 
India. 
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1  INTRODUCTION 
 

In lunisolar calendars there are four sequences 
of time that need to be synchronised: the Sun, 
the solar calendar, the lunar calendar and the 
Moon.  In order to achieve this synchronisation, 
different calendars have used different schemes.  
As a solar year is slightly more than 365 days 
and a solar calendar contains an integer number 
of days, there is a need for inserting leap days 
resulting in solar calendar years with 365 or 366 
days.  Such solar calendar years will be about 
11 days longer than a lunar year with 12 synodic 
months with a mean value of about 29.5 days.  
In order to synchronise the lunar and solar calen-
dars the usual procedure is to intercalate extra 
lunar months from time to time.  Finally, in order 
to synchronise the lunar calendar with the Moon 
there may also be a need to intercalate extra 
days in the lunar calendar. 
 

The Babylonians originally had a lunar calen-
dar with months that started with the first visual 
appearance of the New Moon crescent.  This 
automatically synchronised the lunar calendar 
with the Moon.  The synchronisation with the 
Sun was done by requiring that the start of the 
lunar year would not deviate too far from the 
spring equinox, and if so an extra lunar month 
was inserted.  From around the fourth century 
before the Christian Era the Babylonians switch-
ed to a more rigid system with 7 intercalary lunar 
months in 19 solar years, inserting at fixed years 
3, 6, 8, 11, 14, 17 and 19 in each 19-year cycle, 
giving a total of 235 lunar months in each cycle.  
This so-called Metonic cycle is quite accurate: 
19 tropical years of 365.2422 days are almost 
equal to 235 synodical months of 29.53059 days, 
19·365.2422 = 6939.6018 days, 235·29.53059 = 
6939.6886 days, and this gives a good synchro-
nisation between the Sun and the lunar calen-
dar.  The same scheme was used in the early 
Jewish calendar and in some ancient Greek cal-
endars. 
 

2  INDIA 
 

In India the backbone of the calendar is a 
sidereal solar calendar, i.e. a calendar where 
the solar year is determined by the return of the 

Sun to the same location relative to the fixed 
stars, in contrast to the tropical year that is 
based on the return of the Sun to the vernal 
point, the crossing between the ecliptic and the 
celestial equator.  By the precession of the equi-
noxes, the vernal point is slowly receding rela-
tive to the stars by about 1° in 72 years.  The 
sidereal year is slightly longer than the tropical 
year, its modern current value being 365.25626 
days, while the tropical year has 365.2422 days.  
The early Hindu calendar that will be considered 
here, the original Sûryasiddhânta, uses a sider-
eal year of 365.25875 days (Billard, 1921).  
Each solar month starts when the Sun’s mean 
longitude reaches a multiple of 30°, i.e. when 
the mean Sun enters a new zodiacal sign.  This 
aligns the solar calendar with the Sun and has 
twelve solar months, each with the same length 
of 365.2587/12 = 30.43823 days.  The Sûrya-
siddhânta lunar calendar is based on a mean 
synodic month of 29.530589 days.  The fact that 
the synodic month is shorter than the solar 
month means that there will sometimes be two 
lunar months starting in the same solar month.  
The first of these two months is then an inter-
calary month.  In this way there will be a lunar 
month intercalation when needed and the syn-
chronisation between the solar and lunar cal-
endars will be automatic.  Later, true solar and 
lunar months were introduced, that made the in-
tercalation system mathematically more compli-
cated but it still used the same principle for in-
tercalation. 
 
3  SOUTHEAST ASIA 
 

In Southeast Asia there are two calendars that 
are of special interest as regards intercalation: 
the Thai and the Burmese Calendars.  They 
have great similarities but have fundamentally 
different intercalation schemes.  Ôhashi (2006; 
2009) and Komonjinda et al. (2017) give a good 
background on intercalation problems. 
 
3.1  Thailand 
 

Like the Sûryasiddhânta, the Thai Calendar uses 
a sidereal solar year of 365.25875 days, ex-
pressed as 292207 days in 800 years (Faraut, 



Lars Gislén  Calendars and Intercalation in Southeast Asia 

 

  
Page 3 

 

  

1910; Eade, 1995; 2000).  The starting date or 
epoch is 21 March 638 CE (Christian Era), the 
Chulasakarat Era.  On this date, the (mean) 
vernal equinox, there was also an annular solar 
eclipse visible from India.  A normal solar year 
has 365 days.  In order to synchronise the solar 
calendar with the sidereal Sun, a leap day is 
inserted to give a leap year of 366 days, the 
insertion being determined by the value of a 
quantity called the kammacubala.  The kamma-
cubala is computed by integer division: 
 

(year · 292207 + 373)/800 = integer part: 
remainder 
 

The number 373 is an epochal constant.  The 
integer part, increased by one, is the ahargana 
or the number of elapsed solar days since the 
epoch.  The kammacubala is 800 minus the 
remainder.  It expresses the time in 1/800 of a 
solar day that remains of the new year day from 
the time when the mean solar longitude is zero.  
When the kammacubala is less than or equal to 
207, there will be a leap year.  The significance 
of the number 207 is apparent when we see that 
207/800 = 0.25875, the excess of a sidereal 
solar year over 365 days. 
 

Example: Compute the ahargana and the 
new year kammacubala of the Chulasakarat 
year 1238. 
 

(1238 · 292207 + 373) /800 = 452190: 639 
 

The ahargana is 452190 + 1 = 452191 and the 
kammacubala = 800 – 639 = 161.  The year is a 
solar leap year. 
 

Both the Thai and the Burmese Calendars 
use the Indian and Babylonian concept of tithi, 
the length of a lunar day or one thirtieth of a 
synodic lunar month.  The value used is that a 
tithi equates to 692/703 solar days.  This gives 
the length of the synodic month as 692/703 · 30 
= 29.53058321 days, a value very close to the 
modern value of 29.5305880 days.  A continuous 
fraction development of the ratio 29.5305880/30 
gives the successive approximations 62/63, 63/ 
64, 692/703, 8367/8500 ...  The chosen ratio 
692/703 is the one that gives a satisfactory 
accuracy and that is reasonably simple to handle, 
actually the error using this approximation is 
only one day in about 17000 years.  
 

The normal lunar year consists of 12 months 
with alternating lengths of 29 and 30 days, in 
total 354 days.  An extra month of 30 days is 
intercalated in order to synchronise the lunar 
and solar calendar giving a lunar year of 384 
days.  The insertion of the intercalary month is 
governed by the requirement that the solar year 
should start in the month of Caitra (the first 
month of the lunar calendar), or possibly slightly 
later.  If the next lunar year threatens to start 
later than 6 Vaisakha (the second lunar month) 
there will be an intercalary month.  This will push 

back the start of the solar year and automatically 
aligns the solar and lunar calendars.  We can 
easily compute the average frequency of this 
intercalation.  Nineteen sidereal solar years have 
19 · 365.25875 = 6939.91625 days.  This is 
6939.91625/29.53058321 = 235.0077613 syn-
odic months.  19 years each with 12 synodic 
months contain 19·12 = 228 months.  Thus, we 
need 235.0077613 – 228 = 7.0077613 inter-
calary lunar months in a 19-year period in order 
to keep the solar and lunar calendars aligned.  
This is very close to a Metonic intercalation, 
though the intercalation pattern will not be fixed 
but will recede slowly within the 19-year cycle. 
 

In order to synchronise the lunar calendar 
with the (mean) Moon there will also be inter-
calary days.  To manage this intercalation, the 
Thai Calendar uses a quantity called the avo-
man.  The avoman measures the excess of tithis 
relative to elapsed solar days.  As a tithi equals 
692/703 solar days, a solar day is equal to 
703/692 tithis or 1 + 11/692 tithis, i.e. the 
excess tithi is 11 in units of 1/692 of a solar day.  
The cumulative excess is computed by 
 

(ahargana · 11 +650)/692 = periods of 692 : 
avoman 
 

Another way of writing this is (ahargana·11 + 
650) MOD 692 = avoman.  Note that if the result 
is 0 it should be replaced by 692.  Again the 
number 650 is an epochal constant. 
 

Example: Compute the new year avoman for 
Chulasakarat 1238. (452191 · 11 + 650)/692 = 
7188 : 655.  The avoman is 655. 
 

The avoman increases by 11 each day.  Dur-
ing a normal solar year, the avoman increases 
by (365 · 11) MOD 692 = 555, during a solar 
leap year by 555 + 11 = 566.  The distance of 
these numbers from 692 is 137 and 126 
respectively.  An increase of 555 is, in modular 
language, the same as a decrease of 137.  If the 
new year avoman of a normal year is equal to 
137 or less it means that the lunar calendar 
needs an intercalary day; for a leap year there 
will be an intercalary day if the new year avo-
man is equal to 126 or less.  In the Thai Cal-
endar scheme, the intercalary day is not allowed 
to be inserted in a year with an intercalary 
month.  If this would happen by the rule above, 
the intercalary day has to be relocated to an 
adjacent year.  A lunar year with an intercalary 
day will then have 355 days.  The canonical 
rules for this relocation are quite complicated 
and there is evidence that the day intercalation 
sometimes was made locally according to other 
rules but in the long run with the correct number 
of intercalary days.  It is easy to calculate the 
frequency of the day intercalation, irrespective of 
the precise insertion rules.  The probability of 
having a leap year is 207/800, the probability of 
a normal year (800‒207)/800 = 593/800.  The 
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probability of an intercalary day is 126/692 and 
137/692 respectively.  Thus, the joint probability 
is 
 

126/692 · 207/800 + 137/692 · 593/800 = 
0.1938638  
 

or on average 19·0.1938638 = 3.6834122 days 
in 19 years.  We have the relation 
 

19 sidereal solar years = 19·365.25875 = 
6939.91625 days 
 

19 normal lunar years with 354 days + 7.077613 
intercalary months with 30 days give 
 

19 · 354 + 7.077613 · 30 = 6936.232839 days 
 

Add to this the 3.6834122 days from the day 
intercalation and we get 6936.232839 + 
3.6834122 = 6939.91625, exactly matching the 
solar year days.  Thus, the Thai intercalation 
scheme achieves a perfect synchronisation of 
the solar and lunar calendars and the Moon.  
 

Since the system was implemented locally 
over a wide area for centuries, as is evidenced 
by monastic inscriptions, it may be concluded 
that the numbers that caused the system to 
function from year to year were easily memoris-
ed and reliably passed from generation to gen-
eration. 
 
3.2  Burma (Myanmar) 
 

The Burmese Calendar (see Htoon-Chan, 1918; 
Irwin, 1909) uses the same epoch, 21 March 
638 CE, as the Thai Calendar.  For reasons that 
will be evident, I will deal with the original Maka-
ranta version of the Burmese Calendar, before 
the changes that were made to it in the nine-
teenth century and later, when the intercalation 
pattern and some of the calculation schemes 
were modified by the Thandeikta scheme. 
 

The Burmese Calendar also uses the approx-
imation 692/703 for a tithi. However, it uses the 
Metonic 19-year cycle with a fixed pattern of 
seven years with an intercalary month, the years 
2, 5, 7, 10, 13, 15, and 18 in the cycle.  The 
intercalary month is placed after the fourth lunar 
month Waso or, in the Arakanese Calendar, 
after the first lunar month Tagu.  We have 235 
synodic months of 692/703 · 30 days = 
6939.687055 days corresponding to a solar year 
of 6939.687055 / 19 = 365.2466871 days.  This 
is a tropical solar year, identical with Hipparch-
us’ tropical year, 365 + 1/4 – 1/300 days. 
 

Nineteen years with seven intercalary lunar 
months contain 19 · 354 + 7 · 30 = 6936 
calendar days.  We see that there is a need for 
6939.687055 – 6936 = 3.687055 intercalary 
days in order to synchronise the lunar calendar 
with the Moon. 
 

The Burmese Calendar uses the avoman in 
order to determine when to insert these inter-

calary days, but in a different way to the Thai 
Calendar.  An intercalary day can only be insert-
ed in years that also have an intercalary month, 
contrary to the Thai scheme.  There will now be 
three kinds of years: normal years with 354 
days; years with an intercalary month having 
384 days; and years with both an intercalary 
month and an intercalary day with 385 days.  
The avoman is calculated with no reference at 
all to the solar calendar or the Sun.  The avo-
man used as an intercalation indicator is that of 
the intercalated second Waso Full Moon date 
(2WFM).  The scheme to calculate the avoman 
is: 
 

1) Take the year from the epoch, multiply it by 
12 to get the months, add 4 to the product in 
order to arrive at the end of the first Waso, the 
number of months will be m0 = year · 12 + 4.  
2) Now add the number of intercalary months.  
There are seven of them in each 19-year period.  
Then the number of intercalary months is m1 = 
m0 · 7/(19·12) = 7 · m0 / 228.  
3) The total number of elapsed lunar months is 
m = m0 + m1.  
4) Convert this to tithis by multiplying by 30: t0 = 
m · 30.  
5) Add the number of elapsed tithis, 14, until the 
second Waso Full Moon and get t = t0 + 14. 
6) The tithi excess or the avoman then is (t · 11 
+ 650) MOD 703.  As before, 650 is an epochal 
constant. 
 

Example: Compute the 2WFM avoman for 
the year 1242 that was a year with an intercalary 
month, number 7 in the 19-year cycle: 
 

(1242 · 12 + 4) = 14908 
14908 · 7/228 = 457 
Total elapsed months 14908 + 457 = 15365 
Elapsed tithis 15365 · 30 + 14 = 460964 
(460964 · 11 + 650) MOD 703 = 515, the 2WFM 
avoman. 
 

Once the 2WFM avoman has been calculat-
ed for one of the intercalary years in the Metonic 
sequence it is very easy to compute the 2WFM 
avoman for any subsequent year in the se-
quence by adding one of two numbers.  The 
interval between two years in the intercalary 
sequence can either be two or three years.  In a 
two-year interval there are two normal years 
with twelve months plus one intercalary month.  
Thus, 2 · 12 + 1 = 25 months = 25·30 tithis = 
750 tithis.  The excess (750 · 11) MOD 703 = 
517 is the avoman change.  As we consider a 
difference, the epochal constant will cancel. 
 

In a three-year interval we have 3 · 12 + 1 = 
37 months = 37 · 30 tithis = 1110 tithis, and the 
excess (1110 · 11) MOD 703 = 259 is the 
avoman change. 
 

The rule for inserting an intercalary day is 
this: If the 2WFM avoman of a year is larger 
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than the previous 2WFM avoman, there will be 
an intercalary day.  If you take the case of a two-
year interval it is easy to see that this statement 
is equivalent to saying that the previous 2WFM 
avoman lies in the interval [1, 186].  If you add 
517 to any number in this interval the result will 
be less than 703 and thus larger, if it is outside 
of this interval, the sum will be larger than 703 
and by the modulus condition be reduced by 703 
and thus be smaller than the original number.  In 
the same way for a three-year interval, if the 
previous 2WFM avoman lies in the interval [1, 
444], addition of 259 will result in a larger avo-
man. 
 

We can now calculate the mean number of 
intercalary days in a 19-year cycle.  There are 
always two two-year intervals in a Metonic inter-
calation cycle and five three-year intervals.  For 
a two-year interval the probability of an intercal-
ary day will be 186/703.  The corresponding 
probability for a three-year interval is 444/703.  
The total mean number of intercalary days in the 
cycle is then 2 · 186/703 + 5 · 444/703 = 
2592/703 solar days. 
 

235 synodic months correspond to 235·30 
tithis or 235 · 30 · 692/703 solar days.  235 
calendar months have 19 · 354 + 7 · 30 = 6936 
days.  The difference is 235 · 30 · 692/703 – 
6936 = 2592/703 days. 
 

Thus, the Burmese day intercalation scheme 
precisely compensates for this difference and 
synchronises the lunar calendar with the Moon 
and also the lunar calendar with the tropical 
year.  To this extent there is no need for a solar 
calendar. 
 

An interesting question is how the Burmese 
chose the intercalation pattern in the Metonic 
cycle.  A possible answer could look like this: 
 

The number of intercalary months is given by 
m1 = 7 · m0 / 228 where we use integer division 
and m0 is the number of elapsed normal months.  
Each time this expression increases by one unit, 
we will have a new intercalary month.  Now, 
suppose that we place ourselves at the end of 
Waso, month four.  We can now calculate for 
what years in a 19-year sequence there has been 
a new intercalary month at this moment.  Using 
m0 = cycle year·12 + 4 in the expression for m0, 
we find the years 3, 6, 8, 11, 14, 16, 19, which 
means that the previous years, 2, 5, 7, 10, 13, 
15, 18 must have had an intercalary month.  
This is exactly the intercalation pattern used in 
the Burmese Calendar.  The Arakanese Calendar 
inserts the intercalary month after Tagu, the first 
month.  Using m0 = cycle year · 12 + 1, we 
generate the intercalation pattern 2, 5, 8, 10, 13, 
16, 18, which is actually a variant found (Chatt-
erjee, 1996; Eade, 1995). 
 

However, the problem is that the Burmese 

Calendar uses the Hindu sidereal solar year for 
which its lunar calendar in not well suited.  The 
Burmese lunar Calendar will not, like the Thai 
Calendar, be locked to the solar calendar, with 
the result that the sidereal solar new year will 
slowly drift forward in the lunar calendar.  This 
strongly indicates that the Burmese lunar 
Calendar was introduced separately from the 
Hindu sidereal solar calendar and probably at an 
earlier time.  Around the year 1100 in the Bur-
mese era (BE = CE 1738) this drift had become 
an acute problem and the Burmese calendarists 
started to change the month intercalation pattern 
and also tried other criteria for intercalating days, 
completely destroying the original consistency of 
the lunar calendar.  Today, there is no canonical 
method of setting up future Burmese Calendar 
dates and the intercalation is determined from 
time to time by a Committee of Calendarists.  
 

4  THE ROMAKASIDDHÂNTA 
 

I will finish by looking at the scheme of the 
Romakasiddhânta, one of the calendar schemes 
described in the Pañcasiddântikâ by Varahâ-
mihira and which has many features that are 
identical to the Burmese Calendar (Neugebauer 
and Pingree, 1970; Sastry, 1993; van der Waer-
den, 1988).  The epoch of the Romakasiddhânta 
is 21 March 505 CE or 427 in the Šaka Era, a 
date when there was a conjunction of the Sun 
and the Moon on the vernal equinox.  The Roma-
kasiddhânta uses the Metonic cycle for the month 
intercalation and Hipparchus’ tropical solar year 
exactly as in the original Burmese Calendar.  It 
also uses the approximation 692/703 for the tithi.  
The procedure for determining the ahargana 
uses methods that are identical to the Burmese 
methods for computing the avoman. 
 

In order to compute the ahargana you need 
the year, month and day.  Take the year, sub-
tract 427 and multiply the result by 12 to get the 
elapsed normal lunar months.  Add the elapsed 
months M of the year to get the total number of 
elapsed normal months: m0 = (year – 427) 12 + 
M.  Compute the number of intercalary months: 
m1 = 7 · m0 /228.  The total number of elapsed 
lunar months then is m = m0 + m1.  Convert to 
tithis and add the elapsed number of tithis t0 of 
the month.  The total number of elapsed tithis 
then is t = 30·m + t0.  To get the number of 
elapsed solar days we have to subtract the 
excess tithis T = (t · 11 + 514)/703, where 514 is 
an epochal constant.  Then the elapsed calendar 
days, the ahargana, a, is a = t – T. 
 

Note that, as in the Burmese Calendar, there 
is no reference at all to any solar calendar in the 
calculations.  The ahargana is used for calculat-
ing the longitudes of the Sun, the Moon and the 
planets. 
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5  CONCLUDING REMARKS 
 

Superficially, the Thai and Burmese Calendars 
are similar.  However, when going into the de-
tails of their intercalation schemes, it is found 
that the methods are quite different.  The Thai 
Calendar has a precise synchronisation be-
tween the sidereal Sun, the solar calendar, the 
lunar calendar and the (mean) Moon.  The Burm-
ese Calendar accurately synchronises the tropi-
cal solar year, the lunar calendar and the Moon, 
but fails to accommodate the sidereal year.  The 
Burmese Calendar has several features in com-
mon with the Romakasiddhânta scheme, which 
makes it quite probable that the original Bur-
mese Calendar was influenced by the Romaka-
siddhânta and later imported the Hindu sidereal 
solar year.  
 

Note that the treatment of the Thai and Bur-
mese Calendars by Ôhashi (2006; 2009) does 
not take into account the fundamental differ-
ences between these two calendars, and it also 
lacks several of the important details of the inter-
calations.  Consequently, he draws conclusions 
that differ from those presented here. 
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