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Abstract

Lack of knowledge prevents us from exactly calculating the behavior of elec-
tromagnetic fields. We study two extremes in this respect: scattering against
randomly distributed particles (no idea of the position or orientation of the
scatterers), and random errors in antenna technology (small deviations from
what we think are the proper parameters). Random variables are used to
model our lack of knowledge, and far field expressions are studied. Using the
concept of characteristic functions from probability theory, results for arbi-
trary probability distributions are obtained. We explain an anomaly in the
forward scattering direction in single scattering theory, present simple for-
mulas for the directivity, side lobe level, and beam efficiency for a general
array antenna with random errors, and a simple formula for the scattering
coefficient from a general frequency selective structure with random errors.

1 Introduction

This paper has two themes, single scattering of electromagnetic waves against a
cluster of randomly distributed particles, and random errors in antenna technology.
These seemingly distant subjects are joined by essentially the same analysis, and
represent two extremes of our degree of knowledge. In the scattering case, it is
assumed we know very little about the true positions of the scatterers, since they
may be part of an aerosol where the thermal movement is constantly changing the
particle distribution. In the antenna case, the uncertainty is small and due to errors
in the manufacturing. In this case, it is desirable to estimate the resulting error in
the antenna parameters.

The canonical problem is to study expressions of the form |
∑N

n=1 e−ik·rnF n|2,
which represents the far field power pattern from a collection of sources with far field
amplitude F n and placed in rn, n = 1, . . . , N . If these quantities were exactly given,
we could also calculate the power pattern exactly. This is clearly not possible, and
we must instead investigate what can be said in spite of our incomplete knowledge.

The problem posed is not a new one. Previous results in scattering theory are
presented in many textbooks, among which we mention two primarily studying
random scattering [4, 16]. In antenna theory, the widely referenced papers [11, 12]
discuss error estimates similar to this paper, and related material is also found
in [2, 14] and [6, Sec. 2–9]. Related ideas are also found in the vast literature
treating scattering from rough surfaces, see [8] for a review.

Most of the above references make the common assumption that the randomness
has a Gaussian probability distribution. Due to the central limit theorem, see for
instance [5, pp. 177–181], this is an excellent approximation in cases where the ran-
domness can be considered as a sum of many independent contributions. However,
random errors appearing in manufacturing processes are often not Gaussian, which
demonstrates the need of treating a more general case. In this paper, we show that
it is possible to derive quite general results from an arbitrary probability distribu-
tion, by consistently using the concept of a characteristic function from probability
theory.
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There is an anomaly in the forward direction in scattering theory. An incident
plane wave is always scattered in phase in the forward direction, no matter how
randomly placed the scatterers are, implying the forward scattered field is propor-
tional to the number of scatterers, N . This means the scattered intensity in the
forward direction is proportional to N2. However, in all the other directions, the
scattered intensity is proportional only to N , since the contributions from each par-
ticle are mutually uncorrelated. We show that it is possible to find a continuous
transition between these seemingly contradictory behaviors in a very narrow angle
in the forward direction.

As for the error analysis in antenna technology, the main contribution of this
paper is a general and explicit expression for the radiation pattern from an array
antenna and a frequency selective structure, subject to errors in its constituents. It is
seen that the main effect of errors in position and phase of the antenna elements is a
decrease of the deterministic radiation pattern and uncorrelated contributions from
each element. The errors due to uncertainty in the amplitude of the elements give an
isotropic contribution to the radiation pattern. We also give simplified expressions
for the antenna parameters directivity, side lobe level, and beam efficiency.

This paper is organized as follows. In Section 2 we give a brief review of the
probability theory needed for this paper, and in Section 3 we define the far field
approximation of an electromagnetic field. Sections 4 and 5 deal with the scattering
and the antenna application, respectively. In Section 6 we give some numerical
examples of the theory presented in the preceding sections, and the conclusions are
given in Section 7.

2 Probabilistic background

A random variable is a common model of a quantity which we do not know the true
value of. A real valued random variable X is a mapping from a sample space Γ to
the real numbers, i.e., X : Γ → R. Each element γ ∈ Γ corresponds to a given
realization of the physical problem, i.e., when fixing γ the number X(γ) gives the
exact value of the quantity modeled by X in this particular realization.

The ensemble average of a function g of the random variable X, is defined as

〈g(X)〉 ≡
∫

Γ

g(X(γ)) dP (γ) =

∫

R

g(x)fX(x) dx. (2.1)

The first equality is the definition of the ensemble average as the mean value of the
random variable over the sample space Γ, where the probability measure dP satisfies∫

Γ
dP = 1. In the second equality we introduced the probability density fX ≥ 0 for

the random variable X. Not all random variables have a density, but the conclusions
in this paper are still valid even if the density can only be defined as a measure.
The important difference between the two expressions in (2.1) is that the first is an
integral defined on the sample space (which often has a very high dimension making
the integral difficult to calculate), and the second is an integral over the range of
the random variable, which is usually much easier to calculate.
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When the function g above is the exponential function, we have a particularly
interesting interpretation of the ensemble average. This is

〈
eikX

〉
=

∫

R

eikxfX(x) dx = f̂X(k), (2.2)

i.e., , the Fourier transform of the probability density of the random variable. The
function f̂X is known in probability theory as the characteristic function of the ran-
dom variable X [5, p. 100]. It is straight-forward to show the important properties
|f̂X(k)| ≤ 1, and f̂X(0) = 1.

We close this section by mentioning that two random variables X and Y are
independent if and only if the relation

〈g(X)h(Y )〉 = 〈g(X)〉 〈h(Y )〉 (2.3)

holds for all measurable functions g and h [5, p. 62]. If it holds for a certain choice
g0 and h0, the random variables g0(X) and h0(Y ) are said to be uncorrelated.

3 Generation of electromagnetic waves

Electromagnetic waves are generated by time-varying currents. In this paper, we
restrict ourselves to time harmonic electric currents; the results are easily extended
to include magnetic currents. If the currents are contained within a bounded volume
V , the electric field at large distances is given by the far field approximation,

E(r)far field =
eik·r

kr
F (k), (3.1)

where we assumed the time convention E(r, t) = E(r)e−iωt. The far field amplitude
F (k) is a function of the wave vector (propagation direction) k only, and is given
by

F (k) =
−iη

4π
k ×

(

k ×
∫

V

J(r′)e−ik·r′
dV (r′)

)

, (3.2)

where η is the wave impedance of an isotropic medium surrounding the sources.
From this expression we see that the far field is essentially the spatial Fourier trans-
form of the current density J . This current can be generated in many ways. In the
scattering context, the current is induced by an incident field, and in the antenna
context, it is given from a feeding network.

Often, the most easily measured quantity of an electromagnetic wave is the
average power or intensity, especially in optics. The average intensity is

〈I〉 =
〈|E|2〉

2η
=

ηk2

2(4πr)2

∫∫

〈J⊥(r1) · J∗
⊥(r2)〉 e−ik(r1−r2) dV (r1) dV (r2), (3.3)

where J⊥ = −k−2k × (k × J) is the part of J orthogonal to k. From this relation
it is readily seen that (after a suitable change of variables) the average intensity is
proportional to the Fourier transform of the function

∫
〈J⊥(x) · J∗

⊥(x + r)〉 dV (x),
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Scattering volume
k̂

i

k̂
s

θ

D

Figure 1: The bistatic scattering arrangement. The incident wave propagates in

the direction k̂
i
, and the scattering is studied in direction k̂

s
. The angle between k̂

i

and k̂
s
is θ, given by k̂

i · k̂s
= cos θ. The N individual scatterers are contained in a

scattering volume with approximate linear size D.

which is the integral of the autocorrelation function of the current density. The
importance of the correlation function in connection to dissipation in a medium has
been thoroughly discussed in statistical physics (the fluctuation-dissipation theo-
rem), see for instance [7, pp. 384–389] or [10, pp. 570–573]. In those cases, the
interest is on small fluctuations from equilibrium due to thermal agitation. This
paper is concerned with more large scale phenomena, in particular the case where
the current is generated in N mutually disjoint volumes.

4 Single scattering approximation

We study the common bistatic arrangement of a scattering experiment as in Figure 1.
In the single scattering approximation, we assume each scattering particle is subject
to the incident field only, neglecting the fields scattered from the other particles.
In this paper, we assume the scattering is weak enough not to cause a substantial
decrease in the amplitude of the incident wave. For a given particle placed in the

origin (r = 0), it is possible to calculate a scattering matrix S(k̂
s
, k̂

i
), which relates

the scattered far field to an incident plane wave Ei(r) = E0e
ikk̂

i·r through the
relation

Es(r) =
eikk̂

s·r

kr
F (k̂

s
) =

eikk̂
s·r

kr
S(k̂

s
, k̂

i
) · E0, (4.1)

where F is the far field amplitude of the scattered field, which depends on the

scattering direction k̂
s
, the propagation direction k̂

i
, and the polarisation E0 of the

incident wave. If the scatterer is not placed in the origin but rather in r′, where

r′ 	 r, this corresponds to an additional phase k(k̂
i−k̂

s
)·r′ = kq ·r′ in the scattered
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far field, where q = 0 corresponds to forward scattering,

Es(r) =
eikk̂

s·r

kr
eikq·r′

S(k̂
s
, k̂

i
) · E0. (4.2)

We now study the intensity I = |E|2/2η of the scattered field. The square of the
electric field scattered from N individual scatterers in the single scattering approx-
imation is

|Es(r)|2 =

∣
∣
∣
∣
∣

N∑

n=1

eikk̂
s·r

kr
eikq·rnSn(k̂

s
, k̂

i
) · E0

∣
∣
∣
∣
∣

2

=
1

(kr)2

∣
∣
∣
∣
∣

N∑

n=1

eikq·rnSn(k̂
s
, k̂

i
) · E0

∣
∣
∣
∣
∣

2

.

(4.3)
In practice, we cannot exactly know all the parameters involved in this calculation.
For instance, when studying scattering of laser light from a turbulent gas, it is
impossible to know the positions rn of all the individual scatterers. It is also possible
that we do not know the geometry or material parameters of the particles exactly,
and thus cannot determine the scattering matrices Sn. Apart from the statistical
nature of our knowledge, the very procedure of measuring often introduces averaging
in time and/or space.

Multiplying (4.3) with (kr)2 and taking the ensemble average implies

〈
(kr)2|Es(r)|2

〉
=

〈∣
∣
∣
∣
∣

N∑

n=1

eikq·rnSn(k̂
s
, k̂

i
) · E0

∣
∣
∣
∣
∣

2〉

=

〈
N∑

n=1

N∑

n′=1

eikq·(rn−rn′ )E∗
0 · S†

n′(k̂
s
, k̂

i
) · Sn(k̂

s
, k̂

i
) · E0

〉

= E∗
0 ·

[
N∑

n=1

〈
S†

n(k̂
s
, k̂

i
) · Sn(k̂

s
, k̂

i
)
〉

(4.4)

+
N∑

n=1

N∑

n′=1
n′ �=n

〈
eikq·rn

〉 〈
e−ikq·rn′

〉 〈
S†

n′(k̂
s
, k̂

i
)
〉
·
〈
Sn(k̂

s
, k̂

i
)
〉

]

· E0,

where we assumed all the random variables rn and Sn, n = 1, . . . , N , are mutu-
ally independent and separated the double sum in diagonal terms and cross terms.
The notation S†

n stands for the conjugated transposed matrix of Sn (the Hermitian
conjugate).

4.1 Identical scatterers

Assuming all the scatterers are assigned the same probability densities in position
and scattering matrix, we can further simplify (4.4), since the various expectation
values are independent of n and n′. In the following we adopt the convention to
use the index 0 for a typical representative X0 of a sequence of random variables
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Xn, n = 1, . . . , N , where all the Xn have the same probability distribution. We
introduce the notation

〈
S2

0(k̂
s
, k̂

i
)
〉

=
〈
S†

n(k̂
s
, k̂

i
) · Sn(k̂

s
, k̂

i
)
〉

,
〈
S0(k̂

s
, k̂

i
)
〉2

=
〈
S†

n′(k̂
s
, k̂

i
)
〉
·
〈
Sn(k̂

s
, k̂

i
)
〉

, (4.5)

f̂r0(kq) =
〈
eikq·rn

〉
,

which is intuitive but slightly violates the use of an exponent for matrices. This
allows us to write (4.4) as

〈
(kr)2|Es(r)|2

〉
= E∗

0 ·
[

N
〈
S2

0(k̂
s
, k̂

i
)
〉

+ N(N − 1)|f̂r0(kq)|2
〈
S0(k̂

s
, k̂

i
)
〉2

]

· E0.

(4.6)
Observe that even if the particles are identical, their scattering matrices may not be
identical, due to different orientations of non-spherical particles. In most cases, it
is therefore expected that 〈S2

0〉 
= 〈S0〉2. Both matrices are hermitian and positive
semi-definite by construction.

The second term, proportional to N(N − 1), is often neglected. It is now clear
that this is justified only when |f̂r0(kq)|2 	 N . But since f̂r0(kq) is a characteristic
function of a random variable, this can only be true away from the forward scattering

direction, q = k̂
i − k̂

s
= 0, since f̂r0(0) = 1. How fast the factor |f̂r0(kq)|2 tends

to zero depends on the statistics for the positions of the scatterers, but a rough
estimate is given by the “uncertainty relation” as follows.

For a given Fourier transform pair (f, f̂) we define the half-width (or standard
deviation) in space and reciprocal space Wr and Wk, respectively, as

W 2
r =

∫
|r|2|f(r)|2 dV (r)
∫
|f(r)|2 dV (r)

, W 2
k =

∫
|k|2|f̂(k)|2 dV (k)
∫
|f̂(k)|2 dV (k)

, (4.7)

with the result that WrWk ≥ 1/2, see for instance [15, p. 314]. Equality is obtained
for Gaussian distributions. It is clear that k|q| must be larger than at least Wk >
1/(2Wr) ≈ 1/D, where D is the diameter of the scattering volume, before the term

proportional to N(N − 1) can be neglected. With |q| = |k̂i − k̂
s| =

√
2(1 − cos θ),

where θ is the angle between k̂
i
and k̂

s
, a small angle approximation implies |q| ≈ θ.

The term proportional to N(N − 1) gives a significant contribution when

θ <
1

kD
=

λ

2πD
, (4.8)

which is a narrow angle if the scattering volume is several wavelengths. A more
careful estimate for a particular case is given in Section 6.1.

4.2 The optical theorem

We close this section on single scattering by discussing a possible misinterpretation
of the optical theorem. The optical theorem states that the total (or extinction)
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cross section is given by the scattering amplitude in the forward direction,

σt =
Pa + Ps

|Ei|2/2η
=

4π

k2
Im

{
E∗

0 · S(k̂
i
, k̂

i
) · E0

|E0|2

}

, (4.9)

where Pa is the total absorbed power, and Ps = r2
∫
|Es|2/2η dΩ(k̂

s
) is the total

scattered power. This is an exact relation, which holds for every realization. This
means it also holds when taking the mean value on both sides. Using (4.6) to
calculate 〈Ps〉 and the fact that the absorbed power 〈Pa〉 ≥ 0, the optical theorem
leads to an interesting relationship for the scattering matrix,

1

4π

∫ [

N
〈
S2

0(k̂
s
, k̂

i
)
〉

+ N(N − 1)|f̂r0(kq)|2
〈
S0(k̂

s
, k̂

i
)
〉2

]

dΩ(k̂
s
)

≤ N Im
〈
S0(k̂

i
, k̂

i
)
〉

(4.10)

with equality for lossless scatterers. The inequality is taken in the sense that it
applies for all (hermitian) quadratic forms over the matrices. It seems this inequality
can be broken simply by letting N → ∞, which would make the second term in the
integral arbitrarily large. However, a dense packing of scatterers also implies multiple
scattering, which is neglected in the present formulation. In order to maintain the
conditions necessary for single scattering, the scattering volume must be made large
as N increases. This means the support of the function f̂r0(kq), which is essentially
the Fourier transform of the scattering volume, shrinks to a small neighborhood of
the forward direction (q = 0), and the integral remains bounded. This demonstrates
the need for caution when applying the result (4.6).

5 Random errors in antenna technology

In this section we study random errors in a deterministic structure. We assume all
quantities associated with the deterministic case can be computed, although this
task may indeed be a challenge of its own.

5.1 Array antennas

An array antenna is composed of N more or less identical antenna elements, dis-
tributed in a given volume. Each element is driven by a current which may have
a different phase for different elements. An illustration is given in Figure 2. The
mean value of the far field intensity in direction k is then

〈Ifar field〉 =
〈|Efar field|2〉

2η
=

1

2η(kr)2

〈∣
∣
∣
∣
∣

N∑

n=1

e−ik·rn−iφnF n(k)

∣
∣
∣
∣
∣

2〉

, (5.1)

where F n(k) is the element far field amplitude for element n. The difference be-
tween this expression and the scattered intensities studied in Section 4, is that the
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r1

r2 r3
r4

r5 r6 r7

Figure 2: An example of an array antenna, consisting of 7 identical elements placed
in rn, n = 1, . . . , 7.

amplitudes F n are not generated by an incident field, but are calculated from a set
of given current densities Jn as

F n(k) =
−iη

4π
k ×

(

k ×
∫

Jn(r)e−ik·r dV (r)

)

, (5.2)

where the domains of Jn, n = 1, . . . , N , are mutually disjoint. In this section we
treat the random variables as partly known, that is

rn = 〈rn〉 + ∆rn

φn = 〈φn〉 + ∆φn (5.3)

F n = 〈F n〉 + ∆F n,

where ∆rn, ∆φn and ∆F n have zero mean and small variances, and are assumed
to have probability densities independent of n. Typical representatives of the ran-
dom variables (∆rn, ∆φn, ∆F n), n = 1, . . . , N , are denoted (∆r0, ∆φ0, ∆F 0). This
arrangement corresponds to us having some knowledge of the design of the antenna
(the mean values), and assumes the errors are equally probable in all elements.
Expanding the mean value in diagonal and cross terms as in Section 4, we find

〈∣
∣
∣
∣
∣

N∑

n=1

e−ik·rn−iφnF n(k)

∣
∣
∣
∣
∣

2〉

=
N∑

n=1

〈
|F n(k)|2

〉

+
N∑

n=1

N∑

n′=1
n′ �=n

〈
e−ik·rn−iφn

〉 〈
eik·rn′+iφn′

〉
〈F n(k)〉 · 〈F ∗

n′(k)〉 . (5.4)
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Making use of the decomposition (5.3) and
〈
eikX

〉
= f̂X(k) for a random variable

X, this becomes

〈∣
∣
∣
∣
∣

N∑

n=1

e−ik·rn−iφnF n(k)

∣
∣
∣
∣
∣

2〉

= N
〈
|∆F 0(k)|2

〉
+

N∑

n=1

| 〈F n(k)〉 |2

+ |f̂∆r0(k)|2|f̂∆φ0(1)|2
N∑

n=1

N∑

n′=1
n′ �=n

e−ik·(〈rn〉−〈rn′ 〉)−i(〈φn〉−〈φn′ 〉) 〈F n(k)〉 · 〈F ∗
n′(k)〉

= N
〈
|∆F 0(k)|2

〉
+ (1 − |f̂(k)|2)

N∑

n=1

| 〈F n(k)〉 |2

+ |f̂(k)|2
∣
∣
∣
∣
∣

N∑

n=1

e−ik·〈rn〉−i〈φn〉 〈F n(k)〉
∣
∣
∣
∣
∣

2

, (5.5)

where f̂(k) = f̂∆r0(k)f̂∆φ0(1). This expression has the interesting feature that the
last two terms only contain quantities which are known from the antenna designer’s
point of view, i.e., the deterministic far field patterns, and locations and phases of
the antenna elements. The last term is exactly the deterministic far field pattern,
multiplied by the factor |f̂(k)|2. Since f̂ is a characteristic function it satisfies
|f̂ | ≤ 1, and we see that an uncertainty in position rn, phase φn, and amplitude
F n of the different elements results in a decreased deterministic contribution (last
term), and the first two terms correspond to incoherent, or diffuse, contributions.

The random variable ∆F n is the Fourier transform of the correlation function
of the current fluctuations in element n, as discussed at the end of Section 3. If the
fluctuations are due to thermal agitation only, the term N 〈|∆F 0(k)|2〉 represents
the black-body radiation and is proportional to the physical temperature of the
antenna, see for instance [16, p. 147].

In Appendix A, the antenna parameters directivity D, side lobe level SLL, and
beam efficiency BE, are derived as functions of the probability variables. When
the errors are small and normally distributed, the following simplified formulas are
obtained:

D ≤ Dd −
[

Nδ2
F

k2Ud0

(Dd − 1) + (k2δ2
r + δ2

φ)
N∑

n=1

(Dd − D
(n)
d )

U
(n)
d0

Ud0

]

(5.6)

SLL ≤ SLLd + (1 − SLLd)

[
Nδ2

F

k2Udmax

+ (k2δ2
r + δ2

φ)
N∑

n=1

U
(n)
dmax

Udmax

]

(5.7)

BE ≤ BEd −
[

Nδ2
F

k2Ud0

(

BEd −
|Ω0|
4π

)

+ (k2δ2
r + δ2

φ)
N∑

n=1

(

BEd − D
(n)
d

|Ω0|
4π

)
U

(n)
d0

Ud0

]

,

(5.8)

where the index (d) indicates the deterministic values (or design values), and δF , δr

and δφ are the standard deviations of ∆F 0, r0, and φ0, respectively. The radiation
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Incident wave Reflected wave

Transmitted wave

Figure 3: Example of a frequency selective structure (FSS). The periodicity of the
metal surface creates a spatial filter which only transmits waves with certain wave
numbers.

intensity U is defined as 〈r2|Efar field|2〉 /2η, and the index 0 indicates the mean value
over the unit sphere, i.e., U0 = (4π)−1

∫
U dΩ. The index (n) denotes a quantity

associated with element n, and |Ω0| is the solid angle within which the main lobe is
contained. Note the great resemblance between the different formulas, which is due
to the fact that they are all derived from the same radiation pattern (5.5).

5.2 Frequency selective structures

The results obtained for array antennas can also be applied to frequency selective
structures (FSS), used in radome applications. A frequency selective structure is
a periodic pattern of scatterers, often consisting of metal patches or apertures in a
metallic sheet as in Figure 3. Compared to the situation in Section 4, the scatterers
are close and we must take multiple scattering in consideration. In this section, we
study the effects of random displacements of the scatterers.

When the structure is illuminated by a plane incident wave Ei = E0e
ikk̂

i·r,
currents Jn are induced in each unit cell. With cell n positioned at rn, each current

will inherit the phase φn = kk̂
i · rn as in the single scattering case in Section 4. The

scattered far field is then written

Es(r) =
eikk̂

s·r

kr

N∑

n=1

eikq·rnF n(kk̂
s
), (5.9)

where q = k̂
i − k̂

s
, and the far field amplitude F n is the far field amplitude of cell

n calculated as if the cell were in the origin. We further make the approximation
that a translation of the patch or aperture in cell n by ∆rn only changes its origin
rn, and not the far field amplitude F n. The multiple scattering is included in
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the deterministic far field amplitudes F n = 〈F n〉, which are calculated from the
unperturbed problem. The only changes necessary in (5.5) to accommodate the
FSS situation are then f̂(k) → f̂(kq) and |∆F n|2 → 0:

〈∣
∣
∣
∣
∣

N∑

n=1

eikq·rnF n(kk̂
s
)

∣
∣
∣
∣
∣

2〉

=

(
1 − |f̂(kq)|2

) N∑

n=1

∣
∣
∣
〈
F n(kk̂

s
)
〉∣
∣
∣
2

+ |f̂(kq)|2
∣
∣
∣
∣
∣

N∑

n=1

eikq·〈rn〉
〈
F n(kk̂

s
)
〉
∣
∣
∣
∣
∣

2

. (5.10)

The last term is the deterministic scattering from the FSS, multiplied by a fac-
tor |f̂(kq)|2 ≤ 1. The first term is the diffuse contribution, originating from the
non-periodicity of the FSS. This term is responsible for the radiation in directions
other than the grating lobes, and consists of the non-interacting radiation from the
different cells.

A real FSS is often curved to conform with a given radome surface, but it is
common to study the model problem of an infinite, plane, periodic, structure. All the
far field amplitudes 〈F n〉 are then equal, denoted 〈F 0〉, and we sum over infinitely
many amplitudes. This calls for a normalization, and we normalize (5.10) with the
power incident on the structure. If the FSS consists of N unit cells with unit normal

n̂ and cell area A, the incident power is Pi = |E0|2/2η · NA|k̂i · n̂|. The scattered
power per unit solid angle is Us = 〈r2|Es|2〉 /2η, and the power scattering coefficient
per unit solid angle is computed from (5.10) as

Us

Pi

= lim
N→∞

〈r2|Es|2〉
|E0|2NA|k̂i · n̂|

=



1 − |f̂(kq⊥)|2 + |f̂(kq⊥)|2 lim
N→∞

1

N

∣
∣
∣
∣
∣

N∑

n=1

eikq⊥·〈rn〉

∣
∣
∣
∣
∣

2




∣
∣
∣
〈
F 0(kk̂

s
)
〉∣
∣
∣
2

|E0|2k2A|k̂i · n̂|
, (5.11)

Observe that we have taken explicit consideration to the fact that the error in
position ∆r only occurs in the plane of the FSS, using the index ⊥ to indicate
vectors in that plane (orthogonal to the surface normal n̂).

Using the property limN→∞ N−1 sin2(Nt/2)/ sin2(t/2) = 2πδ(t) of Fejér kernels,
see for instance [1, p. 88], it is straightforward to show

lim
N→∞

1

N

∣
∣
∣
∣
∣

N∑

n=1

eikq⊥·〈rn〉

∣
∣
∣
∣
∣

2

=
(2π)2

A

∑

m,n

δ(2)(kq⊥ + mA + nB), (5.12)

where δ(2) is the two-dimensional Dirac delta distribution, and A and B are basis
vectors in the reciprocal lattice. With a and b being basis vectors in physical space,
the reciprocal basis is defined as A = 2πa/|a|2 and B = 2πb/|b|2. The expression
in (5.12) is an angular distribution with support in the grating directions only,
i.e., the deterministic array factor for an infinite periodic structure. The frequency
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selective surface is often designed so that only the delta distribution associated with
m = n = 0 comes into play, corresponding to the specular directions given by

q⊥ = 0, that is, k̂
s

⊥ = k̂
i

⊥.
We note that in the specular directions, the factor |f̂(kq⊥)|2 is exactly 1, corre-

sponding to no attenuation of the deterministic contribution to the intensity. But
since there is a positive contribution from the diffuse intensity, energy conserva-
tion is violated. This is due to the fact that the current is calculated through a
perturbation analysis which does not take sufficient care of energy conservation.
The expressions given in this section should be used to estimate the intensity in
regions where the deterministic contribution is very small. For instance, when the
deterministic calculations imply total transmission and zero reflection, the diffuse
contribution shows there is still a small reflected field.

We conclude this section by giving the small error limit of the power scatter-
ing coefficient per unit solid angle. Assuming the errors ∆rn are symmetrically
distributed in the FSS plane with zero mean and variance δr, we have f̂(kq⊥) =
1−|kδrq⊥|2/2+O((kδr)

4), independent of the distribution [13, p. 278]. This implies
|f̂(kq⊥)|2 = 1 − |kδrq⊥|2 + O((kδr)

4), and we have

Us

Pi

=

[

|kδrq⊥|2 + (1 − |kδrq⊥|2)
(2π)2

A

∑

m,n

δ(2)(kq⊥ + mA + nB)

] ∣
∣
∣
〈
F 0(kk̂

s
)
〉∣
∣
∣
2

|E0|2k2A|k̂i · n̂|
.

(5.13)
Since δ(2)(kq⊥) = k−2δ(2)(q⊥), it is seen that upon integration over all scattering
directions, the quotient between diffuse power and deterministic power grows as k4,
unless the angular dependence of the far field amplitude F 0(kk̂

s
) varies too much.

6 Numerical examples

In this section we give a few numerical examples of the calculations presented in the
previous sections.

6.1 Uniform distribution of identical scatterers in a cube

Take N identical, isotropic scatterers which are uniformly distributed within a cube
of side 2R, i.e., f(r) = 1/(2R)3 for max(|x|, |y|, |z|) < R and zero elsewhere. The
characteristic function is then

f̂r0(k) =

∫

R3

eik·rfr0(r) dV (r)

=
1

(2R)3

(∫ R

−R

eikxx dx

) (∫ R

−R

eikyy dx

) (∫ R

−R

eikzz dx

)

=
sin kxR

kxR

sin kyR

kyR

sin kzR

kzR
, (6.1)



13

  1.2

  2.4

  3.6

  4.8

  6

30

210

60

240

90

270

120

300

150

330

180 0
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∣
∣
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n=1 eikq·rn

∣
∣
∣
2

in the x-y plane, where q = k̂
i − k̂

s
and

k̂
i
= x̂. The scatterers are randomly distributed with uniform probability within

a cube of side 2R, and the parameters are N = 1000 and kR = 100, implying
θcrit = N1/2/kR = 0.056 = 18◦. The smooth line is the ensemble average of all
realizations, i.e., N + N(N − 1)|f̂r0(kq)|2.

and we have

〈∣
∣
∣
∣
∣

N∑

n=1

eikq·rn

∣
∣
∣
∣
∣

2〉

= N + N(N − 1)

(
sin kqxR

kqxR

)2 (
sin kqyR

kqyR

)2 (
sin kqzR

kqzR

)2

. (6.2)

From (4.8) we expect the second term to give a substantial contribution when θ <
1/(k2R). However, using the above expression we can make a better estimate. Near

the forward direction k̂
i
= x̂ we have q ≈ θŷ, where |θ| 	 1, which means only

one of the sin kqR/kqR factors above contribute to the damping of the second term,
implying N/(kθR)2 	 1. In this case, we would expect a substantial contribution
from the second term when |θ| < N1/2/kR = θcrit.

In Figure 4 is found a simulation of a given realization of this problem, along
with a curve corresponding to the ensemble average. With the parameters N = 1000
and kR = 100, the critical angle is θcrit = 18◦, and it is seen that there are indeed
some lobes close to the forward direction, approximately within this angle.
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6.2 Random errors in a linear antenna array

A simple example of an array antenna is a linear array of identical dipole elements
uniformly distributed along the z-axis, i.e.,

〈F n(k)〉 = F0 sin θθ̂

〈rn〉 = ndẑ (6.3)

〈φn〉 = nβ,

where θ is the angle between the z-axis and k. Assuming there is no error in
amplitude, i.e., ∆F n = 0, the expression (5.5) can then be explicitly calculated:

〈∣
∣
∣
∣
∣

N∑

n=1

e−ik·rn−iφnF n(k)

∣
∣
∣
∣
∣

2〉

= (1 − |f̂(k)|2)NF 2
0 sin2 θ

+ |f̂(k)|2F 2
0 sin2 θ

[
sin(N(kd cos θ + β)/2)

sin((kd cos θ + β)/2)

]2

, (6.4)

see for instance [3, p. 259]. We assume a spherically symmetric Gaussian probability
distribution of the positions and neglect the variations in phase, to obtain |f̂(k)|2 =
e−k2δ2

, where δ is the standard deviation of position. A plot of the deterministic and
averaged radiation pattern for N = 10, d = λ/2, β = 0, and kδ = 2π · 0.05 is found
in Figure 5. It is seen that the deep nulls in the deterministic radiation pattern are
lifted mainly due to shifts of the nulls in different realizations.

We calculate the antenna parameters directivity, side lobe level, and beam ef-
ficiency, given in Appendix A, for position error δr only, and plot the results in
Figure 6. In this figure is also found a comparison on how good the simplified ex-
pressions (5.6), (5.7), and (5.8) are. It is seen that up to kδr = 2π · 0.1 the formulas
are accurate within 1 dB.

6.3 Frequency selective surface

A frequency selective surface can be made using a pattern of hexagonal rings as
indicated in Figure 6.3. Poulsen presents the full geometry in [9], and has kindly
supplied the data necessary to compute the deterministic far field amplitudes for this
example. In the absence of grating lobes, equation (5.13) for the power scattering
coefficient per unit solid angle becomes

Us

Pi

=

[

|kδrq⊥|2 +
(2π)2

A
δ(2)(kq⊥)

]
∣
∣
∣
〈
F 0(kk̂

s
)
〉∣
∣
∣
2

|E0|2k2A|k̂i · n̂|
. (6.5)

Integrating this expression over the top half sphere Ω+, we obtain the fraction of
power which is reflected, Pr/Pi =

∫
Ω+

Us(k̂
s
) dΩ(k̂

s
)/Pi. This is plotted in Figure 6.3,

where we also show the part of the reflected power corresponding to the diffuse
intensity.
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Figure 5: The radiation pattern from a linear array of 10 identical dipoles, uni-
formly spaced by λ/2, and position error kδ = 2π · 0.05. The dotted line is the
deterministic radiation pattern, the dashed line is the pattern of a given realization,
and the solid line is the ensemble averaged radiation pattern.

From Figure 6.3 it is seen that the diffuse part of the reflected power is very small
up to the resonance frequency at 10 GHz, even though the average error in position
is about 10 % of the cell size. At higher frequencies the diffuse power is more or less
constant at −20 dB. The anomalies seen for frequencies higher than 17 GHz are due
to the need of a more accurate calculation of the far field amplitudes F 0 at these
frequencies, only a few basis functions are used here.

7 Discussion and conclusions

This paper treats essentially two applications: single scattering against randomly
distributed particles, and random errors in antenna technology. The common ele-

ment is the calculation of expressions of the kind
〈
|
∑N

n=1 eik·rnF n|2
〉
, where rn and

F n are random variables. We have shown that it is possible to explicitly calculate
these expressions, in terms of the characteristic function of the probability density
and the deterministic part of the random variables.

The closed form of our results allows an explicit estimate of when the “N(N−1)”-
term in single scattering theory cannot be neglected. The extra information which
can be extracted if this contribution can be measured, is mainly concerned with
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Figure 6: Left column: directivity, side lobe level, and beam efficiency as functions
of position error only (dB units). The solid lines are for the exact calculation of the
averaged parameters, the dotted are the design values, and the dashed are computed
for a single realization for each position error. Right column: the ratio between sim-
plified formulas (5.6), (5.7), and (5.8) and the exact calculation of the parameters
(dB units). The position error is in fractions of a wavelength. Observe that the av-
eraged parameters of the array antenna are essentially those of an isotropic antenna
at position error δr = λ/2.

the shape of the scattering volume, since the lobes in the scattered power pattern
centered round the forward direction is essentially the Fourier transform of the
scattering volume. However, since the interesting contribution is near the forward
direction, it is technically difficult to distinguish the scattered field from the incident
field.

Random errors in antenna technology are treated in great generality in this
paper, giving explicit estimates on the expected radiation pattern as well as several
important antenna parameters when the antenna is subject to perturbations. The
estimates are given in terms of the deterministic design values, and the errors in
phase, amplitude and position of the antenna elements. We also give explicit error
estimates on the behavior of a quite general frequency selective structure.

From the results in Section 6, we see that the simplified, and computationally
effective, formulas (5.6), (5.7), and (5.8) give good result for errors up to roughly
a tenth of a wavelength. It should be noted that even though the expressions were
derived using a Gaussian probability distribution, they are actually still valid for a
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Figure 7: Simulated reflection from a frequency selective surface with random
errors. The angle of incidence is given by θ = 30◦ and φ = 0◦, and the geometry
of the unit cell is indicated. The solid and dashed lines correspond to TE and TM
polarizations, respectively. The lattice has side 12 mm, and the standard deviation
of position is δr = 1 mm. The upper diagram corresponds to the reflected power
from an unperturbed FSS, i.e., the second term inside the brackets in (6.5). The
lower diagram corresponds to the diffuse part of the reflected power from a perturbed
FSS, i.e., the first term inside the brackets in (6.5).
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general probability distribution which allows a truncation of the Taylor expansion
of its characteristic function. We have chosen to exclude this technical derivation
from this paper.

The results given in this paper should be of interest to a wide variety of scientists
and engineers. In particular the error estimates for antenna technology are impor-
tant when considering the amount of overdesign necessary to obtain specific design
goals.
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Appendix A Calculation of antenna parameters

This appendix presents the somewhat technical derivations of three antenna parame-
ters, when the array antenna is subject to errors in position, phase and amplitude of
its elements. The aim is to find expressions for the perturbed antenna parameters
as functions of the unperturbed parameters, i.e., the deterministically calculated
parameters. We give expressions which have a minimum of approximations, as well
as simplified expressions which are easier to handle.

A.1 Directivity

The (maximum) directivity of an antenna is defined as [3, p. 39]

D = Dmax =
Umax

U0

=
maxk U

(4π)−1
∫

U dΩ(k)
, (A.1)

where U = 〈r2|E|2〉 /2η is the radiation intensity (radiated power per unit solid
angle), and U0 is the radiation intensity which would have been produced if the
source had been isotropic. Recall that 〈|E|2〉 and thereby U are proportional to the
previously derived factor

〈∣
∣
∣
∣
∣

N∑

n=1

e−ik·rn−iφnF n(k)

∣
∣
∣
∣
∣

2〉

= N
〈
|∆F 0(k)|2

〉
+ (1 − |f̂(k)|2)

N∑

n=1

| 〈F n(k)〉 |2

+ |f̂(k)|2
∣
∣
∣
∣
∣

N∑

n=1

e−ik·〈rn〉−i〈φn〉 〈F n(k)〉
∣
∣
∣
∣
∣

2

. (A.2)
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Denote the directivity and radiation intensity from element n by D
(n)
d and U

(n)
d ,

respectively, where the index (d) stands for deterministic or design value. The
directivity and radiation intensity of the entire array antenna when there are no
perturbations (deterministic case) is denoted by Dd and Ud, respectively. Assume
the errors are spherically symmetric, i.e., ∆F 0 and f̂ depend only on |k| = k. The
maximum radiation intensity Umax = DU0 is then

Umax ≤ k−2N
〈
|∆F 0(k)|2

〉
+ (1 − |f̂(k)|2)

N∑

n=1

D
(n)
d U

(n)
d0 + |f̂(k)|2DdUd0 (A.3)

with equality for identical elements. The integration over solid angle gives

U0 =
1

4π

∫

U dΩ = k−2N
〈
|∆F 0(k)|2

〉
+ (1 − |f̂(k)|2)

N∑

n=1

U
(n)
d0 + |f̂(k)|2Ud0, (A.4)

and the directivity is

D ≤ k−2N 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2)
∑N

n=1 D
(n)
d U

(n)
d0 + |f̂(k)|2DdUd0

k−2N 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2)
∑N

n=1 U
(n)
d0 + |f̂(k)|2Ud0

= Dd −
k−2N(Dd − 1) 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2)

∑N
n=1(Dd − D

(n)
d )U

(n)
d0

k−2N 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2)
∑N

n=1 U
(n)
d0 + |f̂(k)|2Ud0

. (A.5)

Since the directivity Dd ≥ 1 and we can assume Dd ≥ D
(n)
d (usually an array antenna

is constructed with the specific purpose to increase the directivity), the fraction is
positive and it is seen that the directivity in general decreases when the antenna has
random errors.

A simplified expression for the directivity can be found when the errors are small.
This corresponds to |f̂(k)|2 → 1, and the denominator in (A.5) is approximated by
Ud0. We assume the location and phase errors are normally distributed, implying
|f̂(k)|2 = e−k2δ2

r−δ2
φ , where δr and δφ are the standard deviations of location and

phase, respectively. For small deviations, this means 1 − |f̂(k)|2 ≈ k2δ2
r + δ2

φ. The
variance of the amplitude error is denoted 〈|∆F 0|2〉 = δ2

F , and we have

D ≤ Dd −
[

Nδ2
F

k2Ud0

(Dd − 1) + (k2δ2
r + δ2

φ)
N∑

n=1

(Dd − D
(n)
d )

U
(n)
d0

Ud0

]

. (A.6)

A.2 Side lobe level

The side lobe level is calculated as the ratio of the maximum radiation intensity
outside the main lobe to the maximum radiation intensity. In this and the following
section, we assume the main lobe is contained in the solid angle Ω0, and that this
angle does not change appreciably with errors present. The side lobe level is then
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given by

SLL =
maxk�∈Ω0 U

Umax

=
k−2N 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2) maxk�∈Ω0

∑N
n=1 U

(n)
d + |f̂(k)|2SLLdUdmax

k−2N 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2) maxk

∑N
n=1 U

(n)
d + |f̂(k)|2Udmax

.

(A.7)

The same approximations leading to (A.6), i.e., approximating the denominator

with Udmax and 1− |f̂(k)|2 ≈ k2δ2
r + δ2

φ and maxk�∈Ω0

∑N
n=1 U

(n)
d ≤

∑N
n=1 U

(n)
dmax, now

give

SLL ≤ SLLd + (1 − SLLd)

[
Nδ2

F

k2Udmax

+ (k2δ2
r + δ2

φ)
N∑

n=1

U
(n)
dmax

Udmax

]

, (A.8)

where Udmax = DdUd0 as in the previous section.

A.3 Beam efficiency

The beam efficiency of an antenna with a main lobe is the ratio of the power within
the lobe to the total power emitted [3, p. 63], i.e., if the main lobe is contained in
the solid angle Ω0 we have

BE =

∫
Ω0

U dΩ

4πU0

, (A.9)

where U0 = (4π)−1
∫

4π
U dΩ is defined in Section A.1. Using the approximation

∫
Ω0

U
(n)
d dΩ ≤ |Ω0|U (n)

dmax = |Ω0|D(n)
d U

(n)
d0 , the same procedure as in Section A.1

implies

BE ≤ 1

4π

k−2N 〈|∆F 0(k)|2〉 |Ω0| + (1 − |f̂(k)|2)
∑N

n=1 |Ω0|D(n)
d U

(n)
d0 + |f̂(k)|2BEd4πUd0

k−2N 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2)
∑N

n=1 U
(n)
d0 + |f̂(k)|2Ud0

= BEd−
k−2N(BEd − |Ω0|/4π) 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2)

∑N
n=1(BEd − D

(n)
d |Ω0|/4π)U

(n)
d0

k−2N 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2)
∑N

n=1 U
(n)
d0 + |f̂(k)|2Ud0

.

(A.10)

Once again applying the approximation of small, normally distributed errors as in
the derivation of (A.6), we find

BE ≤ BEd −
[

Nδ2
F

k2Ud0

(

BEd −
|Ω0|
4π

)

+ (k2δ2
r + δ2

φ)
N∑

n=1

(

BEd − D
(n)
d

|Ω0|
4π

)
U

(n)
d0

Ud0

]

.

(A.11)
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