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THE SYZYGY VOLVELLE IN ASTRONOMICUM CAESAREUM 
 

Lars Gislén 
Lund University, Dala 7163, 24297 Hörby, Sweden. 

E-mail: LarsG@vasterstad.se 
 

Abstract:  The theory and parameters behind a volvelle in Peter Apianus’ Astronomicum Caesareum are investigated.  

It is found that he used the full Ptolemaic model of the Moon and also that he improved the layout of the volvelle by a 
clever trick. 
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1  INTRODUCTION 
 

In two earlier papers (Gislén, 2016; 2017) I stud-
ied Petrus Apianus’ volvelles for eclipse duration 
and for planetary latitudes from his magnificent 
Astronomicum Caesareum (1540).  Here I will 
study his volvelle for finding the true time of a 
syzygy (Figure 1).  As it turns out it is possible to 
extract several pieces of interesting information 
from the volvelle. 
 

2  THE VOLVELLE 
 

In order to use the volvelle you need two input 
quantities, the solar anomaly (argumentum sol-
is), S, and the lunar anomaly (argumentum lun-
ae), M. 
 

The volvelle has a circular rim with two gradu-
ations from 0° to 360°, one counter-clockwise 
and one clockwise, the first one with Arabic num-
bers and is  to  be  used  for  lunar  anomalies  less 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: The volvelle. 
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Figure 2: The solar model. 
 

than 180°, the other one with Latin Numbers for 
anomalies larger than 180°.  At the top of the 
volvelle there is a wedge-shaped area for setting 
the lunar anomaly.  There is a thread coming 
from the centre of the volvelle with a small bead 
that can slide along the thread.  You set the bead 
on the thread using the lunar anomaly scale, then 
align the thread against the solar anomaly on the 
rim and read off the correction in hours to the 
mean syzygy from the grid of isochronal lines 
below the bead.  The reddish areas of the volvelle 
mean that the mean syzygy comes before the 
true one if the lunar anomaly is less than 180°, 
i.e. you have to add the correction to the mean 
syzygy time, for the greenish areas you have to 
subtract it.  If the lunar anomaly is larger than 
180° the colours have the opposite meaning. 
 

3  THEORY 
 

In the discussion below I use ‘velocity’ for ‘change 
in angle per time’.  The unit of velocity will be arc 
minutes per hour. 
 

In the Ptolemaic models (Neugebauer, 1975; 
Pedersen, 1974) used by Apianus, the true long-
itudes of the Sun and the Moon are given by 
 

 = mean –  ()            (1) 
 

 
Table 1: Solar Velocity. 

 

Anomaly (°) Solar Velocity (arcmins/hour) 

0 2.37 

10 2.38 

20 2.38 

30 2.38 

40 2.39 

50 2.40 

60 2.42 

70 2.43 

80 2.44 

90 2.46 

100 2.48 

110 2.49 

120 2.51 

130 2.52 

140 2.54 

150 2.55 

160 2.55 

170 2.56 

180 2.56 

where  is the true longitude, mean is the mean 

longitude,  () the equation of centre, and  the 
anomaly.  At a mean syzygy, the mean longitudes 
are equal and the difference in longitude between 
the Moon and the Sun is then 
 

Δ = – M(M) + S(S)           (2) 
 

where the indices M and S stand for Moon and 
Sun respectively. 
 

If we divide this longitude difference by the 
difference in longitudinal velocities of the Moon 
and the Sun, the elongation velocity, we will get 
the time difference, ΔT, between the true and 
mean syzygy.  Thus 
 

ΔT = Δ / (M– S) = (S(S ) – M(M)) / (M(M) – 

S(S)             (3) 
 

The equations of centre and the velocities are 
given as tables in the Alfonsine Tables.  How-
ever, it turns out that if one uses the velocity 
tables there, it is not possible to reproduce the 
volvelle.  Below I will prove that Apianus used a 
more complicated model for the velocity of the 
Moon than that used for these tables. 
 

3.1  The Solar Model 
 

For the Sun (Figure 2) the equation of centre is 
given by 
 

() = arctan(e sin  / (R + e cos ))         (4) 
 

This function is given as a table, Equatio solis, 

in the Alfonsine tables.   is the anomaly of the 
Sun, R = 60 and the Ptolemaic value of e is 2.5, 
but a least square fit to the data in that table gives 
e = 2.268. 
 

We get longitudinal velocity of the Sun by 
taking the time derivative of (1): 
 

() = mean–
e( R cos  + e)

R
 2

+ 2Re cos  + e 2
          (5) 

 

where  is the mean velocity in anomaly.  For the 
Sun, this velocity is the same as the mean solar 
velocity in longitude vmean = 2.464′/hour.  If we 
insert numbers in (5) we generate Table 1. 
 

This table agrees within rounding errors with 
the corresponding table in the Alfonsine Tables. 
 

3.2   The Lunar Model 
 

The Moon requires a considerably more compli-
cated model (Figure 3), Ptolemy’s final lunar 
model. 
 

O is the observer, M the Moon, C the mean 
centre attached to F by CF with fixed length R – 
s.  A is the mean apogee, A’ the true apogee.  

The angle  is the elongation between the mean 
Moon and the mean Sun, the angle FOC being 

2.  The distance to the Moon is varied by a crank 
mechanism with F moving around the centre O 
with twice the elongation velocity.  This complica-
tion was invented by Ptolemy to describe the lun-
ar longitude at the quadrants.  However, it causes 
the distances between the Moon and the Earth to 
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vary too much, the closest distance being ⅔ of 
the largest distance, something that could easily 
be detected by the naked eye by looking at the 
apparent size of the Moon.  The red line OC 
points towards the mean Moon, OM points to the 
true Moon. 
 

From the triangle OCN we get by standard 
trigonometry 
 

c3(2)  = arctan (s sin 2 / ( + s cos 2))       (6a) 

(2)  = s cos 2 + √(R2 – 2Rs + s2 cos2 2)     (6b) 
 

The function c3 is given in the Alfonsine Tables 

as Equatio centri. 
 

The true anomaly ’ is given as a correction to 

the mean anomaly  by ’ =  + c3.  
 

The equation of centre is then 
 

( ’) = arctan (r sin ’ / ( + r cos  ’))         (7) 
 

This function is given in the Alfonsine Tables as 

Equatio argumenti with  = R = 60. 
 

A least square fit to the data in the Alfonsine 
Tables gives r = 5.16 and s = 10.317.  The first 
quantity is different from the Ptolemaic value          
r = 5;25 = 5.417.  
 

At syzygy (η = 0) the change of  is zero and 

we can set  = R = 60 in (6a). 
 

We take the time derivative of (1) with the 
relations (6a) and (7) inserted and get, using the 
chain rule for derivation, 
 

(,) = mean–
r ( R cos  ´+  r)

R
 2

+2R r cos  ´+  r 2
( + 2

dc3

d(2)
η)  (8) 

 

Here  is the lunar mean velocity in anomaly and 

 the mean velocity in elongation. 
 

We now consider the situation at syzygy.  
 

Then  = 0, c3 = 0, ’ = , and 
dc3

  d(2η) 
|
η = 0

=
s

R + s
   (9) 

Using this we finally get 
 

() = mean –
r (R cos  + r)

R
2
+2R r cos  + r2

( +2
s

R + s
η)       (10) 

 

Inserting numbers, the factor 2s / (R + s) = 
2·10.317 / (60 + 10.317) = 0.2934.  For Apianus 
it would be more natural to find this factor by 
using the table for c3 in the Alfonsine tables 
(Equatio centri.).  The difference between argu-
ment 0° and 1° in this table is 0.1500°, this 
divided by the difference in angle, 1°, is very 

nearly the derivative of c3 for  = 0, giving the 
factor above a value of 0.3.  I have used this 
value for the calculations.  

 

For the different velocities we have values de-
rived from Astronomicum Caesareum, marginally 
different from the corresponding values in the 
Almagest: 
 

 Mean lunar velocity in longitude, mean = 
3.17639°/day = 32.941′/hour 

 Mean lunar anomaly velocity,  = 13.06499°/day = 
32.662′/hour 

 Mean elongation velocity, η = 12.19074°/day = 
30.477′/hour 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: The lunar model. 

 
Inserting these numbers, we can generate a 

table for the lunar velocity (see Table 2).  
 

These are not the values we find in the Alfon-
sine Tables, and different editions of the Alfon-
sine Tables deviate slightly from each other.  The 
values there are those we get if we set s = 0 in 
the model above, i.e. a simpler model without the 
crank mechanism, equivalent to Ptolemy’s first 
model of the Moon, presumably due to Hippar-
chos.  As we will show in the next section, Apia-
nus used the more complex model. 

 
4  CONFRONTING THE VOLVELLE 
 

A close inspection of the volvelle reveals that at 
the inner right edge, for solar anomaly 90°, the 
time correction is written out as 4 hours 46 min-
utes (4;46 = 4.767).  Here the lunar anomaly is 
0°.  At the outer edge where the lunar anomaly is 
180°, the correction is 3;46 = 3.767.  In both these 
cases the lunar equation is zero.  In between 
these extremes, for lunar anomaly 90°, the time 
correction is 5;27 = 5.45, with the opposite sign.  
On the left side of the volvelle, for solar anomaly 
270°, there is, hardly legible, written a number 14 
close to inner and the outer edges.  The obvious 
interpretation is that at the inner edge the time 
correction is 5 – 0;14 = 4;46, at the outer edge 4  

 
Table 2: Lunar Velocity. 

 

Anomaly(˚) Lunar velocity(arcmins/hour) 

0 29.63 
10 29.67 
20 29.79 
30 29.98 
40 30.25 
50 30.60 
60 31.01 
70 31.50 
80 32.04 
90 32.63 

100 33.26 
110 33.91 
120 34.56 
130 35.17 
140 35.73 

150 36.21 
160 36.57 
170 36.80 
180 36.87 
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– 0;14 = 3;46, i.e. the same values as for solar 
anomaly 90° as to be expected from symmetry. 

 

We now apply numerically the models above 
for these points in the volvelle and compute the 
time correction ΔT.  Along the line with solar 
anomaly 90°, the solar velocity in anomaly is 
constant and will be denoted S for reasons that 
will be apparent later.  From the Alfonsine Tables 
we obtain that S(90) = 2.1658.  The factor 60 
below is to convert the  values from degrees to 
arc minutes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: The lunar anomaly scale.  

 
The inner edge: 

 

ΔT = 60·(S(90) – M(0)) /(M(0) – S) = 

60·2.1658/(29.63 – S) = 4.767        (11) 
 

or 29.63 ‒ S = 27.26, thus S = 2.37. 
 

The outer edge: 
 

ΔT = 60·(S(90) – M(180)) /(M(180) – S) = 

60·2.1658/(36.87 – S) = 3.767         (12) 
 

or 36.87 ‒ S = 34.50, thus S = 2.37. 

For M = 90°, we take M(90) = 4.9150 from 

the Alfonsine Tables (Equatio argumenti). 
 

ΔT = 60·(S(90) – M(90)) /(M(90) – S) = 

60·(2.1658 – 4.9150)/(32.63 – S) = –5.45       (13) 

or 32.63 ‒ S = 30.27, thus S = 2.36. 
 

This is what is to be expected, we should get 
the same value for the solar velocity if the 
scheme works.  What is not expected is that it is 
the value for solar anomaly 0°, not 90°.  Apianus 
apparently used 2.36 as a generic constant for 
the solar velocity for all the points in the volvelle 
and that would simplify his calculations consider-
ably.  As the solar anomaly velocity is almost 
constant, the error introduced would be small, at 
most a couple of minutes.  However, I think a 
more natural choice would have been to use the 
mean anomaly velocity. 
 

It is interesting to note that the three elong-
ation velocities above, 27.26, 30.27, and 34.50, 
agree quite well with the corresponding (less 
accurate) velocities derived in my earlier paper 
(Gislén, 2016) on Apianus’ eclipse volvelle: 
27.38, 30.32, and 34.43. 
 

If we now use this scheme, it turns out that we 
can generate time correction values that very 
precisely correspond to the isochronal lines of the 
volvelle.  Apianus gives two examples of using 
the volvelle for syzygies that can be used as a 
further check of the scheme, one New Moon on 
14 February 1500, associated with the birth of the 
Holy Roman Emperor Charles V and a Full Moon 
on 25 February 1503 associated with the birth of 
his brother Ferdinand I. 
 

Example 1. New Moon of 14 February 1500.  
 

S = 8 signs 1° 44′ = 241.73°, M = 2 signs 14° 47′ 

= 74.78° 
 

Apianus gives the time correction as 13;23.  This 
is certainly a calculated value; it is not possible to 
get a time with this precision using the volvelle.  
The scheme above gives 13;26. 
 

Example 2. Full Moon of 25 February 1503.  
 

S = 8 signs 13° 42′ = 253.70°, M = 4 signs 16° 

34′ = 136.37° 
 

Apianus gives the time correction as 10;19. The 
scheme above gives 10;21. 
 

For those interesting in experimenting with the 
model there is a downloadable Java application 
PASyzygy.jar on my web site; see 
http://home.thep.lu.se/~larsg/Site/Welcome.html 
 
5  THE DISTORTED LUNAR ANOMALY  
    SCALE 
 

The lunar anomaly scale (Figure 4) in the wedge 
at the top of the volvelle is distorted such that the 
central part is contracted and the other parts 
extended.  What is the purpose of this? 

http://home.thep.lu.se/~larsg/Site/Welcome.html
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I think the reason was to try to make the 
isochronal lines of the volvelle more equidistant.  
This would make interpolation in the volvelle 
much easier both for its construction and for the 
later use.  If we move radially in the volvelle for 
fixed solar anomaly S = 0, increasing the lunar 
anomaly, the time correction is approximately 
determined by the lunar equation  (M).  Other 
solar anomalies would essentially only add a 
constant to this function.  A qualitative graph of 
 (M) is shown in Figure 5a with the anomaly M 
on the horizontal axis. 
 

If we now consider this as a picture of a ‘hill’, 
a set of altitude curves in a map of the hill would 
not be equidistant, they would spread out as we 
approach the top of the hill.  In Figure 5a I have 
mirrored the right part of the black curve from the 
point where the tangent to the original curve is 
horizontal, to generate the red curve, i.e. I have 
reversed the slope of the curve where the slope 
is negative.  Suppose now that we unite the left, 
black part of the curve and the red right part 
creating a monotonous rising function and use 
this curve as a conversion curve from the anom-
aly coordinate M on the horizontal axis to a plot-
ting scale coordinate P on the vertical axis, Fig-
re 5b.  If we then replot the original function as a 
function of P, it can be proven mathematically 
that the graph of original function will be reduced 
to straight lines, in this case the curves in Figure 
5c.  This means that if we do this for the volvelle, 
the isochronal lines for the replotted ‘hill’ would 
be equidistant, at least locally. 
 

I measured the position in pixels for each 10′ 
step of the actual lunar anomaly scale in the pic-
ture of the volvelle.  I then used the table of the 
lunar equation to construct a conversion function 
between lunar anomaly and an ideal plotting 
scale, using the procedure described above.  Fin-
ally, I rescaled this ideal scale with a factor such 
that the largest item, for M =180°, had the same 
size as the total length of the measured anomaly 
scale, 668 pixels.  Figure 6 shows a comparison 
between the actual measured (blue) anomaly 
scale and the constructed ideal plotting scale 
(red).  The agreement is quite good and indicates 
that the distorted scale really had the intention of 
making the isochronal curves in the volvelle more 
equidistant.  Actually, this trick is also used in the 
Venus latitude volvelle, although in that case it 
does not seem to be quite necessary. 

 
6  CONCLUDING REMARKS 
 

The syzygy volvelle confirms the reputation that 
Petrus Apianus had as being one of the most 
famous astronomers of the sixteenth century.  He 
works here with a complicated scheme and makes 
clever approximations and simplifications where 
they can be made, in order to produce a peda-
gogical  and  elegant  instrument.   It  is  ironic that 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5a: Scale transformation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5b: The conversion function. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5c: The replotted curve. 

 
his magnificent Astronomicum Caesareum, bas-
ed on the Ptolemaic model, soon after its pub-
lication would become obsolete in the new astro- 
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nomical era based on the heliocentric model, with 
Copernicus’ De revolutionibus (1543), published 
just three years after Astronomicum Caesareum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Comparison of the conversion functions. 
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