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Abstract

We find effective, or homogenized, material parameters for Maxwell’s equa-
tions when the microscopic scale becomes small compared to the scale induced
by the frequencies of the imposed currents. After defining a singular value de-
composition of the non-selfadjoint partial differential operator, we expand the
electromagnetic field in the modes corresponding to the singular values, and
show that only the smallest singular values make a significant contribution to
the total field when the scale is small. The homogenized material parameters
can be represented with the mean values of the singular vectors through a
simple formula, which is valid for wavelengths not necessarily infinitely large
compared to the unit cell.

1 Introduction

Some problems are hard to solve. The natural reaction is to try and find an easier
problem. This is indeed the purpose of this paper: we are interested in the behavior
of a strongly heterogeneous microscopic structure (a composite material), when we
subject it to electromagnetic fields generated by currents which only have large-scale
variations. We expect the microscopic details of the solution to be less important,
and want to see what happens on a scale comparable with the imposed currents.
In order to do this, we must find a way of replacing the microscopic structure with
macroscopic, homogeneous, properties, a process known as homogenization.

Homogenization is not a new topic. It has been dealt with excessively in the
literature, see for instance [3] for a general introduction, [2] and [12] for broad
overviews, and [6] for a mathematically rigorous presentation. The recent books
[11, 15] give a good review of the latest result in this broad field. In principle, the
methods presented in these references require that the microscopic scale becomes
infinitely small compared to the wavelength applied.

The purpose of the present paper is to provide homogenization results for the case
where the microscopic scale is small, but not infinitesimal compared to the wave-
length used. In the paper [13], the authors presented a method based on spectral
expansions for Maxwell’s equations, i.e., utilizing eigenvectors of the curl operators
combined with the microscopic description of the material. The homogenized mate-
rial could be represented using mean values of only a few eigenvectors. This method
relies on the material being lossless, since then Maxwell’s equations can be associ-
ated with a self-adjoint partial differential operator for which there exists suitable
spectral theorems.

Unfortunately, most materials cannot be considered lossless. There is almost
always a small conductivity or dispersive effects, which makes the corresponding
operator in Maxwell’s equations non-selfadjoint. The literature on non-selfadjoint
operators seems to be very limited, with [4] being the big exception. The most
promising tool for analyzing non-selfadjoint operators, is the singular value decom-
position, which can be defined for arbitrary compact operators. In this paper, we
show how to define proper function spaces so that Maxwell’s operator has a compact
inverse, thus avoiding problems with the residual spectrum investigated in [10]. We
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then show that only a few of the modes corresponding to different singular values
make a sizable contribution to the electromagnetic field in the limit where the unit
cell becomes very small, which leads to a quite simple homogenization formula in
Theorem 6.11.

This paper is organized as follows. In Section 2 we present the notation and
basic assumptions used in the paper. Section 3 gives the Floquet-Bloch representa-
tion of an L2-function, which is advantageous to study periodic media. The singular
value decomposition and the function spaces needed to define it are presented in
Section 4, and the decomposition is used to represent the solution to Maxwell’s
equations in Section 5. The homogenized material parameters are deduced in Sec-
tion 6, and the results are discussed in Section 7. Finally, in Appendix A, we give
a complete calculation of the singular values and the associated vectors for the case
of a homogeneous, isotropic medium, which is used as a test case for the present
algorithm.

2 Notation

For notational convenience, we use scaled fields in this paper, i.e., the SI-unit fields
ESI, HSI, DSI, and BSI are related to the fields E, H , D, and B used in this paper
by

ESI(x, tSI) = ε
−1/2
0 E(x, t) HSI(x, tSI) = µ

−1/2
0 H(x, t) (2.1)

DSI(x, tSI) = ε
1/2
0 D(x, t) BSI(x, tSI) = µ

1/2
0 B(x, t) (2.2)

where the permittivity and permeability of vacuum are denoted by ε0 and µ0, respec-
tively. The time is scaled according to t = c0tSI, where c0 = 1/

√
ε0µ0 is the speed

of light in vacuum. With this scaling, all the electromagnetic fields have the same
physical dimension

√
power/volume, i.e., ( J s−1 m−3)1/2, and the space and time

variables x and t both have the physical dimension length ( m). The corresponding
relations for the current density JSI and the charge density ρSI are

JSI(x, tSI) = µ
−1/2
0 J(x, t), ρSI(x, tSI) = ε

1/2
0 ρ(x, t) (2.3)

In these units, Maxwell’s equations are
{
∇× E + ∂tB = 0

∇× H − ∂tD = J
(2.4)

which are supplemented by the continuity equation

∇ · J + ∂tρ = 0 (2.5)

2.1 Six-vector notation

We now introduce a six-vector notation, which considerably shortens the notation.
We group the fields according to

e =

(
E

H

)
, d =

(
D

B

)
, j =

(
J

0

)
, � =

(
ρ

0

)
(2.6)
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Collections of vectors like e, d, and j are called six-vectors in the following, and
collections of scalars like � are called two-scalars. On occasions, we also make
reference to different parts of these vectors and scalars if they are associated with
the electric or magnetic fields. This is indicated by indices e or h. For instance, we
may describe a two-scalar as � = [�e, �h]

T, where �e and �h are traditional scalars.
Note that even though there are physical reasons to say that there are no mag-

netic charges, it may still be advantageous to include the possibility in the model.
Indeed, sometimes it is necessary since we might be solving not the full problem
but only a subproblem. In this case, sources which may appear non-physical at
first sight can be used to provide a coupling between different parts of the problem.
Examples are for instance the Born approximation and various scattering problems,
where we need to be able to treat arbitrary current densities j and charge densities
�.

Define differential operators according to

∇× J · e =

(
0 −∇× I

∇× I 0

)
·
(

E

H

)
=

(−∇× H

∇× E

)
, ∇ · d =

(∇ · D
∇ · B

)
(2.7)

where I is the identity matrix in three dimensions. The material is described by the
constitutive relations

d(x, t) = M(x) · e(x, t) +

∫ t

−∞
(σ(x) + χ(x, t − t′)) · e(x, t′) dt′ (2.8)

The optical response of the medium is then modeled by the real, symmetric, positive
definite matrix M(x), the conduction currents are modeled by the real, symmetric,
positive semi-definite conductivity matrix σ(x), and the remaining dispersive effects
(such as resonances or relaxation processes) are modeled by the susceptibility kernel
χ(x, t). The Laplace transform and its inverse are defined as [1, Ch. 15]

f(s) =

∫ ∞

0

e−stf(t) dt, f(t) =
1

2πi

∫

s∈γ

estf(s) ds (2.9)

where γ = (η − i∞, η + i∞) is an integration path chosen so that the singularities
of f(s) are for Re s < η. With the Laplace transform we have the usual relations
∂t → s,

∫ t

−∞ → 1/s, and convolutions become products, which is used to write

d(x, s) = (M(x) + σ(x)/s + χ(x, s)) · e(x, s) = Mc(x, s) · e(x, s) (2.10)

In order to guarantee a passive medium, i.e., one that does not generate energy, we
require [5, p. 15]

Re(sMc(x, s)) ≥ 0 ∀x ∈ R
3, Re s ≥ 0 (2.11)

In the following, we often write Mc(s) or Mc with the x- and s-dependence implicitly
understood. Maxwell’s equations and the continuity equation are then compactly
written in the Laplace domain as

(∇× J + sMc) · e + j = 0, ∇ · j + s� = 0 (2.12)
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2.2 Periodic media

We further assume the medium is periodic. The unit cell is denoted with U , and
the periodic material satisfies Mc(x + xn, s) = Mc(x, s), n ∈ Z

3, where xn =
n1a1 + n2a2 + n3a3 and ai, i = 1, 2, 3, are the basis vectors for the lattice. The
reciprocal unit cell is denoted with U ′, and a vector in the reciprocal lattice is
kn = n1b1 + n2b2 + n3b3, where b1 = 2π

|U |a2 × a3, b2 = 2π
|U |a3 × a1, b3 = 2π

|U |a1 × a2,

and |U | = a1 · (a2 × a3). This implies ai · bj = 2πδij, where δij is the Kronecker
delta. For more on the description of periodic media, see the introductory chapters
in most books on solid state physics, for instance [8]. We denote the typical length
of the unit cell by a, i.e., the physical vectors a1,2,3 and b1,2,3 can be expressed

in dimensionless vectors â1,2,3 and b̂1,2,3 through the scaling a1,2,3 = aâ1,2,3 and

b1,2,3 = a−1b̂1,2,3, where the dimensionless vectors â1,2,3 have a typical length of 1.
Denote by C∞

# (U ; C6,2) the space of infinitely differentiable periodic functions on
U with values in C

6,2. We work primarily with the space

L2
#(U ; C6) = the completion of C∞

# (U ; C6) in the L2 norm (2.13)

Due to the periodic boundary conditions, this space contains functions which are
constants. The scalar product in L2

#(U ; C6) is

(u, v) =
1

|U |

∫

U

u · v∗ dvx (2.14)

and we often use the mean value operator

〈u〉 =
1

|U |

∫

U

u dvx (2.15)

3 Floquet-Bloch representation

In [13], the authors derived a Floquet-Bloch decomposition of Maxwell’s equations
in periodic media, i.e., the electromagnetic field can be represented as

e(x, s) =

∫

U ′
eik·xẽ(x, k, s) dvk (3.1)

where the Bloch amplitude ũ(x, k) of an L2-function u(x) is [13]

ũ(x, k) =
∑

n∈Z3

û(k + kn)eikn·x =
|U |

(2π)3

∑

n∈Z3

u(x + xn)e−ik·(x+xn) (3.2)

with û(k) being the Fourier transform of u(x). The Bloch amplitude ẽ is a U -periodic
function of x. Maxwell’s equations for the Bloch amplitude are then

((∇ + ik) × J + sMc) · ẽ + j̃ = 0, x ∈ U, k ∈ U ′ (3.3)

and the continuity equation is (∇ + ik) · j̃ + s�̃ = 0. The advantage with this
formulation is that the differential equations only have to be solved in a unit cell U ,
although the price is paid through the fact that we must solve it for every k in the
reciprocal unit cell U ′.
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4 Singular value decomposition

The following theorem is from [9, p. 277].

Theorem 4.1 (Singular value decomposition). Let (µn) denote the sequence of
the nonzero singular values of the compact linear operator A (with A �= 0) repeated
according to their multiplicity, i.e., according to the dimension of the nullspaces
N(µ2

nI − A∗A). Then there exist orthonormal sequences (φn) in X and (gn) in Y
such that

Aφn = µngn, A∗gn = µnφn (4.1)

for all n ∈ N. For each φ ∈ X we have the singular value decomposition

φ =
∞∑

n=1

(φ, φn)φn + Qφ (4.2)

with the orthogonal projection operator Q : X → N(A) and

Aφ =
∞∑

n=1

µn(φ, φn)gn (4.3)

Each system (µn, φn, gn), n ∈ N, with these properties is called a singular system
of A. When there are only finitely many singular values, the series (4.2) and (4.3)
degenerate into finite sums. (Note that for an injective operator A the orthonormal
system {φn : n ∈ N} provided by the singular system is complete in X.)

This section is devoted to the adaptation of this theorem to the differential
operator (∇ + ik) × J + sMc. The strategy is to first formulate function spaces X
and Y such that the inverse operator ((∇ + ik) × J + sMc)

−1 : X → Y , called the
resolvent, is compact. Then the above theorem can be used to establish a singular
value decomposition of the resolvent, which can be inverted to apply to the original
differential operator. The result is Theorem 4.4.

4.1 Compactness of the resolvent

As is explained in more depth in [13], the space L2
#(U ; C6) is a bit too big for our

purposes. Therefore, we introduce the smaller spaces

X = {v ∈ L2
#(U ; C6) : ∃z′, z′′ ∈ C, (∇ + ik) · v = [z′�̃e, z

′′�̃h]
T} (4.4)

Y = {u ∈ L2
#(U ; C6) : ∃z′, z′′ ∈ C, (∇ + ik) · [Mc · u] = [z′�̃e, z

′′�̃h]
T} (4.5)

which contain all functions in L2
#(U ; C6) with divergences proportional to the electric

charge distribution �̃e and the magnetic charge distribution �̃h.

Theorem 4.2. The spaces X and Y are closed subspaces in L2
#(U ; C6), i.e., they

are Hilbert spaces with the standard L2 scalar product.
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Proof. (See also [13] for a proof when z′ = z′′.) Since the spaces are related through
Y = M−1

c X, we only need to prove the theorem for X.
Any function v ∈ L2

#(U ; C6) can be decomposed according to

v = v0 + v1, v0 ∈ ker((∇ + ik) · ), v1 = ker((∇ + ik) · )⊥ (4.6)

All functions v0 in the kernel of the divergence operator obviously belong to X (with
z′ = z′′ = 0). The kernel is a closed subspace of L2

#(U ; C6), and is defined by

v0 ∈ ker((∇ + ik) · ) ⇔ (v0, (∇ + ik)φ) = 0 ∀φ ∈ H1
#(U ; C2) (4.7)

From this it is clear that any function in the orthogonal complement to the kernel,
v1 ∈ ker((∇+ ik) · )⊥, can be written as a gradient, v1 = (∇+ ik)φ1. The equations

(∇ + ik) · (∇ + ik)φe = �̃e, (∇ + ik) · (∇ + ik)φh = �̃h (4.8)

are uniquely solvable for the scalar functions φe and φh when k �= 0. When k = 0,
we need to require 〈φe〉 = 〈φh〉 = 0 in order to find a unique solution (in this case
all constant functions are included in the kernel, i.e., C

6 ⊂ ker(∇·)). All functions
(∇+ik)φ in X must then be linear combinations of the functions [(∇+ik)φe,0]T = ve

and [0, (∇ + ik)φh]
T = vh.

To conclude, this means

X = ker((∇ + ik) · ) ⊕ {ve} ⊕ {vh} (4.9)

where {v} denotes the linear hull of the function v. Thus, X is the direct sum
of closed, linear subspaces of L2

#(U ; C6) and is therefore a Hilbert space with the
standard L2 scalar product.

Lemma 4.1. The vacuum resolvent operator

R0(s) = [(∇ + ik) × J + sI]−1 : X → X (4.10)

is compact for all s in the resolvent set, i.e., when R0(s) is bounded, it is also
compact. Furthermore, there exists a number s′ = iω, ω ∈ R, such that iR0(iω) is a
compact, self-adjoint operator.

Proof. The resolvent operator is associated with the solution of a differential equa-
tion

[(∇ + ik) × J + sI] · v = w ⇔ v = R0(s) · w (4.11)

Choosing s = 1 for simplicity and taking the Fourier transform of this equation, we
have

[i(kn + k) × J + I] · v̂n = ŵn (4.12)

Introduce the decomposition v̂n⊥ + v̂n‖, where the index ⊥ indicates components
orthogonal to kn + k. We then have

[i(kn + k) × J + I] · v̂n⊥ = ŵn⊥, vn‖ = wn‖ (4.13)
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which demonstrates that the resolvent is equivalent to the identity operator for the ‖
components. These components correspond precisely to the space {ve} ⊕ {vh} from
the previous proof. Since this is a finite-dimensional space, the resolvent is compact
on this space.

For the ⊥ components, we square the equation and obtain

(|kn + k|2 + 1)|v̂n⊥|2 = |ŵn⊥|2 (4.14)

Using the notation w⊥ =
∑

n∈Z3 eikn·xŵn⊥, we have

‖R0(1) · w⊥‖2
L2 = ‖v⊥‖2

L2 =
∑

n∈Z3

|ŵn⊥|2
|kn + k|2 + 1

(4.15)

Define the operator SN , which restricts the number of Fourier coefficients, as

[SNv](x) =
∑

|n|≤N

v̂neikn·x (4.16)

This means the bounded operator SNR0(1) has finite rank, and is therefore compact.
We then have

‖(1 − SN)R0(1) · w⊥‖2
L2 =

∑

|n|>N

|ŵn⊥|2
|kn + k|2 + 1

≤ ‖w⊥‖2

|kN + k|2 + 1
→ 0 (4.17)

uniformly for all w⊥ of unit norm, as N → ∞. This shows that R0(1) is the limit of
finite rank operators SNR0(1) in the operator norm, and is therefore compact. Since
any function w ∈ X can be decomposed according to w = w⊥ +w‖ and the resolvent
is compact on on each associated subspace, it is compact on all X.

Thus, the spectrum of R0(1) is a discrete subset of C, which in turn implies
that R0(s) is compact for all s in the resolvent set due to the resolvent equation
R0(s1)−R0(s2) = (s1 − s2)R0(s1) ·R0(s2), see for instance [14, p. 516]. Furthermore,
there exists a a number s′ = iω, ω ∈ R, such that iR0(iω) is a compact, self-adjoint
operator.

Theorem 4.3. The resolvent operator

R(s) = ((∇ + ik) × J + sMc(s))
−1 : X → Y (4.18)

is compact for all s in the resolvent set such that sMc(s) is bounded.

Proof. The resolvent R(s) can be written in terms of the vacuum resolvent R0(s),

R(s) = [(∇ + ik) × J + sI + s(Mc(s) − I)]−1 = [R0(s)
−1 + s(Mc(s) − I)]−1

= [I + R0(s) · s(Mc(s) − I)]−1 · R0(s) (4.19)

A product of operators AB is compact if A is bounded and B is compact, or vice
versa. The operator [I+R0(s) · s(Mc − I)]−1 is bounded unless −1 is an eigenvalue of
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the compact operator R0(s) · s(Mc − I). Choose s′ = iω, ω ∈ R. Since iR0(iω) is self-
adjoint it has only real eigenvalues, and for passive media we have Re(iωMc(iω)) ≥ 0.
This means the eigenvalues of R0(s

′) · s′(Mc − I) generally have a non-zero imaginary
part, and thus the operator [I + R0(s

′) · s′(Mc(s
′) − I)]−1 is bounded. This means

R(s′) is compact, and the generalized resolvent equation

R(s1) − R(s2) = R(s1) · (s1Mc(s1) − s2Mc(s2)) · R(s2) (4.20)

then implies that R(s) is compact for all s in the resolvent set, provided sMc(s) is
bounded.

Remark 1. With R(s) a compact operator, the resolvent set consists of all C except
for a countable set of points (the point spectrum, eigenvalues).

Remark 2. The null space of the resolvent is empty by definition for all s in the
resolvent set: the resolvent is associated with the solution of a differential equation,

[(∇ + ik) × J + sMc(s)] · v = w ⇔ v = R(s) · w (4.21)

If there is a w such that R(s) · w = 0, it is clear that this requires w = 0.

4.2 Singular value decomposition for the differential opera-
tor

Since the resolvent operator R(s) is compact with empty null space for all s in the
resolvent set, we have the following adaptation of the singular value decomposition:

R(s) · vn = µnun, R(s)∗ · un = µnvn (4.22)

and we have the following generalized Fourier series expansions

v =
∑

n

(v, vn)vn, u =
∑

n

(u, un)un (4.23)

for all v ∈ X and u ∈ Y . The singular values {µn} are all nonzero since the nullspace
is empty, which means the orthogonal functions {un} and {vn} can be equivalently
defined in terms of the inverse operator,

R(s)−1 · un = µ−1
n vn, (R(s)∗)−1 · vn = µ−1

n un (4.24)

Since (R(s)∗)−1 = (R(s)−1)∗, see [7, Thm. III-5.30, p. 169], we have now proved the
following theorem, where we write σn = µ−1

n .

Theorem 4.4. There exist a sequence of real, positive numbers {σn} and orthonor-
mal sequences {un} in Y and {vn} in X such that

{
((∇ + ik) × J + sMc) · un = σnvn

(−(∇ + ik) × J + s∗MH
c ) · vn = σnun

(4.25)
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For each u ∈ Y and v ∈ X we have the expansions

u =
∑

n

(u, un)un, and v =
∑

n

(v, vn)vn (4.26)

and
((∇ + ik) × J + sMc) · u =

∑

n

σn(u, un)vn (4.27)

The numbers {σn} are the singular values for the differential operator (∇ + ik) ×
J + sMc.

Remark 3. For some s, it may happen that there is an n such that σn = 0. In this
case, un corresponds to an eigenvector of the operator bundle (∇+ik)× J+ sMc(s),
and we call such an s a characteristic frequency [4, p. 265]. Observe that the
resolvent R(s) is not bounded for such an s.

5 The solution of Maxwell’s equations

Expanding the electromagnetic field in the modes {un} implies

ẽ =
∑

n

(ẽ, un)un =
∑

n

enun (5.1)

Assuming that s is not a characteristic frequency, we have σn �= 0 for all n. Inserting
the above expansion into Maxwell’s equations (3.3) then implies

∑

n

enσnvn = −j̃ ⇒ en = − 1

σn

(̃j, vn) (5.2)

which shows that the size of the expansion coefficients is determined by the singular
values σn and the current density j̃.

5.1 Estimate of the singular values

The singular value decomposition (4.25) is a decomposition of the differential oper-
ator (∇ + ik) × J + sMc. This operator can be thought of as a perturbation of the
vacuum operator,

(∇ + ik) × J + sMc = (∇ + ik) × J + sI
︸ ︷︷ ︸

vacuum operator

+ s(Mc − I)
︸ ︷︷ ︸

bounded perturbation

(5.3)

The singular values are eigenvalues of a self-adjoint operator,

(
0 M

M∗ 0

) (
vn

un

)
= σn

(
vn

un

)
(5.4)
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where M = (∇ + ik) × J + sMc. The perturbation of a self-adjoint operator by a
bounded symmetric operator does not change the spectrum by more than the norm
of the perturbing operator [7, Thm. V-4.10, p. 291], i.e.,

|σn − σn0| ≤ ‖s(Mc − I)‖ = sup
x∈U

|s(Mc(x, s) − I)| (5.5)

where σn0 are the singular values corresponding to vacuum. Observe that when or-
dering the singular values according to their size, there is a natural pairing between
the singular values for the perturbed and unperturbed operator [4, p. 30]. In Ap-
pendix A, Corollary A.1, the singular values for the vacuum operator are calculated
as

σn0 =
√

|Re s|2 + (|kn + k| ± | Im s|)2 ≥ |kn + k| − | Im s| (5.6)

for the singular values corresponding to modes with zero divergence. Since the effect
of kn = n1b1 + n2b2 + n3b3 is to shift the origin to a different cell in the reciprocal
lattice, and k ∈ U ′ can be written k = β1b1 + β2b2 + β3b3 where |β1,2,3| < 1/2, the
vector kn + k is always larger than the unit cell U ′ for n �= 0. This provides the
estimate

|kn + k| ≥ inf
k′∈∂U ′

|k′| =
D

2a
, |n| > 0 (5.7)

where D/a is the smallest diameter of the reciprocal unit cell U ′. The factor 1/a
originates in the scaling property b1,2,3 = a−1b̂1,2,3, where the dimensionless vectors

b̂1,2,3 have the approximate length 2π. For a simple cubic lattice, D = 2π. This
implies

σn ≥ σn0 −‖s(Mc − I)‖ ≥ D

2a
− | Im s| − |s| ‖Mc − I‖ ≥ D

2a
− |s|(‖Mc − I‖+1) (5.8)

if |n| > 0. This means that for each C > 0 we have

σn ≥ C

a
, if |as| <

D/2 − C

‖Mc − I‖ + 1
, |n| > 0 (5.9)

independent of k. For n = 0, the corresponding estimate is

σn ≥ |k| − |s|(‖Mc − I‖ + 1) (5.10)

which cannot be used to bound the singular values σn from zero for all k ∈ U ′. Thus,
by choosing the frequency bandwidth of the imposed current density j̃ such that we
may consider |as| < (D/2 − C)/(‖Mc − I‖ + 1), all singular values go to infinity at
least as fast as C/a when a → 0 except possibly for the six modes corresponding to
n = 0 and non-zero divergence. Introduce the index set I to denote these modes,

I = {n : inf
k∈U ′

σn < ∞, a → 0} (5.11)

Since the expansion coefficients en are proportional to 1/σn, we have (for all k ∈ U ′)

n �∈ I ⇒ en → 0, a → 0 (5.12)

which means only the six expansion coefficients em, m ∈ I, can survive in the limit
a → 0. In the following, we generally use the index m instead of n when referring
to modes in the index set I.
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6 Homogenized parameters

We state the following conjecture in spirit of the conjecture in [13].

Conjecture 1. For each s ∈ C for which the singular value decomposition can
be defined, the modes corresponding to the six smallest singular values, indexed
by the index set I, have the property that the mean values {〈um〉}m∈I are linearly
independent, as well as the mean values {〈vm〉}m∈I .

The conjecture is supported by explicit results for the vacuum case, and is also
necessary in order to be able to solve Maxwell’s equations for small frequencies.
However, it seems a rigorous proof is difficult, and we leave it as a conjecture.

We start with a lemma on linear algebra:

Lemma 6.1. For a set of linearly independent (constant) vectors {wm}, there exists
αmm′ ∈ C, such that the orthogonality relations

[
∑

m′

αmm′w∗
m′

]

· wm′′ = δmm′′ (6.1)

hold for m, m′′ ∈ I, where δmm′′ is the Kronecker delta.

Proof. Due to the linear independence of the vectors {wm}, the square matrix with
entries Am′m′′ = w∗

m′ · wm′′ is invertible. This means the equation
∑

m′ Am′m′′am′ =
bm′′ has a unique solution am′ for each bm′′ . Fixing m and choosing bm′′ = δmm′′ , this
uniquely determines αmm′ = am′ .

6.1 Existence of homogenized matrix

In general, the homogenized matrix is defined by 〈Mc · ẽ〉 = Mh
c · 〈ẽ〉. If ẽ =∑

m∈I emum, the homogenized matrix can be equivalently defined by

〈Mc · um〉 = Mh
c · 〈um〉 , ∀m ∈ I (6.2)

The following theorem proves existence for this kind of matrix.

Theorem 6.1. There exists homogenized matrices Mh
c and Nh

c such that

〈Mc · um〉 = Mh
c · 〈um〉 ,

〈
MH

c · vm

〉
= Nh

c · 〈vm〉 (6.3)

Proof. With {〈um〉}m∈I being linearly independent, there exists an orthogonality
relation

[∑
m′∈I αu

mm′u∗
m′

]
· um′′ = δmm′′ due to Lemma 6.1. We then have

〈Mc · um〉 = 〈Mc · um〉
[

∑

m′∈I

αu
mm′ 〈u∗

m′〉
]

· 〈um〉
︸ ︷︷ ︸

=1

=

[
∑

m′,m′′∈I

〈Mc · um′′〉αu
m′′m′ 〈u∗

m′〉
]

· 〈um〉 = Mh
c · 〈um〉 (6.4)
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where we used the orthogonality relation to include the sum over m′′. In the same
way, we have

〈
MH

c · vm

〉
=

〈
MH

c · vm

〉
[

∑

m′∈I

αv
mm′ 〈v∗m′〉

]

· 〈vm〉
︸ ︷︷ ︸

=1

=

[
∑

m′,m′′∈I

〈
MH

c · vm′′
〉
αv

m′′m′ 〈v∗m′〉
]

· 〈vm〉 = Nh
c · 〈vm〉 (6.5)

Remark 4. It is not a priori guaranteed that Nh
c = (Mh

c )
H.

6.2 Averaging the equations

Taking the mean value of the singular value decomposition (4.25) implies

{
ik × J · 〈un〉 + s 〈Mc · un〉 = σn 〈vn〉
−ik × J · 〈vn〉 + s∗

〈
MH

c · vn

〉
= σn 〈un〉

(6.6)

Restricting ourselves to indices m ∈ I and introducing the homogenized matrices
implies

{
(ik × J + sMh

c ) · 〈um〉 = σm 〈vm〉
(−ik × J + s∗Nh

c ) · 〈vm〉 = σm 〈um〉
(6.7)

From this we obtain the finite dimensional eigenvalue equations

{
(−ik × J + s∗Nh

c ) · (ik × J + sMh
c ) · 〈um〉 = σ2

m 〈um〉
(ik × J + sMh

c ) · (−ik × J + s∗Nh
c ) · 〈vm〉 = σ2

m 〈vm〉
(6.8)

Since σ2
m is real and positive, the matrices in the left hand side must be symmetric,

positive definite. This requires that Nh
c = (Mh

c )
H. This in turn implies

{
(ik × J + sMh

c ) · 〈um〉 = σm 〈vm〉
(−ik × J + s∗(Mh

c )
H) · 〈vm〉 = σm 〈um〉

(6.9)

Multiplying the first equation with 〈v∗m〉, the second with 〈u∗
m〉 and taking the com-

plex conjugate of the second equation, the left hand sides are equal. This means the
scalar products 〈u∗

m〉 · 〈um〉 and 〈v∗m〉 · 〈vm〉 must be equal, and the mean values can
be normalized.
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6.3 Homogenization

Now, we identify (6.9) as a singular value decomposition of a finite dimensional
matrix ik× J + sMh

c . This implies that {〈um〉}m∈I are mutually orthogonal, and the
matrix formed by the sum

Mh
c =

∑

m∈I

〈Mc · um〉 〈u∗
m〉

〈u∗
m〉 · 〈um〉

(6.10)

satisfies Mh
c · 〈um〉 = 〈Mc · um〉 for all m ∈ I, and is therefore a representation of the

homogenized matrix. The same reasoning can be applied to the vectors {〈vm〉}m∈I ,
and we have the following representations of the homogenized matrix:

Mh
c =

∑

m∈I

〈Mc · um〉 〈u∗
m〉

〈u∗
m〉 · 〈um〉

(6.11)

(Mh
c )

H =
∑

m∈I

〈
MH

c · vm

〉
〈v∗m〉

〈v∗m〉 · 〈vm〉
(6.12)

which can be computed from the singular value decomposition (4.25).

7 Discussion

We have given a homogenization formula for dispersive materials, based on a singular
value decomposition of non-selfadjoint partial differential operators. In this section,
we discuss some loose ends and interesting possibilities.

7.1 Anything special about the index set I?

An interesting question is “what happens if we change one of the functions in I?”
Assume there are more than 6 un with non-zero mean value. Let I denote the

“normal” index set of 6 linearly independent mean values, which we use in the paper.
Let n′ �∈ I be the index of one of the remaining modes with non-zero mean value.
Then there is at least one index m′ ∈ I with the property 〈u∗

m′〉 · 〈un′〉 �= 0. Let I ′

denote the index set where m′ is replaced by n′. All mean values 〈um〉 with m ∈ I ′

are mutually orthogonal, since they correspond to a singular value decomposition.
Since I and I ′ differ only in one element, the mean values corresponding to these
indices must be proportional to each other.

Thus, any index n which corresponds to non-zero mean values, can be considered
as a “harmonic” of one of the six modes corresponding to the smallest singular values.
However, it is likely that 〈Mc · um′〉 �= 〈Mc · un′〉, and consequently Mh

c �= Mh
c
′
.

7.2 Non-existence of scale-invariant problem

Introduce dimension free quantities according to

x = ay, k = a−1η, σ̃n = aσn (7.1)
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where a is the physical size of the unit cell. The singular value decomposition (4.25)
then becomes

{
((∇y + iη) × J + asMc(s)) · un = σ̃nvn

(−(∇y + iη) × J + as∗(Mc(s))
H) · vn = σ̃nun

(7.2)

This demonstrates that for a dispersive material, where the matrix Mc depends on
the frequency s, we cannot get rid of the scale a completely in our calculations. It
is instructive to take a look at the simplest case, symmetric optical response with
conductivity, i.e., Mc(s) = M + σ/s. In this case, the equations are

{
((∇y + iη) × J + asM + aσ) · un = σ̃nvn

(−(∇y + iη) × J + as∗M + aσ) · vn = σ̃nun

(7.3)

From this formulation we see that we can only get a scale invariant problem, which
defines (σ̃n, un, vn), if as and aσ are kept constant as a → 0. This shows that in
general we need to make the material properties depend on the scale a if we want
to define a scale-invariant unit cell problem.

7.3 Future investigations

There does not seem to exist any standard numerical tools to calculate the singular
value decomposition for partial differential operators. One option is to do a finite
element discretization of the equations, and do a singular value decomposition of
the resulting matrix. Since we are only interested in a few of the singular vectors,
a power method should be employed to extract only the smallest singular values
we are interested in. The discretization can also be made with the fast Fourier
transform, which promises to be a very efficient way to do the calculations.

The present method is an extension of the method presented in [13], where only
symmetric, non-dispersive media could be treated. The strength of the method pre-
sented in this paper, as compared to classical homogenization methods, is that it is
possible to calculate the material behavior for wavelengths not necessarily infinitely
large compared to the unit cell. In this respect, some spatial dispersion effects can be
captured. One possibility is to do a rigorous study of chiral media, where a coupling
between electric and magnetic fields is created by, for instance, metallic inclusions
such as small coils. This effect always vanishes in the extreme homogenization limit,
where the unit cell is infinitely small compared to the wavelength.
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Appendix A Homogeneous, isotropic media

In this appendix we compute the singular values and the corresponding vectors for
a homogeneous material with constitutive parameters

Mc(s) =

(
εc(s)I 0

0 µc(s)I

)
(A.1)

where εc(s) and µc(s) are scalars, constant in space but possibly functions of s. The
most common case is εc = ε + σ/s and µc = 1, i.e., a non-magnetic, lossy dielectric,
which we occasionally mention the explicit result for. The equations (4.25) can then
be Fourier transformed in space to read

{
(i(kn + k) × J + sMc) · ûnn = σnv̂nn

(−i(kn + k) × J + s∗MH
c ) · v̂nn = σnûnn

(A.2)

where kn = n1b1 + n2b2 + n3b3. In order to proceed, we need the singular value
decomposition of a finite dimensional matrix. In the following, we skip the indices
n and n and write only k instead of kn + k, in order to reduce the notational
complexity.

Theorem A.1. The singular value decomposition defined by the equations
{

(ik × J + sMc) · û = σv̂

(−ik × J + s∗MH
c ) · v̂ = σû

(A.3)

is given by the two singular values and their associated singular vectors

σ2 = |sεc|2, û =

(
k̂

0

)
, v̂ =

sεc

|sεc|

(
k̂

0

)
, (A.4)

σ2 = |sµc|2, û =

(
0

k̂

)
, v̂ =

sµc

|sµc|

(
0

k̂

)
(A.5)

and the four singular values (each is double)

σ2
± = k2 +

|sεc|2 + |sµc|2
2

±

√( |sεc|2 − |sµc|2
2

)2

+ k2|sεc − s∗µ∗
c|2 (A.6)

and their associated singular vectors (with E⊥ orthogonal to k, hence two possible
polarizations for each σ)

û =

(
Ê⊥

1
η±

k̂ × Ê⊥

)
, v̂ =

1

σ±

(
(sεc + ik/η±)Ê⊥

(sµc + ikη±) 1
η±

k̂ × Ê⊥

)
(A.7)

with the wave impedance

1

η±
=

|sµc|2 − |sεc|2
2ik(s∗ε∗c − sµc)

± k|sεc − s∗µ∗
c|

ik(s∗ε∗c − sµc)

√( |sεc|2 − |sµc|2
2k|sεc − s∗µ∗

c|

)2

+ 1 (A.8)
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The characteristic frequencies, i.e., those s for which some σn = 0, are determined
by the equation

k2 = −Re(sεcsµc)



1 ±

√

1 −
∣∣∣∣

sεcsµc

Re(sεcsµc)

∣∣∣∣

2


 (A.9)

For εc = ε + σ/s and µc = µ, this is

s = − σ

2ε
± i

√
k2

εµ
−

( σ

2ε

)2

(A.10)

Proof. Is given by explicit calculations in the following subsections.

The singular vectors in the k-direction correspond precisely to the subspaces of
the function spaces X and Y which have non-zero divergence. Briefly returning to
the indices n and n, this means we should actually normalize them so that

ûnn =
kn + k

|kn + k|2
(

�̂e(kn + k)

0

)
, v̂nn =

sεc

|sεc|
kn + k

|kn + k|2
(

�̂e(kn + k)

0

)
(A.11)

ûnn =
kn + k

|kn + k|2
(

0

�̂h(kn + k)

)
, v̂nn =

sµc

|sµc|
kn + k

|kn + k|2
(

0

�̂h(kn + k)

)
(A.12)

but we do not go deeper into this. The singular values are not changed by this
modification. The only singular vectors with non-zero mean values are the six vectors
corresponding to kn = 0, which defines the index set I. It is shown in the following
subsections that the homogenization formula

Mh
c =

∑

m∈I

〈Mc · um〉 〈u∗
m〉

〈um〉 · 〈u∗
m〉

=

(
εcI 0
0 µcI

)
(A.13)

holds true with the explicit singular vectors defined in the above theorem. Before
turning to the proof of this theorem, we give its corollary for the vacuum case, which
is used in the estimate of the singular values in the paper.

Corollary A.1. In the vacuum case, Mc = I, the singular value decomposition is
given by the two singular values and their associated singular vectors

σ2 = |s|2, û =

(
k̂

0

)
, v̂ =

s

|s|

(
k̂

0

)
, (A.14)

σ2 = |s|2, û =

(
0

k̂

)
, v̂ =

s

|s|

(
0

k̂

)
(A.15)

and the four singular values (each is double)

σ2
± = |Re s|2 + (k ± | Im s|)2 (A.16)
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and their associated singular vectors (with E⊥ orthogonal to k, hence two possible
polarizations for each σ)

û =

(
Ê⊥

1
η±

k̂ × Ê⊥

)
, v̂ =

1

σ±

(
(s + ik/η±)Ê⊥

(s + ikη±) 1
η±

k̂ × Ê⊥

)
(A.17)

with the wave impedance
1

η±
= ± sign(Im s) (A.18)

The characteristic frequencies, i.e., those s for which some σn = 0, are determined
by

s = ±ik (A.19)

A.1 Singular values

We now turn to the proof of Theorem A.1. Starting with

{
(ik × J + sMc) · û = σv̂

(−ik × J + s∗MH
c ) · v̂ = σû

(A.20)

the singular values are determined by the equation

(−ik × J + s∗MH
c ) · (ik × J + sMc) · û = σ2û (A.21)

This is expanded as

(k × J · k × J + |s|2MH
c · Mc − ik × J · sMc + s∗MH

c · ik × J) · û = σ2û (A.22)

and since k × J · k × J = k2I − kk this is
(

(k2 + |sεc|2)I − kk −(s∗ε∗c − sµc)ik × I
−(sεc − s∗µ∗

c)ik × I (k2 + |sµc|2)I − kk

) (
E

H

)
= σ2

(
E

H

)
(A.23)

There are two immediate solutions:

û =

(
k̂

0

)
⇒ σ2 = |sεc|2, v̂ =

sεc

|sεc|

(
k̂

0

)
(A.24)

û =

(
0

k̂

)
⇒ σ2 = |sµc|2, v̂ =

sµc

|sµc|

(
0

k̂

)
(A.25)

The other solutions are orthogonal to k. They can be written

û =

(
Ê⊥

1
η
k̂ × Ê⊥

)
⇒ v̂ =

1

σ

(
(sεc + ik/η)Ê⊥

(sµc + ikη) 1
η
k̂ × Ê⊥

)
(A.26)
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where η is the (so far unknown) wave impedance. Using this ansatz, the equations
become

[k2 + |sεc|2 +
ik

η
(s∗ε∗c − sµc)]Ê⊥ = σ2Ê⊥ (A.27)

[−ik(sεc − s∗µ∗
c) +

1

η
(k2 + |sµ|2)]k̂ × Ê⊥ = σ2 1

η
k̂ × Ê⊥ (A.28)

or

k2 + |sεc|2 + ik(s∗ε∗c − sµc)/η = σ2 (A.29)

k2 + |sµc|2 − ik(sεc − s∗µ∗
c)η = σ2 (A.30)

For temporary use, we introduce the notation α = ik(s∗ε∗c − sµc),

k2 + |sεc|2 + α/η = σ2 (A.31)

k2 + |sµc|2 + α∗η = σ2 (A.32)

We eliminate α/η = σ2 − k2 − |sεc|2 from the first equation, and use α∗η = |α|2η/α
to find

k2 + |sµc|2 + |α|2 1

σ2 − k2 − |sεc|2
= σ2 (A.33)

With σ2 − k2 = A, we can write

|sµc|2(A − |sεc|2) + |α|2 = A(A − |sεc|2) (A.34)

or
A2 − A(|sεc|2 + |sµc|2) + |sεc|2|sµc|2 − |α|2 = 0 (A.35)

with the solution

A =
|sεc|2 + |sµc|2

2
±

√( |sεc|2 + |sµc|2
2

)2

− |sεc|2|sµc|2 + |α|2

=
|sεc|2 + |sµc|2

2
±

√( |sεc|2 − |sµc|2
2

)2

+ |α|2 (A.36)

Expanding the expressions for A and α we have

σ2 = k2 +
|sεc|2 + |sµc|2

2
±

√( |sεc|2 − |sµc|2
2

)2

+ k2|sεc − s∗µ∗
c|2 (A.37)

Since the singular value σ ≥ 0 by definition, this provides two solutions for the
singular values for each Ê⊥. Since there are two degrees of freedom to choose the
vector Ê⊥, corresponding to TE or TM polarization, this means each solution is
double.

Summing up our results, for each fixed k = |k| and s, we have six singular values
σ, with mutually orthogonal vectors û. It is relevant to note that k2 → ∞ ⇒ σ2 →
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∞ for the singular values corresponding to polarizations orthogonal to k̂, whereas
the singular values corresponding to polarizations parallel to k̂ do not change with
k.

We note that in vacuum the result is

σ2 = k2 + |s|2 ± k|s − s∗| = |Re s|2 + (k ± | Im s|)2 (A.38)

A.2 Wave impedance

With α/η = σ2 − k2 − |sεc|2, the wave impedance is

α

η
=

|sµc|2 − |sεc|2
2

±

√( |sεc|2 − |sµc|2
2

)2

+ k2|sεc − s∗µ∗
c|2 (A.39)

or, with α = ik(s∗ε∗c − sµc),

1

η
=

|sµc|2 − |sεc|2
2ik(s∗ε∗c − sµc)

± k|sεc − s∗µ∗
c|

ik(s∗ε∗c − sµc)

√( |sεc|2 − |sµc|2
2k|sεc − s∗µ∗

c|

)2

+ 1 (A.40)

This expression can be written

1

η
= e−iφ(g ±

√
1 + g2) (A.41)

where φ = arg(ik(s∗ε∗c − sµc) = arg(α), and

g =
|sµc|2 − |sεc|2
2k|sεc − s∗µ∗

c|
(A.42)

is a real number.
We note that in vacuum we have g = 0 and α = ik(−2i Im s) = 2k Im s, which

implies φ = arg(α) = 0 when Im s > 0 and φ = π when Im s < 0. This means

1

η
= e−iφ(0 ±

√
1 + 0) = ± sign(Im s) (A.43)

A.3 Characteristic values

Setting σ = 0 implies the equation

(
k2 +

|sεc|2 + |sµ|2
2

)2

=

( |sεc|2 − |sµc|2
2

)2

+ k2|sεc − s∗µ∗
c|2 (A.44)

This is a dispersion relation, which is satisfied by a finite number of complex values
s, which are the characteristic values of Maxwell’s equations. The above equation
implies

k4 − k2
(
|sεc − s∗µ∗

c|2 − |sεc|2 − |sµc|2
)

︸ ︷︷ ︸
2 Re(sεcsµc)

+|sεc|2|sµc|2 = 0 (A.45)
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with the solution

k2 = −Re(sεcsµc) ±
√

(Re(sεcsµc))2 − |sεc|2|sµc|2 (A.46)

= −Re(sεcsµc)



1 ±

√

1 −
∣∣∣∣

sεcsµc

Re(sεcsµc)

∣∣∣∣

2


 (A.47)

Since k2 is real, this obviously requires sεcsµ to be real. Writing s = η + iω,
εc = ε + σ/s, and µc = µ, we have

sεcsµc = (sε + σ)sµ = (η2 − ω2)εµ + σηµ + 2iηωεµ + iσωµ (A.48)

For the imaginary part to be zero, we require η = −σ/2ε. The equation for ω is
then

k2 = −Re((sε + σ)sµ) = −
(
(η2 − ω2)εµ + σηµ

)
= −

(
(
σ2

4ε2
− ω2)εµ − σ

σ

2ε
µ

)

=

(
σ2

4ε2
+ ω2

)
εµ (A.49)

which determines ω as a function of k. The characteristic values are then

s = − σ

2ε
± i

√
k2

εµ
−

( σ

2ε

)2

(A.50)

We see that |s|2 = k2/εµ, and for the case of zero conductivity we obtain the
standard dispersion relation ω = ±k/

√
εµ, corresponding to waves propagating in

the positive or negative k̂-direction.
To calculate the root vectors corresponding to this frequency, we must determine

the wave impedance. A key ingredient is the factor

s∗ε + σ − sµ =
σε

2ε
+

σµ

2ε
∓ i(ε + µ)

√
k2

εµ
−

( σ

2ε

)2

= −(ε + µ)s (A.51)

Since sε + σ = −s∗ε, we have

g =
|sµ|2 − |sε + σ|2
2k|sε + σ − s∗µ| = |s| µ2 − ε2

2k(ε + µ)
=

µ − ε

2
√

εµ
(A.52)

and φ = arg(ik(s∗ε + σ − sµ)) = arg(−is) = − arg(is∗). Now, it is important to
remember that the ± in (A.41) is not the same ± as in this subsection. In fact, only
the minus sign in (A.41) is appropriate for σ = 0 to hold. Thus, with |s|2 = k2/εµ,
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the wave impedance is given by

1

η
= e−iφ(g −

√
1 + g2) = ei arg(is∗)



µ − ε

2
√

εµ
−

√

1 +

(
µ − ε

2
√

εµ

)2




=
is∗

|s|

(
µ − ε

2
√

εµ
−

√

1 +
(µ − ε)2

4εµ

)

=
is∗

|s|

(
µ − ε

2
√

εµ
−

√
(µ + ε)2

4εµ

)

=
is∗

|s|

(
µ − ε

2
√

εµ
− µ + ε

2
√

εµ

)
=

is∗

|s|
√

ε/µ =




−i

σ
√

µ/ε

2k
±

√√√√1 −
(

σ
√

µ/ε

2k

)2





√
ε/µ

= −i
σ

2k
±

√
ε

µ
−

( σ

2k

)2

(A.53)

Setting the conductivity to zero, we obtain the standard wave impedance η =
±

√
µ/ε, corresponding to waves propagating in the positive or negative k̂-direction.
In vacuum, the characteristic values and impedances are

s = ±ik,
1

η
= ±1 (A.54)

A.4 Homogenization

The index set I obviously corresponds to the six singular values for n = 0, since all
the other vectors have mean value zero. The homogenized matrix is

Mh
c =

∑

m∈I

〈Mc · um〉 〈u∗
m〉

〈um〉 · 〈u∗
m〉

(A.55)

The two vectors in (A.24) and(A.25) (ignoring the complication of normalization
from equations (A.11) and (A.12)) give the contributions

(
εck̂
0

)(
k̂
0

)

k̂ · k̂
=

(
εck̂k̂ 0
0 0

)
,

(
0

µck̂

)(
0
k̂

)

k̂ · k̂
=

(
0 0

0 µck̂k̂

)
(A.56)

The contributions from the remaining four vectors can be written on the form

( εcÊ⊥m
µc
ηm

k̂×Ê⊥m

)( Ê
∗
⊥m

1
η∗m

k̂×Ê
∗
⊥m

)

(1 + 1/|ηm|2)|Ê⊥m|2

=
1

(1 + 1
|ηm|2 )|Ê⊥m|2

(
εcÊ⊥mÊ

∗
⊥m

εc
η∗

m
Ê⊥m(k̂ × Ê

∗
⊥m)

µc

ηm
(k̂ × Ê⊥m)Ê

∗
⊥m

µc

|ηm|2 (k̂ × Ê⊥m)(k̂ × Ê
∗
⊥m)

)

(A.57)
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Introduce the unit three-vectors m̂ and l̂ according to m̂ × l̂ = k̂. The sum can
then be written using the wave impedances η± as

Mh
c =

(
εck̂k̂ 0
0 0

)
+

(
0 0

0 µck̂k̂

)

+
1

1 + 1
|η+|2

(
εcm̂m̂ εc

η∗
+
m̂l̂

µc

η+
l̂m̂ µ

|η+|2 l̂̂l

)

+
1

1 + 1
|η−|2

(
εcm̂m̂ εc

η∗
−
m̂l̂

µc

η−
l̂m̂ µc

|η−|2 l̂̂l

)

+
1

1 + 1
|η+|2

(
εc l̂̂l − εc

η∗
+
l̂m̂

− µc

η+
m̂l̂ µc

|η+|2 m̂m̂

)

+
1

1 + 1
|η−|2

(
εc l̂̂l − εc

η∗
−
l̂m̂

− µc

η−
m̂l̂ µc

|η−|2 m̂m̂

)

(A.58)

When adding these terms, we must determine the sums

1

1 + 1/|η+|2
+

1

1 + 1/|η−|2
,

1/η+

1 + 1/|η+|2
+

1/η−
1 + 1/|η−|2

,

1/η∗
+

1 + 1/|η+|2
+

1/η∗
−

1 + 1/|η−|2
, and

1/|η+|2
1 + 1/|η+|2

+
1/|η−|2

1 + 1/|η−|2
(A.59)

With 1/η± = e−iφ(g ±
√

1 + g2), we have 1/|η±|2 = 1 + 2g2 ± 2g
√

1 + g2 and

1

1 + 1/|η+|2
+

1

1 + 1/|η−|2
=

1

1 + 1 + 2g2 + 2g
√

1 + g2
+

1

1 + 1 + 2g2 − 2g
√

1 + g2

=
2(2 + 2g2)

(2(1 + g2))2 − (2g
√

1 + g2)2
=

4(1 + g2)

4(1 + g2)2 − 4g2(1 + g2)

=
1

1 + g2 − g2
= 1 (A.60)

and (ignoring the factor e−iφ)

eiφ/η+

1 + 1/|η+|2
+

eiφ/η−
1 + 1/|η−|2

=
g +

√
1 + g2

1 + 1 + 2g2 + 2g
√

1 + g2
+

g −
√

1 + g2

1 + 1 + 2g2 − 2g
√

1 + g2

= g +
√

1 + g2
−4g

√
1 + g2

(2(1 + g2))2 − (2g
√

1 + g2)2
= g − 4g(1 + g2)

4(1 + g2)2 − 4g2(1 + g2)

= g − g

1 + g2 − g2
= 0 (A.61)

and

1/|η+|2
1 + 1/|η+|2

+
1/|η−|2

1 + 1/|η−|2
=

1 + 2g2 + 2g
√

1 + g2

1 + 1 + 2g2 + 2g
√

1 + g2
+

1 + 2g2 − 2g
√

1 + g2

1 + 1 + 2g2 − 2g
√

1 + g2

= 1+2g2+2g
√

1 + g2
−4g

√
1 + g2

(2(1 + g2))2 − (2g
√

1 + g2)2
= 1+2g2− 8g2(1 + g2)

4(1 + g2)2 − 4g2(1 + g2)

= 1 + 2g2 − 2g2

1 + g2 − g2
= 1 (A.62)
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Finally, this means that the homogenized matrix is

Mh
c =

∑

m∈I

〈Mc · um〉 〈u∗
m〉

〈um〉 · 〈u∗
m〉

=

(
εcI 0
0 µcI

)
(A.63)

which demonstrates that the homogenization theorem works as planned for homo-
geneous, isotropic media.

References

[1] G. B. Arfken and H. J. Weber. Mathematical Methods for Physicists. Academic
Press, New York, 1995.

[2] A. Bensoussan, J. L. Lions, and G. Papanicolaou. Asymptotic Analysis for
Periodic Structures, volume 5 of Studies in Mathematics and its Applications.
North-Holland, Amsterdam, 1978.

[3] D. Cioranescu and P. Donato. An Introduction to Homogenization. Oxford
University Press, Oxford, 1999.
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