
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Simple Event-Based PID Controller

Årzén, Karl-Erik

1999

Link to publication

Citation for published version (APA):
Årzén, K.-E. (1999). A Simple Event-Based PID Controller. Paper presented at 14th IFAC World Congress
(1999), Beijing, China.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/20be74b2-9459-40c9-b77a-b8b763d28704


Draft paper submitted to the IFAC World Congress 1999.

A SIMPLE EVENT-BASED PID CONTROLLER

Karl-Erik Årzén

Department of Automatic Control,
Lund Institute of Technology,

Box 118, S-221 00 Lund, Sweden,
Email: karlerik@control.lth.se

Abstract: A simple event-based PID controller is presented. It is shown that it
is possible to obtain large reductions in CPU utilization with only minor control
performance degradation. Simulations on a double-tank process are presented.

Keywords: PID control, computer control, event-based sampling

1. INTRODUCTION

The majority of the work and research in automatic
control considers periodic or time-triggered control
systems where continuous time signals are repre-
sented by their sampled values at equi-distant sam-
pling intervals. The major reason for this is the ex-
istence of a well established system theory for sam-
pled data systems and sampled control systems, e.g.,
Åström and Wittenmark (1997).
However, there are cases when it is motivated to also
consider event-based control systems where the sam-
pling is event-triggered rather than time-triggered.
Other names for these control systems are aperiodic
or asynchronous control systems. In an event-based
system it is the occurrence of an event rather than the
passing of time, that decides when a sample should be
taken. The nature of the event could vary. Examples
could be that a measurement signal crosses a certain
limit, or the arrival of a data packet to a node on
a computer network. A comparison between periodic
and event-based sampling for first order stochastic
systems is found in Åström and Bernhardsson (1999).
One example of time-varying sampling intervals is
control of internal combustion engines that are sam-
pled against engine speed. Another example is man-
ufacturing system where the sampling can be related
to production rate. The event-based nature of the
sampling can also be intrinsic to the measurement
method used, or to the physical nature of the process
being controlled. Alternatively, the event-based sam-

pling can be a built-in feature of an intelligent sen-
sor device. Event-based sampling is natural when en-
coder sensors are used or when the actuators are of an
on-off nature, e.g., in satellite control with thrusters,
Dodds (1981), or in systems with pulse frequency
modulation, e.g., Sira-Ramirez (1989). Event-based
sampling is also used in the process industry when
statistical process control (SPC) is used in closed loop.
In order not to disturb the process, a new control ac-
tion is only calculated when a statistically significant
deviation has occurred.

Modern distributed control systems also impose sys-
tem architectural constraints that make it difficult
to stick to the time-triggered paradigm. This is spe-
cially the case when control loops are closed over com-
puter networks or buses, e.g., field buses, local area
networks, ATM networks, or even the Internet, e.g.,
Nilsson (1998).
Another reason why event-based control is interesting
is that it closer in nature to the way a human behaves
as a controller. The human motion control system
is event- or pulse-based rather than time-triggered,
Mead (1989). Also, when a human performs manual
control his behaviour is event-based rather than time-
triggered. It is not until the measurement signal
has deviated sufficiently enough from the desired set
point that a new control action is taken.

The final reason why event-based control is of inter-
est is resource utilization. An embedded controller is
typically implemented using an real-time operating



system that supports concurrent programming. The
available CPU time is shared between the tasks in
such a way that it appears as if each task is running
independently. Occupying the CPU resource for per-
forming control calculations when nothing significant
has happened in the process is clearly an unnecessary
waste of resources. The same argument also applies to
communication resources. The available communica-
tion bandwidth in a distributed system is limited. To
use this for sending data in a time-triggered fashion
is clearly a waste of bandwidth.

What is then the reason why time-triggered control
still dominates? A major reason is the difficulty in-
volved with developing a system theory for event-
based systems. Although much work was done in the
1960s and 1970s, the interest during recent years has
been low. Another reason is the interface that has
been established between the control community and
the real-time computing community. The control com-
munity typically assumes that the real-time platforms
used for implementing controllers are able to guaran-
tee deterministic sampling intervals. In reality this is,
however, not always true. The market push for using
commercial off-the-shelf systems such as, e.g., Win-
dows NT, also for real-time applications means that
the determinism decreases. Modern hardware fea-
tures such as caches and instruction pipelines also de-
creases the determinism, or worst-case performance,
while drastically improving the average-time perfor-
mance.

Similarly the real-time computing community as-
sumes that all control loops are periodic, with fixed
periods, and that they have hard deadlines. For these
types of systems the rate monotonic scheduling the-
ory and its extensions, Buttazzo (1997), have been
derived. Using this theory it is in theory possible to
formally decide whether a given task set will meet
its computation deadlines are not. However, the weak
point of the theory is the need to have a close upper
bound on the worst case execution time (WCET). In
practice this is very difficult to obtain. From the ex-
amples above it is clear that there are several control
loops that are aperiodic. It is also easy to find exam-
ples of, e.g., heterogeneous or hybrid controllers, that
switch among a set of control algorithms, each possi-
bly with a different sampling interval. Several control
loops have hard deadlines, e.g., controllers control-
ling open loop unstable processes. However, there are
also a large number of examples where the deadlines
are soft rather than hard. As long as the deadline is
not missed too often, with too much, or under certain
operating conditions, the controller can either be de-
signed to be robust against this or to compensate for
it.

In the Swedish research projects ARTES and DICOS-
MOS the interaction between control, computing, and
communication is studied from different perspectives.
In this paper a heuristic event-based PID controller is
presented. The aim of the controller is to obtain com-
parable control performance with a conventional PID
controller, with drastically reduced CPU utilization.

Outline of the paper

The approach taken is discussed in Section 2. The
standard PID control algorithm is presented in Sec-
tion 3, and the modifications needed in the event-
based case are shown in Section 4. The proposed con-
troller has been evaluated both in simulations and in
laboratory experiments. In Section 5, some real-time
simulation results are presented where a double-tank
process is used as a test case.

2. EVENT-BASED CONTROL

The reasons for sampling in an event-based controller
may vary. Here, we will consider systems where
the decision to calculate a new control signal is
based on level crossings of different signals. The
basic setup is shown in Figure 1. The controller
consists of two parts, an event detection part that uses
time-triggered sampling with a sampling interval,
hnom, that is the same as the sampling interval of
the corresponding time-triggered PID controller. The
output of the event detection part is a request to the
PID controller algorithm that a new control signal
should be calculated. Included with the request is the
length of the most recent sampling interval, i.e., the
time since a new control signal was calculated last.
This information can be used by the control algorithm
to compensate for the sampling interval variations.

PID DAAD Event
Logic

Event Detector PID controller

Time−triggered Event−triggered

Fig. 1 Event-based PID structure

The signals involved in the detection logic can be
of different types. One possibility is to sample only
when the measurement signal y crosses a certain
prespecified level. An alternative is to instead use
relative measures, i.e., to sample when the change in
the measurement signal crosses a certain limit. It is,
however, not only changes in the measurement signal



that should cause sampling. Sampling should also be
performed when the set point is changed. Therefore
it is an advantage to use the error signal rather than
the measurement signal as the basis for the event
condition.

The event detection logic could in principle be arbi-
trarily complex. One could, e.g., consider using error
derivatives to predict error changes and cause sam-
plict before the error change actually has occurred.
Another possibility would be to also use the control
signal in the logic, and only allow longer sampling in-
tervals if the control signal indicates that steady state
has been reached. However, in order to gain anything
compared with a time-triggered PID controller it is
important to keep down the complexity. The event
condition used in the simulations in Section 5 is the
following;

te(tk) − e(ts)t > elim OR hact ≥ hmax

A decision is made to calculate a new control signal
if the absolute value of the difference between the
current value of the error, e(tk), and the value of
the error when a control signal was calculated the
last time, e(ts), is greater than a limit, or when
the time elapsed since the last sample, hact exceeds
the limit hlim. The last condition is a simple safety
measure. The effect of the condition will be that
controller will execute at the nominal sampling time
hnom during transients, i.e., set point changes and
load disturbances, and that the controller will execute
at the maximal sampling interval during steady state
conditions.

The event-based PID control structure can be viewed
as a client-server architecture. A control may consist
of a number of control loop clients that performs the
high-frequency sampling. When one of them needs a
new control signal calculation a request is sent to the
PID server, that returns the newly calculated control
signal.

The partition of a PID controller into two parts
with different sampling intervals is nothing new.
Similar structures are found in most commercial
computer-based PID control system. Low-pass anti-
aliasing filtering must be implemented on analog
form. However, to avoid analog filters with varying
filter parameters it is common to have a fixed analog
filter combined with fixed fast sampling. A discrete
filter is then used to perform the remaining low-
pass filtering for the PID controllers that execute at
a considerable slower frequency. The discrete filter
parameters can easily be adjusted as the sampling
interval of the PID controller is changed.

3. PID CONTROL

PID control is by far the dominating control structure
in industrial practice. The textbook PID controller
has the following basic structure, Åström and Häg-
glund (1995):

U(s) � K (E(s) + 1
sTI

E(s) + TDsE(s))

in the frequency domain. To avoid problems with high
frequency measurement noise in the derivative part
a low-pass filter is added. It is also quite common
with set-point weighting in the derivative part. The
derivative part is therefore realized as

UD(s) � K TDs
1+ sTD/N

(γ Ysp(s) − Y(s))

In process control applications γ is often set to zero.

Set point weighting is also commonly used in the
proportional part, i.e.,

UP (s) � K (β Ysp(s) − Y(s)).
The set point weighting terms can be interpreted as
feedforward from the set point, thus giving the PID
controller two dimensions of freedom.

3.1 Discretization

In order to implement a PID controller in a computer
it has to be converted into digital form. A common
way of doing this is to discretize the controller, i.e.,
to approximate the continuous time derivatives us-
ing, e.g., backward difference approximation, forward
difference approximation, or Tustin approximation.

The proportional part UP(s) is straightforward to
discretize by replacing the continuous variables with
their sampled versions. For the integral part and
the derivative part there are several possibilities. A
common choice is to use forward differences for the
integral part. The reason for this choice is that it
is possible to pre-calculate the integral part for time
tk+1 already at time tk. This reduces the calculations
that need to be done in between the sampling of
the measurement signal y and the generation of the
control signal u, thus reducing the control delay. For
the derivative term it is common to chose a backward
difference approximation. This approximation of the
derivative part is stable for all values of TD. The
corresponding discrete parameters are also always
positive, thus avoiding problems with ringing. Details
about the discretization can be found in Åström and
Hägglund (1995).
The total code for the PID controller is



(* Pre-calculated coefficients *)

bi := K*h/Ti;

ad := Td/(Td + N*h);

bd := K*Td*N/(Td + N*h);

(* Calculate control signal *)

ysp := ADIn(ch1);

y := ADIn(ch2);

up := K*(beta * ysp - y);

ud := ad*ud - bd*(y - yold);

u := up + ui + ud;

DAOut(u,ch3);

(* Update states *)

ui := ui + bi*(ysp - y);

yold := y;

It is assumed that γ � 0. In order for the code to be
complete, an anti-reset windup mechanism has to be
added, e.g., based on tracking.

The controller coefficients bi, ad, and bd are normally
pre-calculated to minimize the computations needed
to calculate the control signal. When a conventional
PID controller is implemented the sampling period is
assumed to be constant. In an event-based PID con-
troller the sampling period will vary from sample to
sample. However, this variation can be compensated
for by adjusting the controller coefficients every sam-
ple. The price for this is increased computation time.

4. EVENT-BASED PID CONTROL

The code for the event-based PID controller has the
following structure:

(* Pre-calculated parameter *)

bi := K / Ti;

(* Event detection *)

ysp := ADIn(ch1);

y := ADIn(ch2);

e := ysp - y;

hact := hact + hnom;

IF (abs(e - es) > elim) OR (hact >= hmax) THEN

es := e;

ad := Td/(Td + N*hact);

(* Calculate control signal *)

up := K*(beta * ysp - y);

ud := ad*ud - ad*K*N*(y - yold);

u := up + ui + ud;

DAOut(u,ch3);

(* Update states *)

ui := ui + bi*hact*(ysp - y);

yold := y;

hact := 0.0;

ENDIF;

The code is executed at the nominal sampling fre-
quency. The PID calculations are, however, only per-
formed if the event condition is true. Compared with

the time-triggered PID algorithms the proposed algo-
rithm requires more calculations in the calculate out-
put part of the code, mainly due to the fact that the
PID coefficients are recalculated for every calculation.
The algorithm also requires more state variables, e.g.,
es and hact, and two additional parameters, the er-
ror limit and the maximum sampling interval. The
increase in complexity is, however, not drastic.

5. SIMULATIONS

The simulations have been performed on a double-
tank process where the aim is to control the level
of the upper or lower tank with the pump signal as
the control signal, according to Fig 2. The simulations
have been performed in real-time using the G2 pro-
gramming environment, Moore et al. (1990).

PID

A/D

A/D

Controller (computer) Process

D/A
2.0

10.00.0
0.0

Pump

Upper
tank

Lower
tank

Manual
control

Double Tank Process

Event-Based PID Controller

Fig. 2 Double tank process

In the first example we will control the level of the up-
per tank with a PI-controller. The parameters of the
controller are K � 4 and TI � 20. The nominal sam-
pling interval is 1 second and the maximal sampling
interval is 10 seconds. The process is simulated for 10
minutes. At time 0 (time t−10) the set point is set to
2.0. At time 3 minutes the set point is changed to 5.0
and at time 5 minutes it is changed back to 2.0. An
input load disturbance is introduced at time 8 min-
utes. The results of the simulation are shown in Fig.
3. The top plot shows the set point and the measured
signal. The mid plot shows the control signal and the
bottom plot shows how the actual sampling interval
varies between the nominal value and the maximum
value.

As a comparison the simulations with hnom � hmax �
1, i.e., the corresponding time-triggered PID con-
troller are shown in Fig. 4. The performance is com-
parable. For the case hnom � hmax � 10, the system
becomes unstable.



Fig. 3 PI control of upper tank with hnom � 1 and hmax � 10

Fig. 4 PI control of upper tank with hnom � hmax � 1

The necessity of compensating the PID coefficients for
the varying sampling interval is shown in Figs. 5 and
6. In Fig. 5 the PID coefficients are kept constant as
if the actual sampling period was equivalent to the
nominal sampling period. In Fig. 6 we instead assume
that the actual sampling period is equivalent to the
maximum sampling period. A too high value of the
sampling interval will have the same effect as if TI is
too small and a too low value of the sampling interval
will have the same effect as if TI is too large. The
typical result of this is clearly seen in the figures.

With a time-triggered PID the control algorithm
would be executed 600 times over a 10 minute simu-

Fig. 5 No compensation for varying sampling interval. Assume
that hact � hnom

Fig. 6 No compensation for varying sampling interval. Assume
that hact � hmax

lation. In the event-triggered PID in the example the
event detection logic is executed 600 times but the
PID algorithm is only executed 103 times. One of the
goals of the proposed approach is to reduce the proces-
sor utilization. An approximate analysis of this can be
performed. The CPU utilization of a task i is defined
as Ci/Ti where Ci is the WCET of task i and Ti is
the period of task i. If we call the WCET for the time-
triggered PID for CT PI D and assume that the WCET
for the event detection part is equal to CT PI D/4 and
that the WCET for the PID calculation in the event-
triggered PID is equal to CT PI D, the following result
can be derived. In the analysis the event-triggered
PID is treated as two tasks: the event detection part
with a period of 1 second and the PID calculation
part with an average period of 6 seconds. This gives
a utilization for the time-triggered PID of CT PI D and
an average utilization for the event-triggered PID of



CT PI D/4+ CT PI D/6 � 0.42CT PI D, i.e., a reduction in
utilization of about 58%. The upper and lower bound
on the utilization are 1.25CT PI D and 0.35CT PI D.

In Fig. 7 the results for PID control of the level of the
lower tank are shown. Also here the approach works
well.

Fig. 7 PID control of the lower tank. hmax � 6s

The simulations presented have been noise-free. If
measurement noise is present, the choice of the
error limit becomes more important. In order to gain
anything with theproposed method it is important to
filter the measurement noise properly and to set the
error limit sufficiently large to avoid sampling due
to noise. The PID extended with the event detection
logic becomes a nonlinear system of hybrid nature.
Several interesting phenomena have been observed
during the simulations. One example is limit cycles
in the actual sampling interval. These are, however,
hardly noticeable in the process output.

The approach can be extended in several directions.
One example is to also make the DA-conversion
conditional, i.e., to only send out a new control signal
if it differs significantly from the latest control signal.
This becomes equivalent to a dead band on the control
signal increment.

6. CONCLUSIONS

A simple event-based PID controller has been pre-
sented. It has been shown through simulations that

it is possible to obtain large reductions in the CPU uti-
lization with only minor control performance degra-
dation. It has also been shown that it is important
to take the varying sampling interval into account
in the control algorithm. The proposed controller has
also been tested on a laboratory tank process with
good results.

A problem with event-based control is that it be-
comes harder to verify and guarantee worst-case per-
formance using, e.g., available scheduling theory, and
that it is difficult to analyze the control system.
Hence, there is a strong need for both a system theory
for event-based control and for new results in schedul-
ing.

This work has been supported by the ARTES project.

7. REFERENCES

ÅSTRÖM, K. J. and B. BERNHARDSSON (1999): “Compar-
ison of periodic and event based sampling for first-
order stochastic systems.” In Submitted to IFAC World
Congress, Beijing.

ÅSTRÖM, K. J. and T. HÄGGLUND (1995): PID Controllers:
Theory, Design, and Tuning, second edition. Instrument
Society of America, Research Triangle Park, NC.

ÅSTRÖM, K. J. and B. WITTENMARK (1997): Computer-
Controlled Systems, third edition. Prentice Hall.

BUTTAZZO, G. C. (1997): Hard Real-Time Computing Sys-
tems: Predictable Scheduling Algorithms and Applica-
tions. Kluwer Academic Publishers.

DODDS, S. J. (1981): “Adaptive, high precision, satellite
attitude control for microprocessor implementation.”
Automatica, 17:4.

MEAD, C. A. (1989): Analog VLSI and Neural Systems.
Addison-Wesley, Reading, Massachusetts.

MOORE, R., H. ROSENOF, and G. STANLEY (1990): “Process
control using a real time expert system.” In Preprints
11th IFAC World Congress. Tallinn, Estonia.

NILSSON, J. (1998): Real-Time Control Systems with De-
lays. PhD thesis ISRN LUTFD2/TFRT--1049--SE, De-
partment of Automatic Control, Lund Institute of Tech-
nology, Lund, Sweden.

SIRA-RAMIREZ, H. (1989): “A geometric approach to pulse-
width modulated control in nonlinear dynamical sys-
tems.” IEEE Transactions on Automatic Control, 35:12.


