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Control of Preferenes in Soial Networks∗Georgios C. Chasparis† Je� S. Shamma‡January 30, 2012AbstratWe onsider the problem of deriving optimal advertising poliies for the spread of innovationsin a soial network. We seek to ompute poliies that aount for i) endogenous networkin�uenes, ii) the presene of ompetitive �rms, that also wish to in�uene the network, andiii) possible unertainties in the network model. Contrary to prior work in optimal advertising,whih also aounts for network in�uenes, we assume a dynamial model of preferenes and weompute optimal poliies for either a �nite or in�nite horizon. These optimal poliies are relatedto and extend prior introdued notions of entrality measures usually onsidered in soiology.We also ompute robust optimal poliies in the ase where the evolution of preferenes is a�etedby misspei�ed dynamis or unertainties whih an be modeled as external disturbanes of thenominal dynamis. Under these perturbed dynamis, we formulate a max-min optimization toompute an optimal poliy whih is robust to a lass of norm-bounded unertainties. We alsoshow that the optimization exhibits a ertainty equivalene property, i.e., the optimal valuesof the ontrol variables are the same as if there were no unertainty. Finally, we investigatethe senario where a ompetitive �rm also tries to in�uene the network. In this ase, robustoptimal solutions are omputed in the form of i) Nash and Stakelberg equilibria, and ii) max-min solutions.1 IntrodutionThis paper is onerned with the derivation of optimal advertising strategies in a network of us-tomers whose preferenes are a�eted by both their neighbors and the inentives provided throughadvertising. The ontribution of this paper lies in the inlusion of three important fators in thederivation of an optimal advertising strategy: i) dynami network e�ets in the formation of prefer-enes, ii) possible misspei�ations/unertainties in the assumed model of evolution of preferenes,and iii) unertainty in the intentions of a ompetitive �rm that also tries to in�uene the network.
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The literature on optimal advertising starts with the pioneering work of [1℄ in a monopolyframework and it has been extended to di�erential games in oligopolies, a detailed survey of whihan be found in [2℄. The main objetive of this line of work, as very well stated in [3℄, is to set up anoptimal ontrol problem to determine the optimal rate of advertising expenditures over time in a waythat maximizes the net pro�t of the �rm. To this end, prior work has foused on i) the derivationof dynami models whih apture the sales response to advertising, and ii) the omputation of anoptimal poliy of advertising as a funtion of the sales.Those models whih apture the e�et of advertising on sales are usually desribed by meansof a di�erential or di�erene equation whih desribe the evolution of the state (usually the salesrate or the market share) as a funtion of the state and the advertising expenditures. We willgenerally assume that �rms have some way of knowing or estimating the dynamis of sales responseto advertising. The estimation of these dynamis will not be part of this work. Moreover, severalsales-to-advertising models are also a funtion of other properties of the produt, suh as its prieor quality, whih will not be onsidered here.Prior sales-to-advertising models usually apture the following phenomena: i) advertising e�etspersist over the urrent period but diminish with time [1℄, ii) marginal advertising e�ets diminish orremain onstant with the size of advertising [4℄, iii) advertising e�ets diminish with the size of sales[1, 5, 6℄, iv) advertising e�ets diminish with the size of ompetitive advertising [7, 5, 8, 9, 10, 11℄,and v) advertising e�ets are a�eted by word-of-mouth ommuniation (or exess advertising) [12℄.Depending on the formulation of sales response to advertising, models have also been ategorizedin: i) sales response models (where the state is the rate of sales) [1℄, ii) market share models (wherethe state is the share of the market) [5℄, iii) di�usion models (whih apture the market growth)[13℄, and iv) goodwill models (whih apture the evolution of advertising apital) [14℄.Our model is also related to those models. It exhibits diminishing returns with time in theabsene of advertising e�ort, onstant marginal returns with the size of advertising, and diminishingreturns with the size of ompetitive advertising. It extends traditional advertising models by alsoonsidering the e�et of word-of-mouth ommuniation through a network of interations similarlyto [15, 16℄. We model network e�ets similarly to the model of [16℄. However, the analysis hereis not restrited to the equilibrium state of the evolution of preferenes. Instead, the dynamis ofnetwork e�ets beome part of the optimization. Using this model, we are able to derive analytiallyoptimal advertising strategies whih are related to and extend prior introdued notions of entralitymeasures usually onsidered in soiology [17℄.At the same time, we would also like to onsider the possibility that we are unertain about theauray of the preferenes update, instead of assuming a deterministi update. Usually stohastiextensions of existing models have been onsidered, e.g., [18, 19℄. In this paper, we would like toonsider unertainties that an inorporate possible unmodeled dynamis. Under these perturbeddynamis, we formulate a max-min optimization to ompute an optimal poliy whih is robust to a2



lass of norm-bounded unertainties. We show, as probably expeted, that the optimization exhibitsa ertainty equivalene property, that is, the optimal values of the ontrol variables are the same asif there were no unertainty.Finally, we also investigate the possibility that a ompetitive �rm also tries to in�uene thenetwork, introduing a seond form of unertainty. In this ase, and when the objetive of theompetitive �rm is to maximize its sales, the strategy of the ompetitive �rm may not be known.We will either assume that i) the ompetitive �rm has the form of a ompetitive fridge whih triesto enter the market, introduing a notion of sequential optimization (expressed by a Stakelbergsolution), or ii) both �rms have the ability of simultaneous play (expressed by a Nash solution).Under these senarios, we provide a omplete haraterization of Nash solutions (also Stakelbergsolutions) within the set of open-loop strategies. These solutions are also a subset of losed-loop (orMarkovian) Nash solutions. A omplete haraterization of the set of losed-loop Nash solutionsis going beyond the sope of this paper, sine it is highly ase-dependent, i.e., it depends on thelass of poliies whih will be onsidered reasonable for the senario of interest. However, theproposed framework an be easily utilized to provide losed-loop Nash solutions when the lass ofpoliies, over whih we are optimizing, is spei�ed. Finally, we investigate the senario where �rmsare also unertain about the objetives of the ompetitor, whih an be formulated as a max-minoptimization.The remainder of the paper is organized as follows. Setion 2 desribes the problem underonsideration. Setion 3 disusses some neessary bakground on dynami programming. Setion 4derives �nite- and in�nite-horizon optimal poliies in a monopoly under unperturbed and perturbedpreferenes update. Setion 5 omputes Stakelberg and Nash solutions in a duopoly. Finally,Setion 6 presents onluding remarks.Notation: For any vetor x ∈ R
n, where xi is its ith entry,

− |x| denotes its Eulidean norm,
− |x|∞ , max{|x1|, ..., |xn|},
− max+
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2 Problem Desription2.1 Evolution of preferenesThe problem onsiders a pair of �rms L = {a, b} and a �nite set of ustomers or nodes I =

{1, 2, ..., n}.1 We will denote a �rm by ℓ ∈ L and a ustomer by i ∈ I. We assume that theustomers are nodes in a given direted network, whih is desribed by a row stohasti matrix W .2The matrix W aptures how nodes' prolivities towards the produt of either �rm a or �rm b area�eted by its neighbors.Let xℓ
i,k ≥ 0 denote the prolivity of node i towards buying the produt of �rm ℓ ∈ {a, b} attime k, and

xℓ
k , (xℓ

1,k, x
ℓ
2,k, ..., x

ℓ
n,k) ∈ R

n
+be the vetor of prolivities over the whole network. We will refer to this vetor as the state of �rm

ℓ and we will denote by Sℓ ⊂ R
n
+ the orresponding set of states.Firm ℓ ∈ L is able to in�uene the prolivity of node i ∈ I towards its produt by marketingits produt to node i, e.g., by o�ering disounts or warranties. Let uℓ

i,k ≥ 0 denote the amount offunds that �rm ℓ spends on marketing its produt to node i at time k, and
uℓ

k , (uℓ
1,k, u

ℓ
2,k, ..., u

ℓ
n,k) ∈ R

n
+be the vetor of funds �rm ℓ spends over the set of nodes I. We will refer to this quantity as theontrol of �rm ℓ. We will also assume that the amount of funds eah �rm an spend at any giventime annot be larger than M ℓ, i.e.,

∑

i∈I

uℓ
i,k ≤ M ℓ for all k = 0, 1, .... (1)Let Cℓ ⊂ R

n
+ denote the resulting onstraint set of ontrols.The spei� relation between the ontrols and the states is motivated by the work of [16, 20℄ onsoial in�uene network theory and it is desribed by the following di�erene equation:

xℓ
k+1 = ΘWxℓ

k + (I − Θ)ϕ(uℓ
k, u−ℓ

k ) (2)whih provides the prolivity of node i at time k + 1 as a onvex ombination of i) a weightedaverage of the prolivities of the neighbors and ii) the external in�uene aused by both own andompetitive advertising. The notation −ℓ denotes the omplementary set L\ℓ. The matrix Θ is1An extension of the forthoming analysis to multiple number of �rms will be straightforward.2A row stohasti matrix W is a nonnegative matrix whih also satis�es W1 = 1, i.e., the sum of its entries inany row is equal to 1. 4



assumed diagonal suh that
Θ = diag{θ1, θ2, ..., θn},with diagonal entries satisfying
0 ≤ θi < 1, ∀i ∈ I. (3)The onstraint (3) has a natural interpretation sine it implies that there is no node that om-pletely ignores external in�uene. Furthermore, in the absene of external in�uene, it also modelsdiminishing returns with time. We will simplify notation by rewriting the dynamis in the form:

xℓ
k+1 = Axℓ

k + Bϕ(uℓ
k, u−ℓ

k ), (4)where A , ΘW and B , I − Θ. Variations of this nominal model will also be onsidered later onin this paper when �rms are unertain about the auray of the model.The funtion ϕ : Cℓ×C−ℓ → [0, α1]× ...× [0, αn], for some αi > 0, i ∈ I, maps the ontrol vetorsof both �rms to a vetor of in�uenes over the set of nodes I. It is assumed to be nonnegative andbounded above, i.e., the amount of external in�uene is �nite. We will refer to this funtion as thein�uene funtion. We would like funtion ϕ to also satisfy the following property:Property 2.1 The in�uene funtion ϕ : Cℓ × C−ℓ → [0, α1] × ... × [0, αn], for some αi > 0, i ∈ I,is suh that:1. ϕi(u
ℓ
k, u

−ℓ
k ) ≥ 0, if uℓ

i,k ≥ u−ℓ
i,k;2. ϕi(u

ℓ
k, u

−ℓ
k ) = 0, if uℓ

i,k < u−ℓ
i,k.In other words, we would like the in�uene of �rm ℓ's advertising to be nonnegative when �rm ℓ isinvesting more on advertising than its ompetitor, and zero, otherwise. That is, a ustomer wouldbe in�uened towards either one of the �rms depending on the relative size of their advertising.One andidate funtion whih satis�es the above property is the following:
ϕi(u

ℓ
k, u

−ℓ
k ) , sat(uℓ

i,k − u−ℓ
i,k;αi) (5)for some αi > 0, i = 1, 2, ..., n.We will refer to the above model as duopoly. When, instead, u−ℓ

i,k ≡ 0 for all i ∈ I and
k = 0, 1, ..., we will refer to this model as monopoly.The proposed update of preferenes exhibits diminishing returns to both own and ompetitiveadvertising, whih is due to the de�nition of the in�uene funtion. It also exhibits diminishingreturns with time, due to the de�nition of the matrix Θ. Finally, it models the e�et of word-of-mouth (or exess) advertising due to the assumed network of onnetions.5



2.2 ObjetiveThe utility of �rm ℓ ∈ L at time k is de�ned as:
g(xℓ

k, uℓ
k) = V (xℓ

k) − C(uℓ
k) (6)where we assume that the reward is linear with the prolivities of the nodes, i.e.,

V (xℓ
k) = vTxℓ

k,for some vetor v ∈ R
n
+, and the ost is linear with the funds spent on advertising, i.e.,

C(uℓ
k) = cTuℓ

k,for some c ∈ R
n
+.For some disount fator β ∈ (0, 1), the objetive of �rm ℓ has the following form

max
πℓ∈Πℓ

{

Jπℓ(x) , lim
N→∞

N−1
∑

k=0

βkg(xℓ
k, µ

ℓ
k(x

ℓ
k))

} (7)over the set of in�nite sequenes of poliies Πℓ with elements πℓ = (µℓ
0, µ

ℓ
1, ...) where µℓ

k is a funtionfrom the set of states S to the set of ontrols C. The above optimization is subjet to the dynamis(4). Later on, we are also going to onsider variations of this optimization, espeially when dynamis(4) are perturbed and robust optimal poliies need to be derived.For the remainder of the paper, the proposed advertising model haraterized by the dy-namis of (4) and the utility funtion (6) will be denoted by M .2.3 Assumptions and preliminariesFor the remainder of the paper, we are also going to onsider the following assumptions:Assumption 2.1 βvTB − cT > 0.This assumption an be written equivalently as
βvi(1 − θi) − ci > 0, i = 1, 2, ..., n.It implies that, for every unit of advertising e�ort, the disounted return reeived from eah node isstritly greater than the orresponding ost. This is a reasonable assumption and it is also relatedto the existene of a non-degenerate solution to the optimization problems onsidered here.Assumption 2.2 αℓ

i ≥ M ℓ
i for all i ∈ I and ℓ ∈ L.6



This assumption implies that eah ustomer's apaity of getting in�uened through advertising islarger than the advertising power of eah �rm. This is not a neessary assumption for the existene ofsolutions, however, it simpli�es the following analysis. The derivation of the orresponding solutionsin ase Assumption 2.2 does not hold is also straightforward and qualitatively remains idential.In the presentation of the model, we have impliitly assumed that the evolution of preferenes isgoverned by idential dynamis for both �rms. This assumption allows for a leaner presentation ofthe analysis, however, as it will beome obvious later, it does not hange qualitatively the solutions.We also assume that the utility funtions of both �rms are idential. This implies that bene�tsand osts are materialized as a funtion of the prolivities and investments similarly for both �rms.This is a reasonable assumption, however, the following analysis an be easily modi�ed to inludethe ase of di�erent utility funtions.Note, �nally, that the proposed preferenes update (4) onstitutes a linear time-invariant systemwith bounded inputs. It is straightforward to show that the above system is input-output stablein the sense that there exists nonnegative onstants ζ, θ suh that the solution to the di�ereneequation, denoted x(k, x0, u), satis�es |x(k, x0, u)| ≤ ζ + θ‖u‖∞, where ‖u‖∞ , sup{|uk| : k ∈ Z+}.This is due to the fat that W is a row stohasti matrix and Θ satis�es the onstraint (3). Theonstraint (3) on matrix Θ also implies the ontrollability (f., [21℄) of the system (A,B), simplybeause rank(B) = rank(I − Θ) = n.2.4 Alternative models and disussionThe dynamis of preferenes (4) is based on the assumption that agents are bounded rational, sinetheir preferenes are a weighted average of neighbors' preferenes. Full rationality instead may notneessarily lead to better models due to the resulting omputational omplexity. A similar modelin the ontext of evolution of preferenes without external in�uene has also been onsidered by[22, 23℄ to study the di�usion of innovations and norms in a soial network. This model has alsobeen related to alternative measures of entrality as disussed in [17, 24℄.In this paper, we modi�ed the model used by [22, 23℄ to inlude the possibility of an externalontrol in�uene (4), e.g., due to advertising e�ets. The proposed model bears similarities withseveral previously introdued advertising models, e.g., the goodwill models of [14℄, new produtdi�usion models [13℄ or extensions of the Vidale-Wolfe model [1℄. In the following subsetions wedisuss some of the similarities and di�erenes between these models with the proposed M .2.4.1 Comparison with goodwill modelsAdvertising goodwill models (see, e.g., [2, Setion 3.5℄) apture the evolution of the advertisingapital. For example, the advertising goodwill model introdued in the seminal paper [14℄ assumes7



the following dynamis
Ġ(t) = u(t) − δG(t), (8a)where G(t) here represents the advertising apital. The main di�erene with the proposed model Mis that the latter inludes diretly the interpersonal in�uenes through the assumed ommuniationnetwork modeling a form of word-of-mouth ommuniation. Note also that the ontrol input oradvertising e�ort u in�uenes diretly the advertising apital. Similar is the assumption in M ,where the advertising e�ort diretly in�uenes the preferenes of all nodes. As we will see later, thisis not neessarily the ase in other advertising models, where the advertising e�ort only applies tothe undeided part of the population. In other words, both M and the goodwill models investigatesituations where the produt is reently launhed in the market and all ustomers are willing torevise their preferenes regardless of prior preferenes.The dynamis (8a) an also be modi�ed to inlude the possibility of multiple �rms, e.g., themodels in [25, 26℄. For example, the model onsidered in [26℄ assumes

Ġi(t) =
√

ui(t) − δGi(t), Gi(0) = Gi0 > 0, i ∈ {1, 2}, (8b)and the sales rate xi (similarly to the proposed vetor of prolivities) depends on the advertisingapital of both �rms, i.e., xi = xi(G1, G2), where ∂xi/∂Gi > 0 and ∂xi/∂Gj < 0 for i 6= j.Note that the square root of the ontrol input in (8b), whih has also been used in otheradvertising models (see, e.g., [5℄), aptures diminishing returns with the size of advertising e�ort.Alternatively, diminishing returns an also be modeled indiretly by onsidering a squared ost inthe utility funtion. For example, in [6℄ the term u2
i is onsidered instead in the ost funtion,or in [27℄ more general non-linear funtions of ui are onsidered whih are onvex inreasing. Inthe proposed model M , diminishing returns with the advertising e�ort are modeled indiretly byassuming the saturation e�et of the in�uene funtion.A squared ost term in the utility funtional ould also be inluded in the proposed model inomparison to the initially proposed model M of Setion 2.1. For example, an alternative utilityfuntional that inorporates diminishing returns with the size of advertising ould be:

g(xℓ
k, u

ℓ
k) = vTxℓ

k −
(

uℓ
k

)T
Cuℓ

k (9)where C , diag(c), i.e., C is a diagonal matrix where the diagonal entries oinide with the entriesof the vetor c. Some of the nie analytial properties of M are also shared by the above quadratiost funtion (9), suh as the forthoming analytial solution of the monopoly optimization problem.
8



2.4.2 Comparison with market-share response modelsThe previously desribed goodwill advertising models and the proposed model M di�er from thelass of market-share response models emanating from the model of Vidale-Wolfe [1℄. An extensionof this model to a duopoly has been onsidered by [7℄ and is desribed by:
ẋi = (1 − xi − xj)ui − δixi, xi(0) = xi0, i, j ∈ {1, 2}, i 6= j. (10)A small modi�ation an also aount for exess advertising e�ets due to word-of-mouth in�uenesin the population, suh as the model in [28℄ desribed by

ẋi = (1 − xi − xj)ui − δixi + ei(ui − uj)(xi + xj), xi(0) = xi0, i, j ∈ {1, 2}, i 6= j, (11)where the last term represents the persons swithing from �rm j to i as a result of the word-of-mouthproesses.Contrary to both M and the goodwill advertising models, where the advertising e�ort appliesdiretly to the whole population, in the market-share response generalizations of Vidale-Wolfe'smodel [1℄, the ontrol applies only to the undeided part of the population. The last term of thedynamis (11), whih models exess advertising, applies to the deided part of the market andmodels transfers due to exess of advertising. This term also resembles the in�uene funtion ϕonsidered in M , where the in�uene on a node depends only on the exess part of the advertisinge�orts at that node.Note, however, that a small modi�ation of the proposed model M an aount for behaviorsthat are present in the market-share models [1℄. For example, if we instead onsider the followingin�uene funtion:
ϕi(u

ℓ
k, u

−ℓ
k ) , diag

(

αℓ
1 − x−ℓ

k

)

uℓ − diag
(

αℓ
1− xℓ

k

)

u−ℓ. (12)then the advertising e�orts of either �rm applies only on the part of the market whih is eitherundeided or has di�erent preferenes. When we assume the alternative dynamis with the in�u-ene funtion (12), then an analytial derivation of a losed-form solution, even for the monopolyframework, is not feasible any more. In the forthoming analysis, we will only onsider the initiallyproposed in�uene funtion whih provides losed-form solutions, however future work may inludealternative forms of the in�uene funtion that aept only omputational solutions.Similar remarks also hold for the models emanating from the Lanhaster model of ombat, suhas the models of [29, 8, 9, 10, 11℄. The main di�erene of Lanhester models with the Vidale-Wolfe models is that in the latter ones the e�et of ompetitive advertising onto the market shareis indiretly inluded (through the undeided portion of the market). Instead, in the Lanhestermodels, the e�et of ompetitive advertising is diretly inluded in the dynamis of market share.9



This disussion reveals the �exibility of the proposed model M to inorporate alternative be-haviors or modeling ideas whih have already been disussed in prior literature. In several asesthough, it is also desirable that a sales-to-advertising model also provides losed-form optimal so-lutions whih avoids omputational burdens. The proposed model M and its extensions hereinexhibit most of the observed phenomena of sales-to-advertising models and, as we will disuss later,it provides attrative losed-form expressions of optimal strategies under several senarios.3 Dynami Programming BakgroundThe notation and part of the analysis in this setion follows [30℄.3.1 The dynami programming algorithmDenote by J the set of all extended real-valued funtions of the form J : S → R
∗, de�ned on thestate spae S and taking values on the extended real line R

∗ = [−∞,+∞].For some time horizon N ∈ N, onsider the generi �nite-horizon optimization problem:
max
π∈Π

{

JN,π(x0) , E

{

g(xN ) +

N−1
∑

k=0

βkg(xk, µk, wk)

}} (13)over any admissible poliy π = {µ0, µ1, ..., µN−1} ∈ Π, where µk ∈ M for all k, and M is the set offuntions from the set of states S to the set of ontrols C. Furthermore, g(xN ) de�nes the ost atthe �nal stage, whih depends only on the �nal state xN .The above optimization is subjet to the system dynamis
xk+1 = f(xk, uk, wk),where {wk} denotes a noise sequene taking values in a measurable spae (W,F). Denote J∗

N (x)the optimal value of the N -stage objetive funtion. Finally, assume that
|g(x, u,w)| < ∞, for all x ∈ S, u ∈ C, w ∈ W.For any funtion J ∈ J , de�ne the following funtion

(TJ)(x) , max
u∈C(x)

E{g(x, u,w) + βJ(f(x, u,w))}, x ∈ S.Note that (TJ)(·) is the optimal value funtion for the one stage problem that has stage ost g andterminal ost βJ .Also, we will denote by T k the omposition of the mapping T with itself k times; i.e., for all10



k = 1, 2, ..., we write
(T kJ)(x) = (T (T k−1J))(x), x ∈ S.For onveniene, we also write (T 0J)(x) = J(x).Similarly, for any funtion J ∈ J and any poliy µ : S → C, we denote:

(TµJ)(x) , E{g(x, µ(x), w) + βJ(f(x, µ(x), w))}. (14)Again, TµJ may be viewed as the ost funtion assoiated with the poliy µ for the one-stageproblem that has stage ost g and terminal ost βJ .The dynami programming algorithm (DP) is the following algorithm; for any k = 1, ..., Nompute
Jk(x) = (TJk−1)(x), (15)with initial ondition J0(x) = g(x). The last step of the DP algorithm provides the N -stage value,

JN (x), x ∈ S.De�ne
H(x, u, J) , E {g(x, u,w) + βJ(f(x, u,w))} . (16)Assumption 3.1 The above sequene {Jk} ⊂ J is a non-dereasing sequene satisfying H(x, u, J1) <

∞, and
lim

k→∞
H(x, u, Jk) = H(x, u, lim

k→∞
Jk),for all x ∈ S and u ∈ C.The above assumption exludes problems where exhangeability of expetation with the limitis not possible. This assumption is satis�ed when we onsider a monotonously inreasing sequeneof funtions {Jk}k in J and also the funtions Jk are measurable with respet to the probabilitymeasure under onsideration. This will be due to the Lebesgue's Inreasing Convergene Theorem(f., [31℄).Proposition 3.1 (Optimality of DP) Let Assumption 3.1 hold, and assume that Jk,π(x) < ∞for all x ∈ S, π ∈ Π, and k = 1, 2, ..., N . Then

J∗
N = TN (J0).Proof. See Proposition 3.1 in [30℄. �
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3.2 In�nite horizon problemsConsider now the in�nite horizon optimization problem:
max
π∈Π

{

Jπ(x0) = lim
N→∞

E

{

N−1
∑

k=0

βkg(xk, µk(xk), wk)

}}

, (17)over any admissible in�nite poliy π = {µ0, µ1, ...} and subjet to the system dynamis
xk+1 = f(x, u,w).Let us also de�ne the optimal value of this problem as
J∗(x) , sup

π∈Π
Jπ(x). (18)The following is a ondition on the optimal stationary poliy.Proposition 3.2 (Optimal stationary poliy) Consider the in�nite horizon optimization prob-lem of (17) and assume that

J0(x) ≤ H(x, u, J0), ∀x ∈ S, ∀u ∈ Cwhere J0(x) = g(x). Then, the optimal value of the in�nite horizon optimization problem is
J∗(x) = lim

N→∞
JN (x). (19)where JN (x) is the N -th stage value of the dynami programming algorithm. Let also Assumption 3.1hold. Then, a stationary poliy π∗ = (µ∗, µ∗, ...) ∈ Π is optimal if and only if

Tµ∗(Jπ∗) = T (Jπ∗). (20)Proof. See Proposition 5.5 in [30℄. �4 Optimal Poliy in MonopolyIn this setion, we ompute the optimal poliy of a �rm when there is no ompetitive �rm, and alsothe dynamis are either a) unperturbed, or b) perturbed. Sine we onsider a single �rm, we willskip the supersript ℓ for the remainder of this setion.12



4.1 Unperturbed dynamisThe dynamis we onsider in this setion are desribed by (4) with u−ℓ
k ≡ 0, i.e.,

xk+1 = Axk + Bϕ(uk) , f(xk, uk). (21)In the remainder of the setion we ompute the optimal poliy for the 1) �nite-horizon, and 2)in�nite-horizon optimization problem.First, de�ne:
Ãk ,

k
∑

j=0

βjAjand
hT

k+1 , βvTÃkB − cT,for k = 0, 1, .... Note that Ã0 = I and hT
1 = βvTB − cT.Before omputing the solutions to the �nite- and in�nite-horizon optimization problems, notethat:Claim 4.1 vTÃk+1 ≥ vTÃk for all k = 0, 1, ....Proof. First note that

vTÃk+1 = vT
k+1
∑

j=0

βjAj

= vT
k
∑

j=0

βjAj + vTβk+1Ak+1 ≥ vTÃk.where the last inequality results from the fat that all the entries of matrix A are nonnegative. �4.1.1 Finite-horizon optimizationWe �rst onsider the �nite-horizon optimization
max
π∈Π

{

Jπ(x0) , g(xN ) +

N−1
∑

k=0

βkg(xk, µk(xk))

}

. (22)where g(x) , vTx de�nes the utility at the last stage.Proposition 4.1 (Nth stage optimal poliy for monopoly) Consider the �nite horizon opti-mization problem (22) under the dynamis (21). The N th stage optimal value of the dynami13



programming iteration, is
J∗

N (x) = vTÃNx +

N−1
∑

k=0

βkhT
N−ku

∗
N−k. (23)The optimal ontrol at time k, for k = 0, 1, ..., N − 1, is u∗

N−k = (u∗
1,N−k, ..., u

∗
n,N−k), where

u∗
i,N−k =







M i = arg max+
1 (hN−k)

0 otherwise. (24)Proof. We are going to show the statement by indution. Aording to the dynami programmingalgorithm, the k-th stage optimal value is
Jk(x) = max

uk∈C(x)
{g(x, uk) + βJk−1(f(x, uk))}where J0(x) = g(x) = vTx. By applying the operator T to J0, we get the optimal value for the �rststage, whih is

J1(x) = (TJ0)(x)

= max
u1∈C(x)

{g(x, u1) + βJ0(f(x, u1))}

= max
u1∈C(x)

{

vTx − cTu1 + βvT(Ax + Bu1)
}

= max
u1∈C(x)

{

(vT + βvTA)x + (βvTB − cT)u1

}

= vTÃ1x + hT
1 u∗

1.where the optimal stage ontrol is u∗
1 = (u∗

1,1, ..., u
∗
n,1) suh that

u∗
i,1 =







M i = arg max+
1 (h1)

0 otherwise. (25)Note that the value J1(·) is given by expression (23) if we set N = 1 and the optimal stage ontrol
u∗

1 is given by expression (24) if we set N = 1 and k = 0.Assume that the value iteration for the N -step optimization horizon gives (23), i.e.,
JN (x) = vTÃNx +

N−1
∑

k=0

βkhT
N−ku

∗
N−k (26)
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where u∗
N−k = (u∗

1,N−k, ..., u
∗
n,N−k) is suh that

u∗
i,N−k =







M i = arg max+
1 (hN−k)

0 otherwise,for k = 0, 1, ..., N − 1.Consider now an (N + 1)-step optimization horizon. The value at N + 1 is:
JN+1(x) = (TJN )(x)

= max
uN+1∈C

{g(x, uN+1) + βJN (f(x, uN+1))}

= vT
(

I + βÃNA
)

x + max
uN+1∈C

hT
N+1uN+1 + β

N−1
∑

k=0

βkhT
N−ku

∗
N−k

= vTÃN+1x +

N
∑

k=0

βkhT
N+1−ku

∗
N+1−k

= vTÃk+1x +
k+1
∑

i=1

βi
(

βvTBÃk−i+1 − cT
)

u∗
k−i+1 (27)where u∗

N+1 = (u∗
1,N+1, ..., u

∗
n,N+1) is suh that

u∗
i,N+1 =







M i = arg max+
1 (hN+1)

0 otherwise, (28)for i = 1, 2, ..., n.Thus, we showed that the values of the dynami programming iteration are provided by equation(23).Finally, to show optimality of the dynami programming iteration, subtrat equations (26) from(27) to get:
JN+1(x) − JN (x) = vT

(

ÃN+1 − ÃN

)

x +

N−1
∑

k=0

βk
(

hT
N+1−ku

∗
N+1−k − hT

N−ku
∗
N−k

)

+ βNhT
1 u∗

1.By Claim 4.1, we have that
vT
(

ÃN+1 − ÃN

)

x ≥ 0 for all x ∈ S.Given also Assumption 2.1 and the form of optimal ontrol (28), we get that
hT

N+1u
∗
N+1 ≥ hT

Nu∗
N ≥ ... ≥ hT

1 u∗
1 > 0.15



Therefore, JN+1(x) ≥ JN (x) for all x ∈ S and Assumption 3.1 is satis�ed. Then, by Propo-sition 3.1, the dynami programming iteration provides the optimal value of the �nite-horizonoptimization (22). �4.1.2 In�nite-horizon optimizationWe would like to solve the following optimization problem:
max
π∈Π

{

Jπ(x0) , lim
N→∞

N−1
∑

k=0

βkg(xk, µk(xk))

} (29)subjet to the disrete-time dynamis (21).Before we ompute the solution to the in�nite horizon optimization problem, reall the de�-nition of H(x, u, J) from (16). Given also that J0(x) = vTx, it is straightforward to show underAssumption 2.1 that:Claim 4.2 J0(x) ≤ H(x, u, J0), for all x ∈ S and u ∈ C(x).Note also that:Lemma 4.1 The matrix (I − βA) is non-singular for any β ∈ (0, 1).Proof. Note that by onstrution, (I − βA), is stritly diagonally dominant,3 sine the magnitudeof its i-th diagonal entry 1 − βθiwii satis�es
1 − βθiwii = 1 − βθi(1 −

∑

j 6=i

wij)

= 1 − βθi + β
∑

j 6=i

θiwij > β
∑

j 6=i

θiwij ,i.e., it is stritly larger than the sum of magnitudes of all non-diagonal entries of the ith row. ByLevy-Desplanques theorem (f., [32℄) the matrix (I − βA) is non-singular. �Lemma 4.2 Let β ∈ (0, 1) and A ∈ R
n×n suh that (I − βA) is non-singular. Then

Ãk =

k
∑

j=0

βjAj = (I − βA)−1(I − βk+1Ak+1), (30)3A matrix is stritly diagonally dominant if in every row of the matrix, the magnitude of the diagonal entry inthat row is larger than the sum of the magnitudes of all the other (non-diagonal) entries in that row.16



k = 0, 1, .... Furthermore, if limk→∞ Ak exists, then
Ã∞ ,

∞
∑

j=0

βjAj = (I − βA)−1.Proof. To show the �rst statement, simply multiply from the left with (I − βA). The seondstatement is a diret onsequene of (30) if we take the limit as k → ∞. �De�ne also:
hT
∞ , βvTÃ∞B − cT.Proposition 4.2 (Optimal Stationary Poliy in Monopoly) Consider the in�nite horizon op-timization problem (29) under the deterministi and unperturbed dynamis (21). Then, the station-ary poliy π∗ = (µ∗, µ∗, ...) ∈ Π, suh that µ∗(x) = (µ∗

1, µ
∗
2, ..., µ

∗
n) with

µ∗
i =







M i = arg max+
1 (h∞)

0 otherwise (31)for i ∈ I, is an optimal poliy for the in�nite horizon optimization problem. Furthermore, theoptimal in�nite value is
J∗ = vTÃ∞x +

M

1 − β
max+

1 (h∞) . (32)Proof. Due to Claim 4.2, we have
J0(x) ≤ H(x, u, J0)for all x ∈ S and u ∈ C(x). Also, as we showed in the proof of Proposition 4.1, due to Claim 4.1 andAssumption 2.1, Jk+1(x) ≥ Jk(x) for every x ∈ S. Thus, Assumption 3.1 is satis�ed and, aordingto Proposition 3.2, in order to show that the stationary poliy π∗ = (µ∗, µ∗, ...) is optimal, it su�esto show that
Tµ∗(Jπ∗) = T (Jπ∗).First, we ompute Jπ∗(x): Similarly to Proposition 4.1 and taking into aount (30), the sta-tionary poliy π∗ establishes the following sequene of values

JN,π∗ = vTÃNx +

N−1
∑

k=0

βkhT
N−kµ

∗

= vTÃ∞(I − βN+1AN+1)x+
N−1
∑

k=0

βk
(

βvTÃ∞(I − βN−kAN−k)B − cT
)

µ∗17



= vTÃ∞x +
N−1
∑

k=0

βkhT
∞µ∗ − βN+1vTÃ∞AN+1x − βN+1vTÃ∞

N−1
∑

k=0

AN−kBµ∗.Note that
N−1
∑

k=0

AN−kBµ∗ =

N
∑

k=1

AkBµ∗ =

N
∑

k=1

W kΘk(I − Θ)µ∗.Sine the diagonal entries of Θ satisfy 0 ≤ θi < 1 for every i ∈ I and µ∗ is bounded, the aboveseries is onvergent. Therefore, we have
Jπ∗ , lim

k→∞
Jk,π∗ = vTÃ∞x +

1

1 − β
hT
∞µ∗.Given that µ∗ = (µ∗

1, µ
∗
2, ..., µ

∗
n) where µ∗

i is given by (31), we have
hT
∞µ∗ = M · max+

1 (h∞) . (33)Thus,
Jπ∗ = vTÃ∞x +

M

1 − β
max+

1 (h∞) .We are ready now to ompute Tµ∗(Jπ∗) and T (Jπ∗). In partiular,
Tµ∗(Jπ∗) = g(x, µ∗) + βJπ∗(f(x, µ∗))

= vT
(

I + βÃ∞A
)

x + hT
∞µ∗ +

βM

1 − β
max+

1 (h∞) .Due to ondition (33) and the fat that I + βÃ∞A ≡ Ã∞, we have
Tµ∗(Jπ∗) = vTÃ∞x +

M

1 − β
max+

1 (h∞) .Finally,
T (Jπ∗)(x) = max

u∈C(x)
{g(x, u) + βJπ∗(f(x, u))}

= vT(I + βÃ∞A)x + max
u∈C(x)

{

hT
∞u
}

+
βM

1 − β
max+

1 (h∞)

= vTÃ∞x + Mmax+
1 (h∞) +

βM

1 − β
max+

1 (h∞)

= vTÃ∞x +
M

1 − β
max+

1 (h∞) .Hene, we showed that
Tµ∗(Jπ∗) = T (Jπ∗),18



whih implies that π∗ is an optimal stationary poliy. Also, Jπ∗ provides the optimal value of thein�nite-horizon optimization. �Trying to interpret the optimal stationary poliy (31), the �rm is going to invest the largestpossible amount M to the node i whih orresponds to the maximum entry of
hT
∞ = βvTÃ∞B − cT = βvT(I − βA)−1(I − Θ) − cT.Note that this deision is a�eted by the following fators:1. how easily node i an be in�uened by the �rm's advertising poliy, whih is measured by

1 − θi,2. how large is the �network value� of node i throughout the optimization horizon, expressed bythe ith entry of βvT(I − βA)−1, whih measures the e�et of every unit of advertising e�ortspent in i on the prolivities of all nodes that are onneted diretly or indiretly to i,3. how small is the ost of every unit of advertising e�ort in node i, expressed by ci.Note also that the matrix (I −βA)−1, whih in�uenes the optimal deision, an be interpretedas a measure of the entrality of the nodes. In fat, Bonaih in his work on measures of entrality[17℄, introdued the following entrality measure:
c(γ, β) , γ(I − βA)−1A1, (34)where γ is a saling fator. When γ = 1, c(1, β) has several nie interpretations. To see this, notethat the entrality measure is equivalently written as:

c(1, β) =

(

∞
∑

k=0

βkAk

)

A1 = (I + βA + β2A2 + ...)A1. (35)Therefore, the entrality c(1, β) is a measure of loseness, and it is high for a node whih is onnetedto other nodes with short and highly weighted paths. The parameter β represents the degree ofinformation (bene�ts in our model) that is transmitted from one node to another node. In our ase,where A is a row stohasti matrix, the above entrality measure takes on the following form
c(1, β) = (I + βA + β2A2 + ...)1 = (I − βA)−1

1.Trying to translate this entrality measure in the language of our dynami model of the evolutionof preferenes, we an say that it represents a measure of the relative importane of nodes (in terms19



of bene�ts) when the initial ondition is x0 = 1 and there is no external in�uene (i.e., there is noontrol input).Note that in our dynami model both the initial ondition and the ontrol input a�et the returnsof the advertising �rm. Sine, though, we are only interested in the omputation of the optimaladvertising poliy, an appropriate entrality (or network value) measure would be βvTÃ∞B − cT.The highest entry of this vetor will provide the highest bene�ts over time. Note that when β = 0,the ontrol input does not have any impliation to the returns. In that ase, entrality ould bemeasured by vTÃ∞, sine it is only the initial ondition that a�ets the returns.4.2 Perturbed DynamisIn this setion, we are going to onsider a family of perturbations of the nominal model (21),desribed by
xk+1 = Axk + Bϕ(uk) + Fqk, (36)where we have negleted the e�et of the seond �rm. The term qk orresponds to an unknownsignal aused possibly by misspei�ed system dynamis. The sequene {qk} may feed bak in apossibly nonlinear way on the history of x. We will impose the following onstraint on the size ofany instane of this perturbation sequene:
|qk| ≤ η, for all k = 0, 1, ..., (37)where η > 0 is a measure of the �rm's on�dene of the auray of the nominal model. Let Qdenote the resulting onstraint set of disturbanes.Note that due to the presene of the unknown (but bounded) signal qk our initial assumptionthat S ⊂ R

n
+ may be violated. As we noted though in Setion 2.3, the system is input-output stable,therefore an appropriate shift of the state an always guarantee that the dynamis will evolve withinthe positive one. In partiular, onsider x̄ ∈ R

n
+, suh that

Fqk + x̄ ≥ 0, (38)for all qk satisfying (37), and de�ne instead the dynamis:
xk+1 = Axk + Bϕ(uk) + Fqk + x̄ , f(xk, uk, qk). (39)Note that shifting the dynamis by x̄ does not hange qualitatively the model, sine the state x stilldesribes propensities, but relative to x̄.For some F ∈ R

n×n let us also de�ne the vetor
rT
k+1 , βvTÃkF, k = 0, 1, ...,20



with rT
1 = βvTF . Let also:

rT
∞ , βvTÃ∞F.We would like to solve the following optimization for the omputation of a robust solution:

max
π∈Π

min
σ∈Σ

{

J(π,σ)(x0) , lim
N→∞

N−1
∑

k=0

βkg(xk, µk(xk))

}

, (40)subjet to the perturbed dynamis (39) and the onstraints (37)�(38). Here Σ denotes the set ofsequenes of poliies σ = (ν0, ν1, ...) of the unertainty, where νk is a funtion from the set of states
S to Q. Note also that due to the new shifted dynamis, a utility funtion of the form

g(x, u) = vTx − cTu − λ(x̄)would have been more appropriate. However, in that ase, and sine the last term is a onstant,the optimal poliy of (40) would have been idential.Proposition 4.3 (Optimal poliy under unertainty) Consider the in�nite horizon optimiza-tion of (40) under the perturbed dynamis (39) and the onstraint (37)�(38). The optimal stationarypoliy is µ∗ = (µ∗
1, ..., µ

∗
n), suh that

µ∗
i =







M i = arg max+
1 (h∞)

0 otherwise , i ∈ I. (41)Proof. To solve this optimization problem, we implement the dynami programming iteration. Infat, we reursively implement the operator T (·) de�ned as
(TJ)(x) , max

u∈C
min
q∈Q

{g(x, u) + βJ(f(x, u, q))}, (42)for any x ∈ S. The dynami programming iteration suessively gives:
JN (x) = vTÃNx +

N−1
∑

k=0

βkhT
N−ku

∗
N−k +

N−1
∑

k=0

βkrT
N−kq

∗
N−k +

N−1
∑

k=0

βk+1vTÃN−kx̄,for all N = 1, 2, ..., where u∗
k and q∗k denote the sequenes of optimal investments and disturbanes,respetively. In partiular, u∗

k = (u∗
1,k, ..., u

∗
n,k) and q∗k = (q∗1,k, ..., q

∗
n,k), are suh that

u∗
i,k =







M i = arg max+
1 (hk)

0 otherwise , i ∈ I,21



and
rT
k q∗k = −η |rk|∞ .In other words, the disturbane plaes all its weight on the maximum (in absolute value) entry of

rk, or
q∗i,k =







−η i = arg max+
1 (rk)

0 otherwise , i ∈ I.The order of max and min in the de�nition of the operator T (·) does not hange the optimalpoliies. Note also that:
H(x, u, q, J0) = g(x, u) + βJ0(f(x, u, q))

= J0(x) + βvTAx + βvT(Fq + x̄) + (βvTB − cT)u

≥ J0(x)for all x ∈ S, u ∈ C∗, q ∈ Q∗ and under ondition (38). Thus, from Proposition 3.2, the dynamiprogramming iteration provides the optimal in�nite value.Consider the stationary poliy (41) for the monopolisti �rm and the stationary poliy σ∗ =

(ν∗, ..., ν∗) for the disturbane suh that
rT
∞ν∗ = −η |r∞|∞ .Similarly to the proof of Proposition 4.2, the orresponding in�nite value is

J(π∗,σ∗)(x) = vTÃ∞x + hT
∞ lim

N→∞

N−1
∑

k=0

βkµ∗ + rT
∞ lim

N→∞

N−1
∑

k=0

βkν∗ + βvTÃ∞

N−1
∑

k=0

βkx̄

= vTÃ∞x +
M

1 − β
max+

1 (h∞) −
η

1 − β
|r∞|∞ +

β

1 − β
vTÃ∞x̄.By following similar reasoning to the proof of Proposition 4.2, we an show that

T(µ∗,ν∗)(J(π∗,σ∗)) = T (J(π∗,σ∗)).Therefore, aording to Proposition 3.2, (π∗, σ∗) provides the optimal lower value. It is also straight-forward to show that the sequene of poliies (π∗, σ∗) also provides the optimal upper value, de�ningthis way a solution to the max-min optimization problem. �Note that the robust optimal poliy for the perturbed model oinides with the optimal poliyfor the unperturbed or riskless model, i.e., exhibits a ertainty equivalene property. Suh propertywas expeted due to the linearity of the perturbed model (36) and the linearity of the utility funtion22



(6).5 Optimal Poliy in Duopoly5.1 PreliminariesThe previous setion omputed the optimal robust poliy for the problem of monopoly under norm-bounded model unertainty. In this setion, we would also like to inlude the possibility that aompetitive �rm tries to in�uene the preferenes of the ustomers towards buying its own produtas desribed by the more general duopoly model (4).The presene of a ompetitive �rm introdues a new soure of unertainty. We will either assumethat i) the ompetitive �rm has the form of a ompetitive fringe whih tries to enter the market,introduing a notion of sequential optimization (expressed by a Stakelberg solution), or ii) both�rms have the ability of simultaneous play (expressed by a Nash solution).Eah �rm ℓ ∈ L solves the following optimization problem:
max
πℓ∈Πℓ

{

J(πℓ,π−ℓ)(x
ℓ
0) , lim

N→∞

N−1
∑

k=0

βkg
(

xℓ
k, µ

ℓ
k(x

ℓ
k)
)

} (43)subjet to the system dynamis
xℓ

k+1 = Axℓ
k + Bϕ(µℓ

k, µ
−ℓ
k ) (44)where πℓ = (µℓ

1, µ
ℓ
2, ...) and π−ℓ = (µ−ℓ

1 , µ−ℓ
2 , ...) are the in�nite sequenes of poliies of the �rms ℓand −ℓ, respetively.De�nition 5.1 (Stakelberg solution) A Stakelberg solution is a pair of poliies (πℓ∗, π−ℓ∗) ∈

Πℓ × Π−ℓ suh that
π−ℓ∗ ∈ BR−ℓ(π

ℓ∗) , arg max
π−ℓ

{

J(π−ℓ,πℓ)(x
−ℓ
0 )
∣

∣

∣
πℓ∗
}and, furthermore,

πℓ∗ ∈ arg max
πℓ∈Πℓ

{

J(πℓ,π−ℓ)(x
ℓ
0)
∣

∣

∣
π−ℓ ∈ BR−ℓ(π

ℓ)
}

.In the above de�nition of a Stakelberg solution, we will refer to �rm ℓ as the leader and �rm
−ℓ as the follower. Note that the de�nition implies that �rm ℓ (or leader) announes �rst its poliy,while �rm −ℓ (or follower) reats to that poliy.De�nition 5.2 (Nash solution) A Nash solution is a pair of poliies (πℓ∗, π−ℓ∗) ∈ Πℓ×Π−ℓ suhthat

π−ℓ∗ ∈ BR−ℓ(π
ℓ∗) , arg max

π−ℓ∈Π−ℓ

{

Jπ−ℓ(x−ℓ
0 )
∣

∣

∣
πℓ∗
}23



and, furthermore,
πℓ∗ ∈ BRℓ(π

−ℓ∗) , arg max
πℓ∈Πℓ

{

Jπℓ(xℓ
0)
∣

∣

∣
π−ℓ∗

}

.We will also refer to these solutions as Markovian or losed-loop Nash solutions. If, instead, themaximization in the de�nition of the Nash solution is restrited to the set of sequenes of ontrolinputs in Cℓ, then the orresponding solutions will be referred to as open-loop Nash solutions. Notethat these de�nitions of Nash solutions impliitly assumes a simultaneous announement of poliiesfrom both �rms.A straightforward impliation of the above de�nitions is the following laim.Claim 5.1 Any Stakelberg solution is also a Nash solution.5.2 Open-loop stationary Nash equilibriaIn this setion, we will restrit our attention to open-loop Nash equilibria that are also stationary,i.e., time-independent. Before haraterizing this family of Nash solutions, de�ne the set of ations
Aℓ , {α1, α2, ..., αn}, ℓ ∈ L, suh that for eah i ∈ {1, 2, ..., n}, αi = (αi,1, αi,2, ..., αi,n) where

αi,j ,







M j = arg max+
i (h∞),

0 otherwise, j = 1, 2, ..., n.In other words, the ation αi orresponds to investing all available funds to the ith largest non-negative entry of h∞. Note that the set of ations de�ne an isomorphi set of stationary poliies,i.e., for eah ation αi there is a stationary poliy (αi, αi, ...). Let us also denote by J(i,j)(x) theorresponding in�nite horizon value for initial ondition x when one �rm applies stationary poliy
(αi, αi, ...) and the other �rm applies stationary poliy (αj , αj , ...). Any other open-loop stationarypoliy µℓ an be represented as a mixture of ations in Aℓ, i.e.,

µℓ =































α1, with probability pℓ
1

α2, with probability pℓ
2

...

αn, with probability pℓ
n

, ℓ ∈ L, (45)
where pℓ

i ≥ 0, i ∈ I, and ∑i p
ℓ
i = 1. The orresponding value of the objetive funtion (43) for anyopen-loop stationary poliy is haraterized by the following proposition.Proposition 5.1 (Payo�s under stationary open-loop poliies) When both �rms ℓ ∈ L ap-ply an open-loop stationary poliy πℓ = (µℓ, µℓ, ...) satisfying (45), the in�nite value of the objetive24



funtion J(πℓ,π−ℓ) de�ned by (43), is
J(πℓ,π−ℓ) =

∑

i∈I

∑

j∈I

J(i,j)p
ℓ
ip

−ℓ
j ,where

J(i,j)(x) =







vTÃ∞x + 1
1−β

[−cTαi], i = j,

vTÃ∞x + 1
1−β

[hT
∞αi], i 6= j,

x ∈ Sℓ, ℓ ∈ L. (46)Proof. When the pair of stationary poliies (πℓ, π−ℓ) is applied, where πℓ = (µℓ, µℓ, ...) and π−ℓ =

(µ−ℓ, µ−ℓ, ...), the orresponding value of the objetive funtion of �rm ℓ will be:
J(πℓ,π−ℓ)(x) = vTÃ∞x + lim

N→∞

N−1
∑

k=0

βk
[

(h∞ + c)Tϕ
(

µℓ(x), µ−ℓ(x)
)

− cTµℓ(x)
]

= vTÃ∞x +
1

1 − β

[

(h∞ + c)Tϕ
(

µℓ(x), µ−ℓ(x)
)

− cTµℓ(x)
]for some initial state x ∈ Sℓ. If µℓ = µ−ℓ = αi, then the orresponding in�nite value of the objetivefuntion of ℓ, denoted J(i,i), is:

J(i,i)(x) = vTÃ∞x +
1

1 − β
[−cTαi].If, instead, µℓ = αi and µ−ℓ = αj with i 6= j, the orresponding in�nite value of the objetivefuntion ℓ, denoted J(i,j), is:

J(i,j)(x) = vTÃ∞x +
1

1 − β
[hT

∞αi].Then, the orresponding expeted return of �rm ℓ ∈ L is:
J(πℓ,π−ℓ)(x) = vTÃ∞x +

1

1 − β

∑

i∈I

∑

j∈I

[

(h∞ + c)Tϕ(αi, αj) − cTαi

]

pℓ
ip

−ℓ
j

=
∑

i∈I

∑

j∈I

[

vTÃ∞x +
1

1 − β

[

(h∞ + c)Tϕ(αi, αj) − cTαi

]

]

pℓ
ip

−ℓ
j

=
∑

i∈I

∑

j∈I

J(i,j)p
ℓ
ip

−ℓ
j ,whih onludes the proof. �Thus, we may de�ne an equivalent one-stage symmetri game of two players, �nite set of ations

Aℓ = {α1, α2, ..., αn} for eah player ℓ ∈ L, and payo� matrix of the row player whih is given byTable 1. 25



α1 α2 αn

α1 J(1,1) J(1,2) ... J(1,n)

α2 J(2,1) J(2,2) ... J(2,n)... ... ... ...
αn J(n,1) J(n,2) ... J(n,n)Table 1: Equivalent one-shot symmetri game in open-loop stationary poliies.A diret onsequene of Claim 5.1 is the following:Claim 5.2 The following hold:1. J(i,j)(x) ≥ J(i,i)(x) for all i, j ∈ I with i 6= j;2. J(i,j)(x) = J(i,j′)(x) for all i, j, j′ ∈ I suh that j 6= i and j′ 6= i;3. J(i,j)(x) ≥ J(j,i)(x) for all i, j ∈ I with i > j.Proposition 5.2 (Stakelberg & Nash solutions) Consider the optimization problem (43) un-der the dynamis (44) and the onstraints (1) with M ℓ = M−ℓ, i.e., both �rms have identialadvertising power. For any ℓ ∈ L, the pair of open-loop stationary poliies π∗ = (πℓ∗, π−ℓ∗) where

πℓ∗ = (µℓ∗, µℓ∗, ...) and µℓ is de�ned by (45) satisfying either1. pℓ
1 = p−ℓ

2 = 1, or2. pℓ
1 = p−ℓ

2 =
J(1,2)−J(2,2)

J(1,2)−J(1,1)+J(2,1)−J(2,2)
,de�nes an open-loop Nash solution. Furthermore, when ℓ ∈ L has the opportunity to announe�rst its poliy, any one of the above pairs of open-loop stationary poliies also de�nes an open-loopStakelberg solution.Proof. The �rst laim is a diret onsequene of Claim 5.2 and the fat that any one of thepoliies orresponding to the ases (1) and (2) de�nes a Nash equilibrium for the equivalent one-shot symmetri game of Table 1.Assume now that ℓ has the opportunity to announe its strategy �rst. In order to show that

(πℓ∗, π−ℓ∗) de�nes a Stakelberg solution, we need to verify that the leader's poliy πℓ∗ guaran-tees maximum return over all possible announed poliies. It is straightforward to show that anyannouned poliy that does not alloate all available funds to arg max+
1 (h∞) will result to a bestresponse of the follower that an only derease leader's optimal value. �The onlusions of Proposition 5.2 do not neessarily hold when we onsider di�erent spendingpowers for the �rms, i.e., when M ℓ 6= M−ℓ. However, extending the onlusions of Proposition 5.2,to that ase is straightforward.Another straightforward impliation of Proposition 5.2 is summarized in the following orollary.26



Corollary 5.1 The open-loop stationary Nash solutions haraterized by Proposition 5.2 are alsolosed-loop Nash solutions.This is due to the fat that open-loop strategies are a subset of Markovian or state-dependentstrategies.A omplete haraterization of the set of losed-loop Nash solutions is going beyond the sopeof this paper, sine it is highly ase-dependent, i.e., it depends on the lass of poliies whih willbe onsidered reasonable for the appliation of interest. For example, if we assume that the lass ofstrategies over whih the optimization is exeuted are a�ne funtions of the state, then a new lassof losed loop Nash solutions an easily be omputed using the framework proposed in this paper.5.3 Max-min solutionsComputation of Nash equilibria by either �rm requires that �rms are aware of the performaneindies of the ompetitors. Suh an assumption may be quite strong espeially in a ompetitiveenvironment.When �rms are not able to ompute Nash solutions, omputing an optimal strategy whih isrobust to any possible poliy of the ompetitor might be the only possibility. Suh an optimizationproblem an be formulated as a max-min optimization.We are going to onsider two �rms with di�erent expenditure apabilities. In partiular, weonsider the following two senarios: a) M ℓ > M−ℓ, and b) M ℓ ≤ M−ℓ for any ℓ ∈ L.The �rm ℓ ∈ {a, b} solves the following max-min optimization problem:
max
π∈Π

min
σ∈Σ

{

J(π,σ)(x0) , lim
N→∞

N−1
∑

k=0

βkg (xk, µk(xk))

} (47)over the set Π of in�nite sequenes of poliies (µ0, µ1, ...) and subjet to the system dynamis
xk+1 = Axk + Bϕ(µk, νk). (48)The set Σ denotes the olletion of in�nite sequenes of poliies (ν0, ν1, ...) of the ompetitor. Inwords, the above optimization re�ets the situation at whih the �rm wishes to announe a strategywhih will provide the optimal returns assuming that the ompetitor ats to minimize these returns.To simplify notation, we have removed the supersript ℓ from the above optimization variables. Itis straightforward to show that the following holds:Proposition 5.3 Consider the optimization problem (47) under the dynamis (48) and the on-straints (1). If M ℓ > M−ℓ, i.e., the advertising power of the �rm is larger than the ompetitor's27



one, then the optimal strategy of the �rm will be a stationary poliy (µ∗, µ∗, ...) suh that
µ∗

i =







M i = arg max+ (h∞)

0 otherwise , i ∈ I. (49)Note that this is not neessarily the ase when the advertising power of the �rm is less than theorresponding one of the ompetitor's. It is straightforward to see that in that ase, any strategywill be optimal, sine the ompetitor has the power to ounterat any announed strategy of the�rm.6 ConlusionsWe disussed the problem of deriving optimal advertising strategies in a network of ustomers.Contrary to prior work, the dynamis of preferenes were also a�eted by an underlying network ofonnetions whih introdues a form of word-of-mouth e�ets between nodes. The derived optimalpoliies are related to and extend prior introdued notions of entrality measures usually onsideredin soiology. Although the assumed model of the evolution of preferenes might be the outomeof an identi�ation proess, it is likely that we are unertain about its auray. To this end,we also onsidered a perturbed model whih models possible misspei�ations or unertainties ofthe nominal model, and we derived robust optimal strategies. It was shown that the monopolymodel exhibits a ertainty equivalene property, i.e., the optimal strategies for the perturbed modeloinide with the optimal strategies for the unperturbed or riskless model. Suh behavior an beattributed to both the linearity of the monopoly dynamis and the linearity of the utilities. Finally,we investigated robust poliies in a duopoly framework. In partiular, we haraterized the set ofopen-loop Nash solutions, whih also happens to be losed-loop Nash solutions. The model aneasily be utilized to aommodate senarios at whih more ompliated forms of strategies are ofinterest, leading to new forms of losed-loop Nash solutions. We �nally haraterized the set ofmax-min solutions in a duopoly framework, when the �rm makes no assumptions about the utilitiesof the ompetitive �rm.Referenes[1℄ M. L. Vidale and H. B. Wolfe, �An operations researh study of sales response to advertising,�Operations Res., vol. 5, pp. 370�381, 1957.[2℄ S. Jørgensen and G. Zaour, Di�erential Games in Marketing. Kluwer Aademi Publishers,2004. 28
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