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Control of Preferen
es in So
ial Networks∗Georgios C. Chasparis† Je� S. Shamma‡January 30, 2012Abstra
tWe 
onsider the problem of deriving optimal advertising poli
ies for the spread of innovationsin a so
ial network. We seek to 
ompute poli
ies that a

ount for i) endogenous networkin�uen
es, ii) the presen
e of 
ompetitive �rms, that also wish to in�uen
e the network, andiii) possible un
ertainties in the network model. Contrary to prior work in optimal advertising,whi
h also a

ounts for network in�uen
es, we assume a dynami
al model of preferen
es and we
ompute optimal poli
ies for either a �nite or in�nite horizon. These optimal poli
ies are relatedto and extend prior introdu
ed notions of 
entrality measures usually 
onsidered in so
iology.We also 
ompute robust optimal poli
ies in the 
ase where the evolution of preferen
es is a�e
tedby misspe
i�ed dynami
s or un
ertainties whi
h 
an be modeled as external disturban
es of thenominal dynami
s. Under these perturbed dynami
s, we formulate a max-min optimization to
ompute an optimal poli
y whi
h is robust to a 
lass of norm-bounded un
ertainties. We alsoshow that the optimization exhibits a 
ertainty equivalen
e property, i.e., the optimal valuesof the 
ontrol variables are the same as if there were no un
ertainty. Finally, we investigatethe s
enario where a 
ompetitive �rm also tries to in�uen
e the network. In this 
ase, robustoptimal solutions are 
omputed in the form of i) Nash and Sta
kelberg equilibria, and ii) max-min solutions.1 Introdu
tionThis paper is 
on
erned with the derivation of optimal advertising strategies in a network of 
us-tomers whose preferen
es are a�e
ted by both their neighbors and the in
entives provided throughadvertising. The 
ontribution of this paper lies in the in
lusion of three important fa
tors in thederivation of an optimal advertising strategy: i) dynami
 network e�e
ts in the formation of prefer-en
es, ii) possible misspe
i�
ations/un
ertainties in the assumed model of evolution of preferen
es,and iii) un
ertainty in the intentions of a 
ompetitive �rm that also tries to in�uen
e the network.
∗This work was supported by AFOSR proje
ts #FA9550-05-1-0321 and #FA9550-09-1-0420.
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The literature on optimal advertising starts with the pioneering work of [1℄ in a monopolyframework and it has been extended to di�erential games in oligopolies, a detailed survey of whi
h
an be found in [2℄. The main obje
tive of this line of work, as very well stated in [3℄, is to set up anoptimal 
ontrol problem to determine the optimal rate of advertising expenditures over time in a waythat maximizes the net pro�t of the �rm. To this end, prior work has fo
used on i) the derivationof dynami
 models whi
h 
apture the sales response to advertising, and ii) the 
omputation of anoptimal poli
y of advertising as a fun
tion of the sales.Those models whi
h 
apture the e�e
t of advertising on sales are usually des
ribed by meansof a di�erential or di�eren
e equation whi
h des
ribe the evolution of the state (usually the salesrate or the market share) as a fun
tion of the state and the advertising expenditures. We willgenerally assume that �rms have some way of knowing or estimating the dynami
s of sales responseto advertising. The estimation of these dynami
s will not be part of this work. Moreover, severalsales-to-advertising models are also a fun
tion of other properties of the produ
t, su
h as its pri
eor quality, whi
h will not be 
onsidered here.Prior sales-to-advertising models usually 
apture the following phenomena: i) advertising e�e
tspersist over the 
urrent period but diminish with time [1℄, ii) marginal advertising e�e
ts diminish orremain 
onstant with the size of advertising [4℄, iii) advertising e�e
ts diminish with the size of sales[1, 5, 6℄, iv) advertising e�e
ts diminish with the size of 
ompetitive advertising [7, 5, 8, 9, 10, 11℄,and v) advertising e�e
ts are a�e
ted by word-of-mouth 
ommuni
ation (or ex
ess advertising) [12℄.Depending on the formulation of sales response to advertising, models have also been 
ategorizedin: i) sales response models (where the state is the rate of sales) [1℄, ii) market share models (wherethe state is the share of the market) [5℄, iii) di�usion models (whi
h 
apture the market growth)[13℄, and iv) goodwill models (whi
h 
apture the evolution of advertising 
apital) [14℄.Our model is also related to those models. It exhibits diminishing returns with time in theabsen
e of advertising e�ort, 
onstant marginal returns with the size of advertising, and diminishingreturns with the size of 
ompetitive advertising. It extends traditional advertising models by also
onsidering the e�e
t of word-of-mouth 
ommuni
ation through a network of intera
tions similarlyto [15, 16℄. We model network e�e
ts similarly to the model of [16℄. However, the analysis hereis not restri
ted to the equilibrium state of the evolution of preferen
es. Instead, the dynami
s ofnetwork e�e
ts be
ome part of the optimization. Using this model, we are able to derive analyti
allyoptimal advertising strategies whi
h are related to and extend prior introdu
ed notions of 
entralitymeasures usually 
onsidered in so
iology [17℄.At the same time, we would also like to 
onsider the possibility that we are un
ertain about thea

ura
y of the preferen
es update, instead of assuming a deterministi
 update. Usually sto
hasti
extensions of existing models have been 
onsidered, e.g., [18, 19℄. In this paper, we would like to
onsider un
ertainties that 
an in
orporate possible unmodeled dynami
s. Under these perturbeddynami
s, we formulate a max-min optimization to 
ompute an optimal poli
y whi
h is robust to a2




lass of norm-bounded un
ertainties. We show, as probably expe
ted, that the optimization exhibitsa 
ertainty equivalen
e property, that is, the optimal values of the 
ontrol variables are the same asif there were no un
ertainty.Finally, we also investigate the possibility that a 
ompetitive �rm also tries to in�uen
e thenetwork, introdu
ing a se
ond form of un
ertainty. In this 
ase, and when the obje
tive of the
ompetitive �rm is to maximize its sales, the strategy of the 
ompetitive �rm may not be known.We will either assume that i) the 
ompetitive �rm has the form of a 
ompetitive fridge whi
h triesto enter the market, introdu
ing a notion of sequential optimization (expressed by a Sta
kelbergsolution), or ii) both �rms have the ability of simultaneous play (expressed by a Nash solution).Under these s
enarios, we provide a 
omplete 
hara
terization of Nash solutions (also Sta
kelbergsolutions) within the set of open-loop strategies. These solutions are also a subset of 
losed-loop (orMarkovian) Nash solutions. A 
omplete 
hara
terization of the set of 
losed-loop Nash solutionsis going beyond the s
ope of this paper, sin
e it is highly 
ase-dependent, i.e., it depends on the
lass of poli
ies whi
h will be 
onsidered reasonable for the s
enario of interest. However, theproposed framework 
an be easily utilized to provide 
losed-loop Nash solutions when the 
lass ofpoli
ies, over whi
h we are optimizing, is spe
i�ed. Finally, we investigate the s
enario where �rmsare also un
ertain about the obje
tives of the 
ompetitor, whi
h 
an be formulated as a max-minoptimization.The remainder of the paper is organized as follows. Se
tion 2 des
ribes the problem under
onsideration. Se
tion 3 dis
usses some ne
essary ba
kground on dynami
 programming. Se
tion 4derives �nite- and in�nite-horizon optimal poli
ies in a monopoly under unperturbed and perturbedpreferen
es update. Se
tion 5 
omputes Sta
kelberg and Nash solutions in a duopoly. Finally,Se
tion 6 presents 
on
luding remarks.Notation: For any ve
tor x ∈ R
n, where xi is its ith entry,

− |x| denotes its Eu
lidean norm,
− |x|∞ , max{|x1|, ..., |xn|},
− max+

1 (x) , max{0, x1, x2, ..., xn},

− max+
i (x) , max

{

{0, x1, x2, ..., xn}\
⋃i−1

k=1 max+
k (x)

}

, for i > 1,
− for some α > 0, sat(x;α) , (y1, y2, ..., yn) su
h that

yi =



















α xi ≥ α

xi 0 < xi < α

0 xi ≤ 0

, i = 1, 2, ..., n.

3



2 Problem Des
ription2.1 Evolution of preferen
esThe problem 
onsiders a pair of �rms L = {a, b} and a �nite set of 
ustomers or nodes I =

{1, 2, ..., n}.1 We will denote a �rm by ℓ ∈ L and a 
ustomer by i ∈ I. We assume that the
ustomers are nodes in a given dire
ted network, whi
h is des
ribed by a row sto
hasti
 matrix W .2The matrix W 
aptures how nodes' pro
livities towards the produ
t of either �rm a or �rm b area�e
ted by its neighbors.Let xℓ
i,k ≥ 0 denote the pro
livity of node i towards buying the produ
t of �rm ℓ ∈ {a, b} attime k, and

xℓ
k , (xℓ

1,k, x
ℓ
2,k, ..., x

ℓ
n,k) ∈ R

n
+be the ve
tor of pro
livities over the whole network. We will refer to this ve
tor as the state of �rm

ℓ and we will denote by Sℓ ⊂ R
n
+ the 
orresponding set of states.Firm ℓ ∈ L is able to in�uen
e the pro
livity of node i ∈ I towards its produ
t by marketingits produ
t to node i, e.g., by o�ering dis
ounts or warranties. Let uℓ

i,k ≥ 0 denote the amount offunds that �rm ℓ spends on marketing its produ
t to node i at time k, and
uℓ

k , (uℓ
1,k, u

ℓ
2,k, ..., u

ℓ
n,k) ∈ R

n
+be the ve
tor of funds �rm ℓ spends over the set of nodes I. We will refer to this quantity as the
ontrol of �rm ℓ. We will also assume that the amount of funds ea
h �rm 
an spend at any giventime 
annot be larger than M ℓ, i.e.,

∑

i∈I

uℓ
i,k ≤ M ℓ for all k = 0, 1, .... (1)Let Cℓ ⊂ R

n
+ denote the resulting 
onstraint set of 
ontrols.The spe
i�
 relation between the 
ontrols and the states is motivated by the work of [16, 20℄ onso
ial in�uen
e network theory and it is des
ribed by the following di�eren
e equation:

xℓ
k+1 = ΘWxℓ

k + (I − Θ)ϕ(uℓ
k, u−ℓ

k ) (2)whi
h provides the pro
livity of node i at time k + 1 as a 
onvex 
ombination of i) a weightedaverage of the pro
livities of the neighbors and ii) the external in�uen
e 
aused by both own and
ompetitive advertising. The notation −ℓ denotes the 
omplementary set L\ℓ. The matrix Θ is1An extension of the forth
oming analysis to multiple number of �rms will be straightforward.2A row sto
hasti
 matrix W is a nonnegative matrix whi
h also satis�es W1 = 1, i.e., the sum of its entries inany row is equal to 1. 4



assumed diagonal su
h that
Θ = diag{θ1, θ2, ..., θn},with diagonal entries satisfying
0 ≤ θi < 1, ∀i ∈ I. (3)The 
onstraint (3) has a natural interpretation sin
e it implies that there is no node that 
om-pletely ignores external in�uen
e. Furthermore, in the absen
e of external in�uen
e, it also modelsdiminishing returns with time. We will simplify notation by rewriting the dynami
s in the form:

xℓ
k+1 = Axℓ

k + Bϕ(uℓ
k, u−ℓ

k ), (4)where A , ΘW and B , I − Θ. Variations of this nominal model will also be 
onsidered later onin this paper when �rms are un
ertain about the a

ura
y of the model.The fun
tion ϕ : Cℓ×C−ℓ → [0, α1]× ...× [0, αn], for some αi > 0, i ∈ I, maps the 
ontrol ve
torsof both �rms to a ve
tor of in�uen
es over the set of nodes I. It is assumed to be nonnegative andbounded above, i.e., the amount of external in�uen
e is �nite. We will refer to this fun
tion as thein�uen
e fun
tion. We would like fun
tion ϕ to also satisfy the following property:Property 2.1 The in�uen
e fun
tion ϕ : Cℓ × C−ℓ → [0, α1] × ... × [0, αn], for some αi > 0, i ∈ I,is su
h that:1. ϕi(u
ℓ
k, u

−ℓ
k ) ≥ 0, if uℓ

i,k ≥ u−ℓ
i,k;2. ϕi(u

ℓ
k, u

−ℓ
k ) = 0, if uℓ

i,k < u−ℓ
i,k.In other words, we would like the in�uen
e of �rm ℓ's advertising to be nonnegative when �rm ℓ isinvesting more on advertising than its 
ompetitor, and zero, otherwise. That is, a 
ustomer wouldbe in�uen
ed towards either one of the �rms depending on the relative size of their advertising.One 
andidate fun
tion whi
h satis�es the above property is the following:
ϕi(u

ℓ
k, u

−ℓ
k ) , sat(uℓ

i,k − u−ℓ
i,k;αi) (5)for some αi > 0, i = 1, 2, ..., n.We will refer to the above model as duopoly. When, instead, u−ℓ

i,k ≡ 0 for all i ∈ I and
k = 0, 1, ..., we will refer to this model as monopoly.The proposed update of preferen
es exhibits diminishing returns to both own and 
ompetitiveadvertising, whi
h is due to the de�nition of the in�uen
e fun
tion. It also exhibits diminishingreturns with time, due to the de�nition of the matrix Θ. Finally, it models the e�e
t of word-of-mouth (or ex
ess) advertising due to the assumed network of 
onne
tions.5



2.2 Obje
tiveThe utility of �rm ℓ ∈ L at time k is de�ned as:
g(xℓ

k, uℓ
k) = V (xℓ

k) − C(uℓ
k) (6)where we assume that the reward is linear with the pro
livities of the nodes, i.e.,

V (xℓ
k) = vTxℓ

k,for some ve
tor v ∈ R
n
+, and the 
ost is linear with the funds spent on advertising, i.e.,

C(uℓ
k) = cTuℓ

k,for some c ∈ R
n
+.For some dis
ount fa
tor β ∈ (0, 1), the obje
tive of �rm ℓ has the following form

max
πℓ∈Πℓ

{

Jπℓ(x) , lim
N→∞

N−1
∑

k=0

βkg(xℓ
k, µ

ℓ
k(x

ℓ
k))

} (7)over the set of in�nite sequen
es of poli
ies Πℓ with elements πℓ = (µℓ
0, µ

ℓ
1, ...) where µℓ

k is a fun
tionfrom the set of states S to the set of 
ontrols C. The above optimization is subje
t to the dynami
s(4). Later on, we are also going to 
onsider variations of this optimization, espe
ially when dynami
s(4) are perturbed and robust optimal poli
ies need to be derived.For the remainder of the paper, the proposed advertising model 
hara
terized by the dy-nami
s of (4) and the utility fun
tion (6) will be denoted by M .2.3 Assumptions and preliminariesFor the remainder of the paper, we are also going to 
onsider the following assumptions:Assumption 2.1 βvTB − cT > 0.This assumption 
an be written equivalently as
βvi(1 − θi) − ci > 0, i = 1, 2, ..., n.It implies that, for every unit of advertising e�ort, the dis
ounted return re
eived from ea
h node isstri
tly greater than the 
orresponding 
ost. This is a reasonable assumption and it is also relatedto the existen
e of a non-degenerate solution to the optimization problems 
onsidered here.Assumption 2.2 αℓ

i ≥ M ℓ
i for all i ∈ I and ℓ ∈ L.6



This assumption implies that ea
h 
ustomer's 
apa
ity of getting in�uen
ed through advertising islarger than the advertising power of ea
h �rm. This is not a ne
essary assumption for the existen
e ofsolutions, however, it simpli�es the following analysis. The derivation of the 
orresponding solutionsin 
ase Assumption 2.2 does not hold is also straightforward and qualitatively remains identi
al.In the presentation of the model, we have impli
itly assumed that the evolution of preferen
es isgoverned by identi
al dynami
s for both �rms. This assumption allows for a 
leaner presentation ofthe analysis, however, as it will be
ome obvious later, it does not 
hange qualitatively the solutions.We also assume that the utility fun
tions of both �rms are identi
al. This implies that bene�tsand 
osts are materialized as a fun
tion of the pro
livities and investments similarly for both �rms.This is a reasonable assumption, however, the following analysis 
an be easily modi�ed to in
ludethe 
ase of di�erent utility fun
tions.Note, �nally, that the proposed preferen
es update (4) 
onstitutes a linear time-invariant systemwith bounded inputs. It is straightforward to show that the above system is input-output stablein the sense that there exists nonnegative 
onstants ζ, θ su
h that the solution to the di�eren
eequation, denoted x(k, x0, u), satis�es |x(k, x0, u)| ≤ ζ + θ‖u‖∞, where ‖u‖∞ , sup{|uk| : k ∈ Z+}.This is due to the fa
t that W is a row sto
hasti
 matrix and Θ satis�es the 
onstraint (3). The
onstraint (3) on matrix Θ also implies the 
ontrollability (
f., [21℄) of the system (A,B), simplybe
ause rank(B) = rank(I − Θ) = n.2.4 Alternative models and dis
ussionThe dynami
s of preferen
es (4) is based on the assumption that agents are bounded rational, sin
etheir preferen
es are a weighted average of neighbors' preferen
es. Full rationality instead may notne
essarily lead to better models due to the resulting 
omputational 
omplexity. A similar modelin the 
ontext of evolution of preferen
es without external in�uen
e has also been 
onsidered by[22, 23℄ to study the di�usion of innovations and norms in a so
ial network. This model has alsobeen related to alternative measures of 
entrality as dis
ussed in [17, 24℄.In this paper, we modi�ed the model used by [22, 23℄ to in
lude the possibility of an external
ontrol in�uen
e (4), e.g., due to advertising e�e
ts. The proposed model bears similarities withseveral previously introdu
ed advertising models, e.g., the goodwill models of [14℄, new produ
tdi�usion models [13℄ or extensions of the Vidale-Wolfe model [1℄. In the following subse
tions wedis
uss some of the similarities and di�eren
es between these models with the proposed M .2.4.1 Comparison with goodwill modelsAdvertising goodwill models (see, e.g., [2, Se
tion 3.5℄) 
apture the evolution of the advertising
apital. For example, the advertising goodwill model introdu
ed in the seminal paper [14℄ assumes7



the following dynami
s
Ġ(t) = u(t) − δG(t), (8a)where G(t) here represents the advertising 
apital. The main di�eren
e with the proposed model Mis that the latter in
ludes dire
tly the interpersonal in�uen
es through the assumed 
ommuni
ationnetwork modeling a form of word-of-mouth 
ommuni
ation. Note also that the 
ontrol input oradvertising e�ort u in�uen
es dire
tly the advertising 
apital. Similar is the assumption in M ,where the advertising e�ort dire
tly in�uen
es the preferen
es of all nodes. As we will see later, thisis not ne
essarily the 
ase in other advertising models, where the advertising e�ort only applies tothe unde
ided part of the population. In other words, both M and the goodwill models investigatesituations where the produ
t is re
ently laun
hed in the market and all 
ustomers are willing torevise their preferen
es regardless of prior preferen
es.The dynami
s (8a) 
an also be modi�ed to in
lude the possibility of multiple �rms, e.g., themodels in [25, 26℄. For example, the model 
onsidered in [26℄ assumes

Ġi(t) =
√

ui(t) − δGi(t), Gi(0) = Gi0 > 0, i ∈ {1, 2}, (8b)and the sales rate xi (similarly to the proposed ve
tor of pro
livities) depends on the advertising
apital of both �rms, i.e., xi = xi(G1, G2), where ∂xi/∂Gi > 0 and ∂xi/∂Gj < 0 for i 6= j.Note that the square root of the 
ontrol input in (8b), whi
h has also been used in otheradvertising models (see, e.g., [5℄), 
aptures diminishing returns with the size of advertising e�ort.Alternatively, diminishing returns 
an also be modeled indire
tly by 
onsidering a squared 
ost inthe utility fun
tion. For example, in [6℄ the term u2
i is 
onsidered instead in the 
ost fun
tion,or in [27℄ more general non-linear fun
tions of ui are 
onsidered whi
h are 
onvex in
reasing. Inthe proposed model M , diminishing returns with the advertising e�ort are modeled indire
tly byassuming the saturation e�e
t of the in�uen
e fun
tion.A squared 
ost term in the utility fun
tional 
ould also be in
luded in the proposed model in
omparison to the initially proposed model M of Se
tion 2.1. For example, an alternative utilityfun
tional that in
orporates diminishing returns with the size of advertising 
ould be:

g(xℓ
k, u

ℓ
k) = vTxℓ

k −
(

uℓ
k

)T
Cuℓ

k (9)where C , diag(c), i.e., C is a diagonal matrix where the diagonal entries 
oin
ide with the entriesof the ve
tor c. Some of the ni
e analyti
al properties of M are also shared by the above quadrati

ost fun
tion (9), su
h as the forth
oming analyti
al solution of the monopoly optimization problem.
8



2.4.2 Comparison with market-share response modelsThe previously des
ribed goodwill advertising models and the proposed model M di�er from the
lass of market-share response models emanating from the model of Vidale-Wolfe [1℄. An extensionof this model to a duopoly has been 
onsidered by [7℄ and is des
ribed by:
ẋi = (1 − xi − xj)ui − δixi, xi(0) = xi0, i, j ∈ {1, 2}, i 6= j. (10)A small modi�
ation 
an also a

ount for ex
ess advertising e�e
ts due to word-of-mouth in�uen
esin the population, su
h as the model in [28℄ des
ribed by

ẋi = (1 − xi − xj)ui − δixi + ei(ui − uj)(xi + xj), xi(0) = xi0, i, j ∈ {1, 2}, i 6= j, (11)where the last term represents the persons swit
hing from �rm j to i as a result of the word-of-mouthpro
esses.Contrary to both M and the goodwill advertising models, where the advertising e�ort appliesdire
tly to the whole population, in the market-share response generalizations of Vidale-Wolfe'smodel [1℄, the 
ontrol applies only to the unde
ided part of the population. The last term of thedynami
s (11), whi
h models ex
ess advertising, applies to the de
ided part of the market andmodels transfers due to ex
ess of advertising. This term also resembles the in�uen
e fun
tion ϕ
onsidered in M , where the in�uen
e on a node depends only on the ex
ess part of the advertisinge�orts at that node.Note, however, that a small modi�
ation of the proposed model M 
an a

ount for behaviorsthat are present in the market-share models [1℄. For example, if we instead 
onsider the followingin�uen
e fun
tion:
ϕi(u

ℓ
k, u

−ℓ
k ) , diag

(

αℓ
1 − x−ℓ

k

)

uℓ − diag
(

αℓ
1− xℓ

k

)

u−ℓ. (12)then the advertising e�orts of either �rm applies only on the part of the market whi
h is eitherunde
ided or has di�erent preferen
es. When we assume the alternative dynami
s with the in�u-en
e fun
tion (12), then an analyti
al derivation of a 
losed-form solution, even for the monopolyframework, is not feasible any more. In the forth
oming analysis, we will only 
onsider the initiallyproposed in�uen
e fun
tion whi
h provides 
losed-form solutions, however future work may in
ludealternative forms of the in�uen
e fun
tion that a

ept only 
omputational solutions.Similar remarks also hold for the models emanating from the Lan
haster model of 
ombat, su
has the models of [29, 8, 9, 10, 11℄. The main di�eren
e of Lan
hester models with the Vidale-Wolfe models is that in the latter ones the e�e
t of 
ompetitive advertising onto the market shareis indire
tly in
luded (through the unde
ided portion of the market). Instead, in the Lan
hestermodels, the e�e
t of 
ompetitive advertising is dire
tly in
luded in the dynami
s of market share.9



This dis
ussion reveals the �exibility of the proposed model M to in
orporate alternative be-haviors or modeling ideas whi
h have already been dis
ussed in prior literature. In several 
asesthough, it is also desirable that a sales-to-advertising model also provides 
losed-form optimal so-lutions whi
h avoids 
omputational burdens. The proposed model M and its extensions hereinexhibit most of the observed phenomena of sales-to-advertising models and, as we will dis
uss later,it provides attra
tive 
losed-form expressions of optimal strategies under several s
enarios.3 Dynami
 Programming Ba
kgroundThe notation and part of the analysis in this se
tion follows [30℄.3.1 The dynami
 programming algorithmDenote by J the set of all extended real-valued fun
tions of the form J : S → R
∗, de�ned on thestate spa
e S and taking values on the extended real line R

∗ = [−∞,+∞].For some time horizon N ∈ N, 
onsider the generi
 �nite-horizon optimization problem:
max
π∈Π

{

JN,π(x0) , E

{

g(xN ) +

N−1
∑

k=0

βkg(xk, µk, wk)

}} (13)over any admissible poli
y π = {µ0, µ1, ..., µN−1} ∈ Π, where µk ∈ M for all k, and M is the set offun
tions from the set of states S to the set of 
ontrols C. Furthermore, g(xN ) de�nes the 
ost atthe �nal stage, whi
h depends only on the �nal state xN .The above optimization is subje
t to the system dynami
s
xk+1 = f(xk, uk, wk),where {wk} denotes a noise sequen
e taking values in a measurable spa
e (W,F). Denote J∗

N (x)the optimal value of the N -stage obje
tive fun
tion. Finally, assume that
|g(x, u,w)| < ∞, for all x ∈ S, u ∈ C, w ∈ W.For any fun
tion J ∈ J , de�ne the following fun
tion

(TJ)(x) , max
u∈C(x)

E{g(x, u,w) + βJ(f(x, u,w))}, x ∈ S.Note that (TJ)(·) is the optimal value fun
tion for the one stage problem that has stage 
ost g andterminal 
ost βJ .Also, we will denote by T k the 
omposition of the mapping T with itself k times; i.e., for all10



k = 1, 2, ..., we write
(T kJ)(x) = (T (T k−1J))(x), x ∈ S.For 
onvenien
e, we also write (T 0J)(x) = J(x).Similarly, for any fun
tion J ∈ J and any poli
y µ : S → C, we denote:

(TµJ)(x) , E{g(x, µ(x), w) + βJ(f(x, µ(x), w))}. (14)Again, TµJ may be viewed as the 
ost fun
tion asso
iated with the poli
y µ for the one-stageproblem that has stage 
ost g and terminal 
ost βJ .The dynami
 programming algorithm (DP) is the following algorithm; for any k = 1, ..., N
ompute
Jk(x) = (TJk−1)(x), (15)with initial 
ondition J0(x) = g(x). The last step of the DP algorithm provides the N -stage value,

JN (x), x ∈ S.De�ne
H(x, u, J) , E {g(x, u,w) + βJ(f(x, u,w))} . (16)Assumption 3.1 The above sequen
e {Jk} ⊂ J is a non-de
reasing sequen
e satisfying H(x, u, J1) <

∞, and
lim

k→∞
H(x, u, Jk) = H(x, u, lim

k→∞
Jk),for all x ∈ S and u ∈ C.The above assumption ex
ludes problems where ex
hangeability of expe
tation with the limitis not possible. This assumption is satis�ed when we 
onsider a monotonously in
reasing sequen
eof fun
tions {Jk}k in J and also the fun
tions Jk are measurable with respe
t to the probabilitymeasure under 
onsideration. This will be due to the Lebesgue's In
reasing Convergen
e Theorem(
f., [31℄).Proposition 3.1 (Optimality of DP) Let Assumption 3.1 hold, and assume that Jk,π(x) < ∞for all x ∈ S, π ∈ Π, and k = 1, 2, ..., N . Then

J∗
N = TN (J0).Proof. See Proposition 3.1 in [30℄. �

11



3.2 In�nite horizon problemsConsider now the in�nite horizon optimization problem:
max
π∈Π

{

Jπ(x0) = lim
N→∞

E

{

N−1
∑

k=0

βkg(xk, µk(xk), wk)

}}

, (17)over any admissible in�nite poli
y π = {µ0, µ1, ...} and subje
t to the system dynami
s
xk+1 = f(x, u,w).Let us also de�ne the optimal value of this problem as
J∗(x) , sup

π∈Π
Jπ(x). (18)The following is a 
ondition on the optimal stationary poli
y.Proposition 3.2 (Optimal stationary poli
y) Consider the in�nite horizon optimization prob-lem of (17) and assume that

J0(x) ≤ H(x, u, J0), ∀x ∈ S, ∀u ∈ Cwhere J0(x) = g(x). Then, the optimal value of the in�nite horizon optimization problem is
J∗(x) = lim

N→∞
JN (x). (19)where JN (x) is the N -th stage value of the dynami
 programming algorithm. Let also Assumption 3.1hold. Then, a stationary poli
y π∗ = (µ∗, µ∗, ...) ∈ Π is optimal if and only if

Tµ∗(Jπ∗) = T (Jπ∗). (20)Proof. See Proposition 5.5 in [30℄. �4 Optimal Poli
y in MonopolyIn this se
tion, we 
ompute the optimal poli
y of a �rm when there is no 
ompetitive �rm, and alsothe dynami
s are either a) unperturbed, or b) perturbed. Sin
e we 
onsider a single �rm, we willskip the supers
ript ℓ for the remainder of this se
tion.12



4.1 Unperturbed dynami
sThe dynami
s we 
onsider in this se
tion are des
ribed by (4) with u−ℓ
k ≡ 0, i.e.,

xk+1 = Axk + Bϕ(uk) , f(xk, uk). (21)In the remainder of the se
tion we 
ompute the optimal poli
y for the 1) �nite-horizon, and 2)in�nite-horizon optimization problem.First, de�ne:
Ãk ,

k
∑

j=0

βjAjand
hT

k+1 , βvTÃkB − cT,for k = 0, 1, .... Note that Ã0 = I and hT
1 = βvTB − cT.Before 
omputing the solutions to the �nite- and in�nite-horizon optimization problems, notethat:Claim 4.1 vTÃk+1 ≥ vTÃk for all k = 0, 1, ....Proof. First note that

vTÃk+1 = vT
k+1
∑

j=0

βjAj

= vT
k
∑

j=0

βjAj + vTβk+1Ak+1 ≥ vTÃk.where the last inequality results from the fa
t that all the entries of matrix A are nonnegative. �4.1.1 Finite-horizon optimizationWe �rst 
onsider the �nite-horizon optimization
max
π∈Π

{

Jπ(x0) , g(xN ) +

N−1
∑

k=0

βkg(xk, µk(xk))

}

. (22)where g(x) , vTx de�nes the utility at the last stage.Proposition 4.1 (Nth stage optimal poli
y for monopoly) Consider the �nite horizon opti-mization problem (22) under the dynami
s (21). The N th stage optimal value of the dynami
13



programming iteration, is
J∗

N (x) = vTÃNx +

N−1
∑

k=0

βkhT
N−ku

∗
N−k. (23)The optimal 
ontrol at time k, for k = 0, 1, ..., N − 1, is u∗

N−k = (u∗
1,N−k, ..., u

∗
n,N−k), where

u∗
i,N−k =







M i = arg max+
1 (hN−k)

0 otherwise. (24)Proof. We are going to show the statement by indu
tion. A

ording to the dynami
 programmingalgorithm, the k-th stage optimal value is
Jk(x) = max

uk∈C(x)
{g(x, uk) + βJk−1(f(x, uk))}where J0(x) = g(x) = vTx. By applying the operator T to J0, we get the optimal value for the �rststage, whi
h is

J1(x) = (TJ0)(x)

= max
u1∈C(x)

{g(x, u1) + βJ0(f(x, u1))}

= max
u1∈C(x)

{

vTx − cTu1 + βvT(Ax + Bu1)
}

= max
u1∈C(x)

{

(vT + βvTA)x + (βvTB − cT)u1

}

= vTÃ1x + hT
1 u∗

1.where the optimal stage 
ontrol is u∗
1 = (u∗

1,1, ..., u
∗
n,1) su
h that

u∗
i,1 =







M i = arg max+
1 (h1)

0 otherwise. (25)Note that the value J1(·) is given by expression (23) if we set N = 1 and the optimal stage 
ontrol
u∗

1 is given by expression (24) if we set N = 1 and k = 0.Assume that the value iteration for the N -step optimization horizon gives (23), i.e.,
JN (x) = vTÃNx +

N−1
∑

k=0

βkhT
N−ku

∗
N−k (26)

14



where u∗
N−k = (u∗

1,N−k, ..., u
∗
n,N−k) is su
h that

u∗
i,N−k =







M i = arg max+
1 (hN−k)

0 otherwise,for k = 0, 1, ..., N − 1.Consider now an (N + 1)-step optimization horizon. The value at N + 1 is:
JN+1(x) = (TJN )(x)

= max
uN+1∈C

{g(x, uN+1) + βJN (f(x, uN+1))}

= vT
(

I + βÃNA
)

x + max
uN+1∈C

hT
N+1uN+1 + β

N−1
∑

k=0

βkhT
N−ku

∗
N−k

= vTÃN+1x +

N
∑

k=0

βkhT
N+1−ku

∗
N+1−k

= vTÃk+1x +
k+1
∑

i=1

βi
(

βvTBÃk−i+1 − cT
)

u∗
k−i+1 (27)where u∗

N+1 = (u∗
1,N+1, ..., u

∗
n,N+1) is su
h that

u∗
i,N+1 =







M i = arg max+
1 (hN+1)

0 otherwise, (28)for i = 1, 2, ..., n.Thus, we showed that the values of the dynami
 programming iteration are provided by equation(23).Finally, to show optimality of the dynami
 programming iteration, subtra
t equations (26) from(27) to get:
JN+1(x) − JN (x) = vT

(

ÃN+1 − ÃN

)

x +

N−1
∑

k=0

βk
(

hT
N+1−ku

∗
N+1−k − hT

N−ku
∗
N−k

)

+ βNhT
1 u∗

1.By Claim 4.1, we have that
vT
(

ÃN+1 − ÃN

)

x ≥ 0 for all x ∈ S.Given also Assumption 2.1 and the form of optimal 
ontrol (28), we get that
hT

N+1u
∗
N+1 ≥ hT

Nu∗
N ≥ ... ≥ hT

1 u∗
1 > 0.15



Therefore, JN+1(x) ≥ JN (x) for all x ∈ S and Assumption 3.1 is satis�ed. Then, by Propo-sition 3.1, the dynami
 programming iteration provides the optimal value of the �nite-horizonoptimization (22). �4.1.2 In�nite-horizon optimizationWe would like to solve the following optimization problem:
max
π∈Π

{

Jπ(x0) , lim
N→∞

N−1
∑

k=0

βkg(xk, µk(xk))

} (29)subje
t to the dis
rete-time dynami
s (21).Before we 
ompute the solution to the in�nite horizon optimization problem, re
all the de�-nition of H(x, u, J) from (16). Given also that J0(x) = vTx, it is straightforward to show underAssumption 2.1 that:Claim 4.2 J0(x) ≤ H(x, u, J0), for all x ∈ S and u ∈ C(x).Note also that:Lemma 4.1 The matrix (I − βA) is non-singular for any β ∈ (0, 1).Proof. Note that by 
onstru
tion, (I − βA), is stri
tly diagonally dominant,3 sin
e the magnitudeof its i-th diagonal entry 1 − βθiwii satis�es
1 − βθiwii = 1 − βθi(1 −

∑

j 6=i

wij)

= 1 − βθi + β
∑

j 6=i

θiwij > β
∑

j 6=i

θiwij ,i.e., it is stri
tly larger than the sum of magnitudes of all non-diagonal entries of the ith row. ByLevy-Desplanques theorem (
f., [32℄) the matrix (I − βA) is non-singular. �Lemma 4.2 Let β ∈ (0, 1) and A ∈ R
n×n su
h that (I − βA) is non-singular. Then

Ãk =

k
∑

j=0

βjAj = (I − βA)−1(I − βk+1Ak+1), (30)3A matrix is stri
tly diagonally dominant if in every row of the matrix, the magnitude of the diagonal entry inthat row is larger than the sum of the magnitudes of all the other (non-diagonal) entries in that row.16



k = 0, 1, .... Furthermore, if limk→∞ Ak exists, then
Ã∞ ,

∞
∑

j=0

βjAj = (I − βA)−1.Proof. To show the �rst statement, simply multiply from the left with (I − βA). The se
ondstatement is a dire
t 
onsequen
e of (30) if we take the limit as k → ∞. �De�ne also:
hT
∞ , βvTÃ∞B − cT.Proposition 4.2 (Optimal Stationary Poli
y in Monopoly) Consider the in�nite horizon op-timization problem (29) under the deterministi
 and unperturbed dynami
s (21). Then, the station-ary poli
y π∗ = (µ∗, µ∗, ...) ∈ Π, su
h that µ∗(x) = (µ∗

1, µ
∗
2, ..., µ

∗
n) with

µ∗
i =







M i = arg max+
1 (h∞)

0 otherwise (31)for i ∈ I, is an optimal poli
y for the in�nite horizon optimization problem. Furthermore, theoptimal in�nite value is
J∗ = vTÃ∞x +

M

1 − β
max+

1 (h∞) . (32)Proof. Due to Claim 4.2, we have
J0(x) ≤ H(x, u, J0)for all x ∈ S and u ∈ C(x). Also, as we showed in the proof of Proposition 4.1, due to Claim 4.1 andAssumption 2.1, Jk+1(x) ≥ Jk(x) for every x ∈ S. Thus, Assumption 3.1 is satis�ed and, a

ordingto Proposition 3.2, in order to show that the stationary poli
y π∗ = (µ∗, µ∗, ...) is optimal, it su�
esto show that
Tµ∗(Jπ∗) = T (Jπ∗).First, we 
ompute Jπ∗(x): Similarly to Proposition 4.1 and taking into a

ount (30), the sta-tionary poli
y π∗ establishes the following sequen
e of values

JN,π∗ = vTÃNx +

N−1
∑

k=0

βkhT
N−kµ

∗

= vTÃ∞(I − βN+1AN+1)x+
N−1
∑

k=0

βk
(

βvTÃ∞(I − βN−kAN−k)B − cT
)

µ∗17



= vTÃ∞x +
N−1
∑

k=0

βkhT
∞µ∗ − βN+1vTÃ∞AN+1x − βN+1vTÃ∞

N−1
∑

k=0

AN−kBµ∗.Note that
N−1
∑

k=0

AN−kBµ∗ =

N
∑

k=1

AkBµ∗ =

N
∑

k=1

W kΘk(I − Θ)µ∗.Sin
e the diagonal entries of Θ satisfy 0 ≤ θi < 1 for every i ∈ I and µ∗ is bounded, the aboveseries is 
onvergent. Therefore, we have
Jπ∗ , lim

k→∞
Jk,π∗ = vTÃ∞x +

1

1 − β
hT
∞µ∗.Given that µ∗ = (µ∗

1, µ
∗
2, ..., µ

∗
n) where µ∗

i is given by (31), we have
hT
∞µ∗ = M · max+

1 (h∞) . (33)Thus,
Jπ∗ = vTÃ∞x +

M

1 − β
max+

1 (h∞) .We are ready now to 
ompute Tµ∗(Jπ∗) and T (Jπ∗). In parti
ular,
Tµ∗(Jπ∗) = g(x, µ∗) + βJπ∗(f(x, µ∗))

= vT
(

I + βÃ∞A
)

x + hT
∞µ∗ +

βM

1 − β
max+

1 (h∞) .Due to 
ondition (33) and the fa
t that I + βÃ∞A ≡ Ã∞, we have
Tµ∗(Jπ∗) = vTÃ∞x +

M

1 − β
max+

1 (h∞) .Finally,
T (Jπ∗)(x) = max

u∈C(x)
{g(x, u) + βJπ∗(f(x, u))}

= vT(I + βÃ∞A)x + max
u∈C(x)

{

hT
∞u
}

+
βM

1 − β
max+

1 (h∞)

= vTÃ∞x + Mmax+
1 (h∞) +

βM

1 − β
max+

1 (h∞)

= vTÃ∞x +
M

1 − β
max+

1 (h∞) .Hen
e, we showed that
Tµ∗(Jπ∗) = T (Jπ∗),18



whi
h implies that π∗ is an optimal stationary poli
y. Also, Jπ∗ provides the optimal value of thein�nite-horizon optimization. �Trying to interpret the optimal stationary poli
y (31), the �rm is going to invest the largestpossible amount M to the node i whi
h 
orresponds to the maximum entry of
hT
∞ = βvTÃ∞B − cT = βvT(I − βA)−1(I − Θ) − cT.Note that this de
ision is a�e
ted by the following fa
tors:1. how easily node i 
an be in�uen
ed by the �rm's advertising poli
y, whi
h is measured by

1 − θi,2. how large is the �network value� of node i throughout the optimization horizon, expressed bythe ith entry of βvT(I − βA)−1, whi
h measures the e�e
t of every unit of advertising e�ortspent in i on the pro
livities of all nodes that are 
onne
ted dire
tly or indire
tly to i,3. how small is the 
ost of every unit of advertising e�ort in node i, expressed by ci.Note also that the matrix (I −βA)−1, whi
h in�uen
es the optimal de
ision, 
an be interpretedas a measure of the 
entrality of the nodes. In fa
t, Bona
i
h in his work on measures of 
entrality[17℄, introdu
ed the following 
entrality measure:
c(γ, β) , γ(I − βA)−1A1, (34)where γ is a s
aling fa
tor. When γ = 1, c(1, β) has several ni
e interpretations. To see this, notethat the 
entrality measure is equivalently written as:

c(1, β) =

(

∞
∑

k=0

βkAk

)

A1 = (I + βA + β2A2 + ...)A1. (35)Therefore, the 
entrality c(1, β) is a measure of 
loseness, and it is high for a node whi
h is 
onne
tedto other nodes with short and highly weighted paths. The parameter β represents the degree ofinformation (bene�ts in our model) that is transmitted from one node to another node. In our 
ase,where A is a row sto
hasti
 matrix, the above 
entrality measure takes on the following form
c(1, β) = (I + βA + β2A2 + ...)1 = (I − βA)−1

1.Trying to translate this 
entrality measure in the language of our dynami
 model of the evolutionof preferen
es, we 
an say that it represents a measure of the relative importan
e of nodes (in terms19



of bene�ts) when the initial 
ondition is x0 = 1 and there is no external in�uen
e (i.e., there is no
ontrol input).Note that in our dynami
 model both the initial 
ondition and the 
ontrol input a�e
t the returnsof the advertising �rm. Sin
e, though, we are only interested in the 
omputation of the optimaladvertising poli
y, an appropriate 
entrality (or network value) measure would be βvTÃ∞B − cT.The highest entry of this ve
tor will provide the highest bene�ts over time. Note that when β = 0,the 
ontrol input does not have any impli
ation to the returns. In that 
ase, 
entrality 
ould bemeasured by vTÃ∞, sin
e it is only the initial 
ondition that a�e
ts the returns.4.2 Perturbed Dynami
sIn this se
tion, we are going to 
onsider a family of perturbations of the nominal model (21),des
ribed by
xk+1 = Axk + Bϕ(uk) + Fqk, (36)where we have negle
ted the e�e
t of the se
ond �rm. The term qk 
orresponds to an unknownsignal 
aused possibly by misspe
i�ed system dynami
s. The sequen
e {qk} may feed ba
k in apossibly nonlinear way on the history of x. We will impose the following 
onstraint on the size ofany instan
e of this perturbation sequen
e:
|qk| ≤ η, for all k = 0, 1, ..., (37)where η > 0 is a measure of the �rm's 
on�den
e of the a

ura
y of the nominal model. Let Qdenote the resulting 
onstraint set of disturban
es.Note that due to the presen
e of the unknown (but bounded) signal qk our initial assumptionthat S ⊂ R

n
+ may be violated. As we noted though in Se
tion 2.3, the system is input-output stable,therefore an appropriate shift of the state 
an always guarantee that the dynami
s will evolve withinthe positive 
one. In parti
ular, 
onsider x̄ ∈ R

n
+, su
h that

Fqk + x̄ ≥ 0, (38)for all qk satisfying (37), and de�ne instead the dynami
s:
xk+1 = Axk + Bϕ(uk) + Fqk + x̄ , f(xk, uk, qk). (39)Note that shifting the dynami
s by x̄ does not 
hange qualitatively the model, sin
e the state x stilldes
ribes propensities, but relative to x̄.For some F ∈ R

n×n let us also de�ne the ve
tor
rT
k+1 , βvTÃkF, k = 0, 1, ...,20



with rT
1 = βvTF . Let also:

rT
∞ , βvTÃ∞F.We would like to solve the following optimization for the 
omputation of a robust solution:

max
π∈Π

min
σ∈Σ

{

J(π,σ)(x0) , lim
N→∞

N−1
∑

k=0

βkg(xk, µk(xk))

}

, (40)subje
t to the perturbed dynami
s (39) and the 
onstraints (37)�(38). Here Σ denotes the set ofsequen
es of poli
ies σ = (ν0, ν1, ...) of the un
ertainty, where νk is a fun
tion from the set of states
S to Q. Note also that due to the new shifted dynami
s, a utility fun
tion of the form

g(x, u) = vTx − cTu − λ(x̄)would have been more appropriate. However, in that 
ase, and sin
e the last term is a 
onstant,the optimal poli
y of (40) would have been identi
al.Proposition 4.3 (Optimal poli
y under un
ertainty) Consider the in�nite horizon optimiza-tion of (40) under the perturbed dynami
s (39) and the 
onstraint (37)�(38). The optimal stationarypoli
y is µ∗ = (µ∗
1, ..., µ

∗
n), su
h that

µ∗
i =







M i = arg max+
1 (h∞)

0 otherwise , i ∈ I. (41)Proof. To solve this optimization problem, we implement the dynami
 programming iteration. Infa
t, we re
ursively implement the operator T (·) de�ned as
(TJ)(x) , max

u∈C
min
q∈Q

{g(x, u) + βJ(f(x, u, q))}, (42)for any x ∈ S. The dynami
 programming iteration su

essively gives:
JN (x) = vTÃNx +

N−1
∑

k=0

βkhT
N−ku

∗
N−k +

N−1
∑

k=0

βkrT
N−kq

∗
N−k +

N−1
∑

k=0

βk+1vTÃN−kx̄,for all N = 1, 2, ..., where u∗
k and q∗k denote the sequen
es of optimal investments and disturban
es,respe
tively. In parti
ular, u∗

k = (u∗
1,k, ..., u

∗
n,k) and q∗k = (q∗1,k, ..., q

∗
n,k), are su
h that

u∗
i,k =







M i = arg max+
1 (hk)

0 otherwise , i ∈ I,21



and
rT
k q∗k = −η |rk|∞ .In other words, the disturban
e pla
es all its weight on the maximum (in absolute value) entry of

rk, or
q∗i,k =







−η i = arg max+
1 (rk)

0 otherwise , i ∈ I.The order of max and min in the de�nition of the operator T (·) does not 
hange the optimalpoli
ies. Note also that:
H(x, u, q, J0) = g(x, u) + βJ0(f(x, u, q))

= J0(x) + βvTAx + βvT(Fq + x̄) + (βvTB − cT)u

≥ J0(x)for all x ∈ S, u ∈ C∗, q ∈ Q∗ and under 
ondition (38). Thus, from Proposition 3.2, the dynami
programming iteration provides the optimal in�nite value.Consider the stationary poli
y (41) for the monopolisti
 �rm and the stationary poli
y σ∗ =

(ν∗, ..., ν∗) for the disturban
e su
h that
rT
∞ν∗ = −η |r∞|∞ .Similarly to the proof of Proposition 4.2, the 
orresponding in�nite value is

J(π∗,σ∗)(x) = vTÃ∞x + hT
∞ lim

N→∞

N−1
∑

k=0

βkµ∗ + rT
∞ lim

N→∞

N−1
∑

k=0

βkν∗ + βvTÃ∞

N−1
∑

k=0

βkx̄

= vTÃ∞x +
M

1 − β
max+

1 (h∞) −
η

1 − β
|r∞|∞ +

β

1 − β
vTÃ∞x̄.By following similar reasoning to the proof of Proposition 4.2, we 
an show that

T(µ∗,ν∗)(J(π∗,σ∗)) = T (J(π∗,σ∗)).Therefore, a

ording to Proposition 3.2, (π∗, σ∗) provides the optimal lower value. It is also straight-forward to show that the sequen
e of poli
ies (π∗, σ∗) also provides the optimal upper value, de�ningthis way a solution to the max-min optimization problem. �Note that the robust optimal poli
y for the perturbed model 
oin
ides with the optimal poli
yfor the unperturbed or riskless model, i.e., exhibits a 
ertainty equivalen
e property. Su
h propertywas expe
ted due to the linearity of the perturbed model (36) and the linearity of the utility fun
tion22



(6).5 Optimal Poli
y in Duopoly5.1 PreliminariesThe previous se
tion 
omputed the optimal robust poli
y for the problem of monopoly under norm-bounded model un
ertainty. In this se
tion, we would also like to in
lude the possibility that a
ompetitive �rm tries to in�uen
e the preferen
es of the 
ustomers towards buying its own produ
tas des
ribed by the more general duopoly model (4).The presen
e of a 
ompetitive �rm introdu
es a new sour
e of un
ertainty. We will either assumethat i) the 
ompetitive �rm has the form of a 
ompetitive fringe whi
h tries to enter the market,introdu
ing a notion of sequential optimization (expressed by a Sta
kelberg solution), or ii) both�rms have the ability of simultaneous play (expressed by a Nash solution).Ea
h �rm ℓ ∈ L solves the following optimization problem:
max
πℓ∈Πℓ

{

J(πℓ,π−ℓ)(x
ℓ
0) , lim

N→∞

N−1
∑

k=0

βkg
(

xℓ
k, µ

ℓ
k(x

ℓ
k)
)

} (43)subje
t to the system dynami
s
xℓ

k+1 = Axℓ
k + Bϕ(µℓ

k, µ
−ℓ
k ) (44)where πℓ = (µℓ

1, µ
ℓ
2, ...) and π−ℓ = (µ−ℓ

1 , µ−ℓ
2 , ...) are the in�nite sequen
es of poli
ies of the �rms ℓand −ℓ, respe
tively.De�nition 5.1 (Sta
kelberg solution) A Sta
kelberg solution is a pair of poli
ies (πℓ∗, π−ℓ∗) ∈

Πℓ × Π−ℓ su
h that
π−ℓ∗ ∈ BR−ℓ(π

ℓ∗) , arg max
π−ℓ

{

J(π−ℓ,πℓ)(x
−ℓ
0 )
∣

∣

∣
πℓ∗
}and, furthermore,

πℓ∗ ∈ arg max
πℓ∈Πℓ

{

J(πℓ,π−ℓ)(x
ℓ
0)
∣

∣

∣
π−ℓ ∈ BR−ℓ(π

ℓ)
}

.In the above de�nition of a Sta
kelberg solution, we will refer to �rm ℓ as the leader and �rm
−ℓ as the follower. Note that the de�nition implies that �rm ℓ (or leader) announ
es �rst its poli
y,while �rm −ℓ (or follower) rea
ts to that poli
y.De�nition 5.2 (Nash solution) A Nash solution is a pair of poli
ies (πℓ∗, π−ℓ∗) ∈ Πℓ×Π−ℓ su
hthat

π−ℓ∗ ∈ BR−ℓ(π
ℓ∗) , arg max

π−ℓ∈Π−ℓ

{

Jπ−ℓ(x−ℓ
0 )
∣

∣

∣
πℓ∗
}23



and, furthermore,
πℓ∗ ∈ BRℓ(π

−ℓ∗) , arg max
πℓ∈Πℓ

{

Jπℓ(xℓ
0)
∣

∣

∣
π−ℓ∗

}

.We will also refer to these solutions as Markovian or 
losed-loop Nash solutions. If, instead, themaximization in the de�nition of the Nash solution is restri
ted to the set of sequen
es of 
ontrolinputs in Cℓ, then the 
orresponding solutions will be referred to as open-loop Nash solutions. Notethat these de�nitions of Nash solutions impli
itly assumes a simultaneous announ
ement of poli
iesfrom both �rms.A straightforward impli
ation of the above de�nitions is the following 
laim.Claim 5.1 Any Sta
kelberg solution is also a Nash solution.5.2 Open-loop stationary Nash equilibriaIn this se
tion, we will restri
t our attention to open-loop Nash equilibria that are also stationary,i.e., time-independent. Before 
hara
terizing this family of Nash solutions, de�ne the set of a
tions
Aℓ , {α1, α2, ..., αn}, ℓ ∈ L, su
h that for ea
h i ∈ {1, 2, ..., n}, αi = (αi,1, αi,2, ..., αi,n) where

αi,j ,







M j = arg max+
i (h∞),

0 otherwise, j = 1, 2, ..., n.In other words, the a
tion αi 
orresponds to investing all available funds to the ith largest non-negative entry of h∞. Note that the set of a
tions de�ne an isomorphi
 set of stationary poli
ies,i.e., for ea
h a
tion αi there is a stationary poli
y (αi, αi, ...). Let us also denote by J(i,j)(x) the
orresponding in�nite horizon value for initial 
ondition x when one �rm applies stationary poli
y
(αi, αi, ...) and the other �rm applies stationary poli
y (αj , αj , ...). Any other open-loop stationarypoli
y µℓ 
an be represented as a mixture of a
tions in Aℓ, i.e.,

µℓ =































α1, with probability pℓ
1

α2, with probability pℓ
2

...

αn, with probability pℓ
n

, ℓ ∈ L, (45)
where pℓ

i ≥ 0, i ∈ I, and ∑i p
ℓ
i = 1. The 
orresponding value of the obje
tive fun
tion (43) for anyopen-loop stationary poli
y is 
hara
terized by the following proposition.Proposition 5.1 (Payo�s under stationary open-loop poli
ies) When both �rms ℓ ∈ L ap-ply an open-loop stationary poli
y πℓ = (µℓ, µℓ, ...) satisfying (45), the in�nite value of the obje
tive24



fun
tion J(πℓ,π−ℓ) de�ned by (43), is
J(πℓ,π−ℓ) =

∑

i∈I

∑

j∈I

J(i,j)p
ℓ
ip

−ℓ
j ,where

J(i,j)(x) =







vTÃ∞x + 1
1−β

[−cTαi], i = j,

vTÃ∞x + 1
1−β

[hT
∞αi], i 6= j,

x ∈ Sℓ, ℓ ∈ L. (46)Proof. When the pair of stationary poli
ies (πℓ, π−ℓ) is applied, where πℓ = (µℓ, µℓ, ...) and π−ℓ =

(µ−ℓ, µ−ℓ, ...), the 
orresponding value of the obje
tive fun
tion of �rm ℓ will be:
J(πℓ,π−ℓ)(x) = vTÃ∞x + lim

N→∞

N−1
∑

k=0

βk
[

(h∞ + c)Tϕ
(

µℓ(x), µ−ℓ(x)
)

− cTµℓ(x)
]

= vTÃ∞x +
1

1 − β

[

(h∞ + c)Tϕ
(

µℓ(x), µ−ℓ(x)
)

− cTµℓ(x)
]for some initial state x ∈ Sℓ. If µℓ = µ−ℓ = αi, then the 
orresponding in�nite value of the obje
tivefun
tion of ℓ, denoted J(i,i), is:

J(i,i)(x) = vTÃ∞x +
1

1 − β
[−cTαi].If, instead, µℓ = αi and µ−ℓ = αj with i 6= j, the 
orresponding in�nite value of the obje
tivefun
tion ℓ, denoted J(i,j), is:

J(i,j)(x) = vTÃ∞x +
1

1 − β
[hT

∞αi].Then, the 
orresponding expe
ted return of �rm ℓ ∈ L is:
J(πℓ,π−ℓ)(x) = vTÃ∞x +

1

1 − β

∑

i∈I

∑

j∈I

[

(h∞ + c)Tϕ(αi, αj) − cTαi

]

pℓ
ip

−ℓ
j

=
∑

i∈I

∑

j∈I

[

vTÃ∞x +
1

1 − β

[

(h∞ + c)Tϕ(αi, αj) − cTαi

]

]

pℓ
ip

−ℓ
j

=
∑

i∈I

∑

j∈I

J(i,j)p
ℓ
ip

−ℓ
j ,whi
h 
on
ludes the proof. �Thus, we may de�ne an equivalent one-stage symmetri
 game of two players, �nite set of a
tions

Aℓ = {α1, α2, ..., αn} for ea
h player ℓ ∈ L, and payo� matrix of the row player whi
h is given byTable 1. 25



α1 α2 αn

α1 J(1,1) J(1,2) ... J(1,n)

α2 J(2,1) J(2,2) ... J(2,n)... ... ... ...
αn J(n,1) J(n,2) ... J(n,n)Table 1: Equivalent one-shot symmetri
 game in open-loop stationary poli
ies.A dire
t 
onsequen
e of Claim 5.1 is the following:Claim 5.2 The following hold:1. J(i,j)(x) ≥ J(i,i)(x) for all i, j ∈ I with i 6= j;2. J(i,j)(x) = J(i,j′)(x) for all i, j, j′ ∈ I su
h that j 6= i and j′ 6= i;3. J(i,j)(x) ≥ J(j,i)(x) for all i, j ∈ I with i > j.Proposition 5.2 (Sta
kelberg & Nash solutions) Consider the optimization problem (43) un-der the dynami
s (44) and the 
onstraints (1) with M ℓ = M−ℓ, i.e., both �rms have identi
aladvertising power. For any ℓ ∈ L, the pair of open-loop stationary poli
ies π∗ = (πℓ∗, π−ℓ∗) where

πℓ∗ = (µℓ∗, µℓ∗, ...) and µℓ is de�ned by (45) satisfying either1. pℓ
1 = p−ℓ

2 = 1, or2. pℓ
1 = p−ℓ

2 =
J(1,2)−J(2,2)

J(1,2)−J(1,1)+J(2,1)−J(2,2)
,de�nes an open-loop Nash solution. Furthermore, when ℓ ∈ L has the opportunity to announ
e�rst its poli
y, any one of the above pairs of open-loop stationary poli
ies also de�nes an open-loopSta
kelberg solution.Proof. The �rst 
laim is a dire
t 
onsequen
e of Claim 5.2 and the fa
t that any one of thepoli
ies 
orresponding to the 
ases (1) and (2) de�nes a Nash equilibrium for the equivalent one-shot symmetri
 game of Table 1.Assume now that ℓ has the opportunity to announ
e its strategy �rst. In order to show that

(πℓ∗, π−ℓ∗) de�nes a Sta
kelberg solution, we need to verify that the leader's poli
y πℓ∗ guaran-tees maximum return over all possible announ
ed poli
ies. It is straightforward to show that anyannoun
ed poli
y that does not allo
ate all available funds to arg max+
1 (h∞) will result to a bestresponse of the follower that 
an only de
rease leader's optimal value. �The 
on
lusions of Proposition 5.2 do not ne
essarily hold when we 
onsider di�erent spendingpowers for the �rms, i.e., when M ℓ 6= M−ℓ. However, extending the 
on
lusions of Proposition 5.2,to that 
ase is straightforward.Another straightforward impli
ation of Proposition 5.2 is summarized in the following 
orollary.26



Corollary 5.1 The open-loop stationary Nash solutions 
hara
terized by Proposition 5.2 are also
losed-loop Nash solutions.This is due to the fa
t that open-loop strategies are a subset of Markovian or state-dependentstrategies.A 
omplete 
hara
terization of the set of 
losed-loop Nash solutions is going beyond the s
opeof this paper, sin
e it is highly 
ase-dependent, i.e., it depends on the 
lass of poli
ies whi
h willbe 
onsidered reasonable for the appli
ation of interest. For example, if we assume that the 
lass ofstrategies over whi
h the optimization is exe
uted are a�ne fun
tions of the state, then a new 
lassof 
losed loop Nash solutions 
an easily be 
omputed using the framework proposed in this paper.5.3 Max-min solutionsComputation of Nash equilibria by either �rm requires that �rms are aware of the performan
eindi
es of the 
ompetitors. Su
h an assumption may be quite strong espe
ially in a 
ompetitiveenvironment.When �rms are not able to 
ompute Nash solutions, 
omputing an optimal strategy whi
h isrobust to any possible poli
y of the 
ompetitor might be the only possibility. Su
h an optimizationproblem 
an be formulated as a max-min optimization.We are going to 
onsider two �rms with di�erent expenditure 
apabilities. In parti
ular, we
onsider the following two s
enarios: a) M ℓ > M−ℓ, and b) M ℓ ≤ M−ℓ for any ℓ ∈ L.The �rm ℓ ∈ {a, b} solves the following max-min optimization problem:
max
π∈Π

min
σ∈Σ

{

J(π,σ)(x0) , lim
N→∞

N−1
∑

k=0

βkg (xk, µk(xk))

} (47)over the set Π of in�nite sequen
es of poli
ies (µ0, µ1, ...) and subje
t to the system dynami
s
xk+1 = Axk + Bϕ(µk, νk). (48)The set Σ denotes the 
olle
tion of in�nite sequen
es of poli
ies (ν0, ν1, ...) of the 
ompetitor. Inwords, the above optimization re�e
ts the situation at whi
h the �rm wishes to announ
e a strategywhi
h will provide the optimal returns assuming that the 
ompetitor a
ts to minimize these returns.To simplify notation, we have removed the supers
ript ℓ from the above optimization variables. Itis straightforward to show that the following holds:Proposition 5.3 Consider the optimization problem (47) under the dynami
s (48) and the 
on-straints (1). If M ℓ > M−ℓ, i.e., the advertising power of the �rm is larger than the 
ompetitor's27



one, then the optimal strategy of the �rm will be a stationary poli
y (µ∗, µ∗, ...) su
h that
µ∗

i =







M i = arg max+ (h∞)

0 otherwise , i ∈ I. (49)Note that this is not ne
essarily the 
ase when the advertising power of the �rm is less than the
orresponding one of the 
ompetitor's. It is straightforward to see that in that 
ase, any strategywill be optimal, sin
e the 
ompetitor has the power to 
ountera
t any announ
ed strategy of the�rm.6 Con
lusionsWe dis
ussed the problem of deriving optimal advertising strategies in a network of 
ustomers.Contrary to prior work, the dynami
s of preferen
es were also a�e
ted by an underlying network of
onne
tions whi
h introdu
es a form of word-of-mouth e�e
ts between nodes. The derived optimalpoli
ies are related to and extend prior introdu
ed notions of 
entrality measures usually 
onsideredin so
iology. Although the assumed model of the evolution of preferen
es might be the out
omeof an identi�
ation pro
ess, it is likely that we are un
ertain about its a

ura
y. To this end,we also 
onsidered a perturbed model whi
h models possible misspe
i�
ations or un
ertainties ofthe nominal model, and we derived robust optimal strategies. It was shown that the monopolymodel exhibits a 
ertainty equivalen
e property, i.e., the optimal strategies for the perturbed model
oin
ide with the optimal strategies for the unperturbed or riskless model. Su
h behavior 
an beattributed to both the linearity of the monopoly dynami
s and the linearity of the utilities. Finally,we investigated robust poli
ies in a duopoly framework. In parti
ular, we 
hara
terized the set ofopen-loop Nash solutions, whi
h also happens to be 
losed-loop Nash solutions. The model 
aneasily be utilized to a

ommodate s
enarios at whi
h more 
ompli
ated forms of strategies are ofinterest, leading to new forms of 
losed-loop Nash solutions. We �nally 
hara
terized the set ofmax-min solutions in a duopoly framework, when the �rm makes no assumptions about the utilitiesof the 
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