LUND UNIVERSITY

The confluence of Cloud computing, 5G, and IoT in the Fog

Tarneberg, William

2019

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Tarneberg, W. (2019). The confluence of Cloud computing, 5G, and IoT in the Fog. [Doctoral Thesis
(monograph), Department of Electrical and Information Technology]. Department of Electrical and Information
Technology, Lund University.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/a8bd011e-26e5-4ebe-97fa-4c11a5119065

The confluence of
Cloud computing, 5G,
and IoT in the Fog

William Téirneberg

LUND UNIVERSITY

Doctoral Dissertation
Electrical Engineering
Lund, March 2019

William Térneberg

Department of Electrical and Information Technology
Electrical Engineering

Lund University

P.O. Box 118, 221 00 Lund, Sweden

Series of licentiate and doctoral dissertations
ISSN 1654-790X; No. 120

ISBN 978-91-7895-010-2 (Print)

ISBN 978-91-7895-011-9 (PDF)

(© 2019 William Térneberg
Typeset in Palatino and Helvetica using IATEX 2¢.
Printed in Sweden by Tryckeriet i E-huset, Lund University, Lund.

Cover designed by William Térneberg.

No part of this dissertation may be reproduced or transmitted in any form or by any
means, electronically or mechanical, including photocopy, recording, or any informa-
tion storage and retrieval system, without written permission from the author.

Abstract

n the wake of the arrival of cloud computing, future applications are poised to be-
come more resilient and adaptive by embracing elasticity in an osmotic manner.
Although cloud computing is a strong attractor for application developers, there

are still unconquered performance frontiers. Latency-sensitive and mission-critical ap-
plications make up a significant portion of all software systems, and their owners are
eager to reap the benefits of cloud computing. However, they are hindered by signific-
ant delay, jitter in the delay, and relatively low resilience when operating on traditional,
distant, cloud data centres.

Fog computing is emerging as a remedy. Fog computing is a heterogeneous hyper-
distributed cloud infrastructure paradigm, ranging from small compute nodes close to
the end-users to traditional distant data centres. With greater proximity to the end-
users, delay and jitter in the delay can be reduced, and intermediate network reliability
improved. Additionally, with increased heterogeneity of resources, applications have
a richer tapestry of resources to take advantage of for their objectives. However, man-
aging and taking advantage of this heterogeneity in resources and objectives is a chal-
lenge for both the infrastructure providers and application owners alike. Only where to
place and scale application components and how to manage system resources to meet
the objectives of both parties, is non-trivial. Application placement implies elaborate
optimisation objectives, hard-to-find solutions, and operational conflicts.

The objective of this thesis is to investigate the performance-related properties of fog
computing, how such an infrastructure can be managed while applications can osmotic-
ally take advantage of the infrastructure, and what Fog computing’s potential practical
performance gains are. These are fundamental topics that need to be answered for pro-
viders and application owners alike to be able to invest in fog computing. In general
terms, the work in this thesis seeks the trade-offs between infrastructure, applications,
and software platform in contrast to the traditional cloud offering.

The thesis provides modelling and simulation tools for evaluating the performance
and feasibility of Fog computing. Based on which, the thesis goes on to propose
holistic infrastructure management algorithms. The requirements of latency-sensitive
and mission-critical applications and use cases are discussed for a fog computing
paradigm. These requirements are then translated to Fifth Generation Wireless Spe-
cifications (5G) Massive Multiple Input Multiple Output (MIMO) specifications. An
original 5G-based fog computing test-bed for time-sensitive and mission-critical ap-
plications is implemented. The test-bed is used to evaluate the potential application
performance gains of fog computing and to what extent the applications can practic-
ally take advantage of a fog infrastructure. The thesis also investigates the architecture
of the applications that are proposed to benefit from fog computing and how they per-
form in traditional cloud offerings.

The included works show that fog computing indeed has a performance advantage
over the traditional distant cloud, not only in latency but also in robustness. The be-
nefits of 5G on a time-sensitive application deployed in a fog computing infrastructure
are shown to be significant. It is also shown that a fog computing infrastructure with a
high degree of heterogeneity and with multiple objectives can be successfully managed
scalably. Additionally, the thesis sheds some light on the challenges of implementing
latency-sensitive and mission-critical applications with traditional cloud service offer-
ings.

Contents

Contents v
Preface xi
Acknowledgments XV
1 Introduction 1
1.1 Cloudcomputing 3
1.1.1 Whatmakesacloud 5

1.1.2 Elasticity e 8

1.1.3 High-levelconcerns 11

1.1.4 Whois the cloud fortoday? 11

1.2 Tomorrow’s applications and the cloud frontier 12
1.2.1 Emerging applicationtypes 12

1.2.2 Latency and uncertainty challenges 14

1.3 Fogcomputing 19
1.3.1 Infrastructure convergence and Fog computing attractors . . . 21

1.3.2 Elasticity in the fog and applications 24

1.3.3 Fog computing detractors 25

I Modelling and managing a Fog computing infrastructure 27

2 Mobility 29

2.1 Targetedsystem
2.2 Targetedscenarioo
2.3 Simulationmodel Lo oL
2.3.1 Applicationmodel L.
2.3.2 Network model and topology
2.3.3 Mobilitymodel oL
2.3.4 DataCenter (DC)model
24 Experiments
2.5 Resultsanddiscussions
2.5.1 Waiting time degradation
2.5.2 Session and Virtual Machine (VM) migration
2.5.3 VM migrationtime
2.5.4 Requestmigration
2.5.5 Session migration versus node residency time

2.6 Conclusions e e

Modelling and system architecture

3.1 Existing Fog computingmodels
3.1.1 Workload Models
3.1.2 Set-upModels
3.13 CostsModels

3.2 Fog computing Meta-model
32.1 WorkloadModel
3.2.2 Model parameters0
3.2.3 ObjectivesModel
324 Limitations oo

3.3 Simulationshowcase L.
3.3.1 Experiments
332 Results

Centralised Fog computing resource management
4.1 Resource Management Challenges
4.1.1 Service paradigm

4.1.2 Resource management objectives
413 Challenges e

42 Extended Fogmodel 56

42.1 Datacentre Model, .. 57
422 NetworkModel 58
423 ApplicationModelo 59
424 Usermodel, 59
4.3 Optimisation Formulation 60
4.3.1 Resource utilisation metrics and constraints 60
4.3.2 Optimisation problem 62
4.4 Proposed Application Placement Method 63
4.4.1 Exhaustivesearch 64
4.4.2 Tterativelocalsearch 65
4.43 Re-evaluationinterval 65
4.5 Evaluationmodel 66
4.5.1 Evaluationmethod 66
4.5.2 ApplicationDemand 67
4.5.3 Infrastructure and topology 68
4.5.4 Applicationtypes 68
4.5.5 Placement algorithm parametrisation 69
45,6 Simulator 69
4.6 Experiments 70
4.6.1 Workload scenarios 70
4.6.2 Infrastructure 71
4.6.3 Applicationtypes 72
4.6.4 Placement algorithms 72
47 Results 73
471 Cost ..o e 73
4.7.2 Round Trip Time (RTT) 75
4.7.3 Resource utilisation oL 75
48 Relatedwork 77
4.8.1 Replicaplacement 78
482 CDNandcaching 79
4.8.3 Inter-and-Intra data centre VM-placement 79
49 Conclusions e e e 80

5 Distributed Fog computing resource management 83

5.1 Extended Fog computingmodel 83

5.1.1 Topology« o o o i 84

5.1.2 Datacentremodel L. 85

5.1.3 Networkmodel 85

5.14 Applicationmodel 85

5.2 Distributed resource management algorithm 86

5.2.1 Common objective function 87

5.2.2 Datacentreagent 89

5.2.3 Applicationagent L. 91

53 Experiments 91

5.3.1 Infrastructure 92

532 DataCenters e 92

533 Links 92

534 Topology o i e e 92

5.3.5 Workload and applications 94

5.3.6 Comparisonmethods 95

5.3.7 Evaluationmetrics L. 96

54 Results e 97

54.1 Convergence oo vv v it e e 97

542 Stepresponseo ... i e e e e e e 100

5.4.3 Allocation distribution 101

5.5 Conclusions 102

Smart cities & Internet of Things 103
Realising smart city services with Internet of Things (IoT) and

Function-as-a-Service (FaaS) 105

6.1 Researchgap 106

6.2 Targetedsystem 107

6.2.1 System components oiu e 108

6.2.2 System properties e e 109

6.3 Implementation. 110

6.3.1 Amazon Web Services (AWS) Components 110

6.3.2 Testbed Architecture 112

6.3.3 Simulated testbed architecture 114

6.4 Evaluation
6.4.1 Representative Scenario
6.4.2 Performance

6.5 Conclusions e

Bounding shared state inconsistency in distributed IoT systems 119

7.1 Systemmodel o
7.2 Cross-Layer Controller
7.2.1 Objective
7.2.2 Queuingdynamicso
7.2.3 Lyapunovdrift
7.2.4 Controllerdesign
7.2.5 Parameter estimation
7.3 Evaluation
7.3.1 Comparison policies
732 MEtricS o v vt e
7.3.3 System parameter values L.
734 Inputvalues
74 Results L e
7.4.1 Expected deferred state traffic
7.4.2 Stability and system utility L.
74.3 Choiceof V.
7.4.4 Quantifying the trade-off

7.5 Conclusions e e

5G and loT

Ultra-Reliable and Low-Latency Communication
for the mission-critical applications

8.1 Bilateral tele-operation
8.2 Reliability
8.2.1 Therole of massive MIMO
8.2.2 Performance of massive MIMO
83 Latency

83.1 System View

121

8.3.2 Latency and reliability

8.3.3 Precoding design oL

8.4 Conclusions

IV A Fog computing test-bed
9 A 5G edge cloud test-bed
9.1 Relatedwork
9.2 Researchtest-bed.
921 5G
9.2.2 Fog computingandnetwork

9.2.3 Cloud

9.3 Evaluation

native application framework

9.3.1 Control application

9.3.2 System characteristics L.
9.3.3 System adaptability
9.3.4 Tightened constraints

9.4 Conclusions

Bibliography

149

151
153
154
154
155
156
157
157
160
161
162
163

167

Preface

s doctoral thesis concludes my work as a PhD candidate at the Department of
Electrical and Information Technology at Lund University. The material has
either been presented at international conferences or published in international

journals. The main overarching contributions presented in this thesis are:

1.

Performance modelling and simulation tools for evaluating Fog computing in-
frastructures.

Scalable multi-objective dynamic resource management algorithms.

. Scheduling algorithms and 5G radio configurations for massive wireless [oT.

A test-bed for evaluating opportunities and challenges with time-sensitive and
mission-critical in Fog computing.

The publications below are included in the thesis and are grouped by the chapter
they contribute to.

Part I - Modelling and managing a Fog computing infrastructure

1.

William Térneberg and Maria Kihl. Workload displacement and
mobility in an omnipresent cloud topology. In Proc. SoftCom
(Split, Croatia). IEEE, 2014.

Contributions: Problem definition, model definition, simulation
environment, experiments, and analysis.

Jakub Krzywda, William Ti#rneberg, Per-Olov Ostberg, Maria Kihl,
and Erik Elmroth. Telco clouds: Modelling and simulation. In
Proc. CLOSER (Lisbon, Portugal). INSTICC, 2015.

Xi

Contributions: Simulation environment, experiments, and analysis.

3. William Tarneberg, Amardeep Mehta, Eddie Wadbro, Johan Tordsson,
Johan Eker, Maria Kihl, and Erik Elmroth. Dynamic application
placement in the mobile cloud network. Elsevier, Future Gen-
eration Computer Systems, 2016.

Contributions: System model, simulation environment, experiments,
and analysis. Problem definition and algorithm development ef-
forts shared equally between authors.

4. William Térneberg, Alessandro Papadopoulos, Amardeep Mehta,
Johan Tordsson, and Maria Kihl. Distributed approach to the
holistic resource management of a mobile cloud network. In
Proc. International Conference on Fog and Edge Computing
(Madrid, Spain). IEEE, 2017.

Contributions: Problem definition, system model, algorithm de-
velopment, simulation environment, and analysis.

Part II - Smart cities & Internet of Things

6. William Térneberg, Vishal Chandrasekaran, and Marty Humphrey.
Experiences creating a framework for smart traffic control using
aws iot. In 9th International Conference on Utility and Cloud
Computing, International Conference on Utility and Cloud Com-
puting (UCC) (Changhai, China). IEEE/ACM, 2016.

Contributions: Problem definition, system design, and implement-
ation. Evaluation effort shared equally between authors.

7. William Térneberg, Mehmet Karaca, Anders Robertsson, and Maria
Kihl. Cross-layer control for bounded shared state inconsistency
in wireless iot devices. In Proc. Conference on Decision and
Control (Melbourne, Australia). IEEE, 2017.

Contributions: Problem definition, system model, simulation en-
vironment, experiments, and evaluation. Algorithm develop-
ment effort shared equally between authors.

Part III - 5G and IoT

8. William Térneberg, Mehmet Karaca, Anders Robertsson, Fredrik
Tufvesson, and Maria Kihl. Utilizing massive mimo for the
tactile internet: Advantages and trade-offs. In Proc. SECON

xii

Workshops - Robotic Wireless Networks (San Diego, CA, USA).
IEEE, 2017.

Contributions: Problem definition and system reliability simula-
tion environment. Evaluation effort shared equally between au-
thors.

Part IV - A Fog computing test-bed

9.

Per Skarin, William Tarneberg, Karl-Erik Arzen, and Maria Kihl.
Towards mission-critical control at the edge and over 5G. In
International Conference on Edge Computing (EDGE). IEEE,
2018.

Contributions: Wireless system integration, PID controller imple-
mentation, networking evaluation. Problem definition, system
architecture, system implementation, and system evaluation ef-
forts shared equally between authors.

Publications not included in this thesis are:

10.

11.

12.

13.

14.

William Tarneberg, Amardeep Mehta, Johan Tordsson, Maria Kihl,
and Erik Elmroth. Resource management challenges for the in-
finite cloud. In 10th International Workshop on Feedback Com-
puting at CPSWeek (Seattle, WA, USA), 2015.

Meiyi Ma, Sarah Masud Preum, William Téarneberg, Mohsin Ahmed,
Matthey Ruiters, and John Stankovic. Detection of runtime con-
flicts among services in smart cities. In Proc. International Con-
ference on Smart Computing (St. Louis, MO, USA). IEEE, 2016.

Jonas Diirango, William Térneberg, Luis Tomas, Johan Tordsson,
Maria Kihl, and Martina Maggio. A control theoretical approach
to non-intrusive geo-replication for cloud services. In Proc.
Conference on Decision and Control (Las Vegas, NV, USA). IEEE,
2016.

Amardeep Mehta, William Térneberg, Cristian Klein, Johan Tordsson,
Maria Kihl, and Erik Elmroth. How beneficial are intermediate
layer data centers in mobile edge networks? In Proc. Founda-
tions and Applications of Self* Systems (Augsburg, Germany).
IEEE, 2016.

Stefan Host, William Térneberg, Per Odling, Maria Kihl, Marco
Savi, and Massimo Tornatore. Network requirements for latency-
critical services in a full cloud deployment. In Proc. SoftCom
(Split, Croatia). IEEE, 2016.

Xiii

Xiv

15.

16.

17.

18.

Zheng Li, William Tédrneberg, Maria Kihl, and Anders Robertsson.
Using a predator-prey model to explain variations of cloud spot
price. In Proc. CLOSER (Rome, Italy). INSTICC, 2016.

Meiyi Ma, Sarah Preum, Mohsin Ahmed, William Tarneberg, Ab-
deltawaband Hendawi, and John Stankovic. Smart city, data
sets, modeling, decision making, real-time, integrating services.
Sumbitted ACM Transactions on Cyber-Physical Systems, Feb
2018.

Karl-Erik Arzén, Per Skarin, William Térneberg, and Maria Kihl.
Control of the edge cloud-an mpc example. In st International
Workshop on Trustworthy and Real-time Edge Computing for
Cyber-Physical Systems (Nashville, TN, USA). IEEE, 2018.

Lars Larsson, William Térneberg, Cristian Klein, and Erik Elm-
roth. Quality-elasticity: Improved resource utilization, through-
put, and response times via adjusting output quality to current
operating conditions. In Submitted to International Conference
on Autonomic Computing (ICAC) (Umed, Sweden). IEEE, 2019.

I hope you enjoy your reading.

Acknowledgements

t this point, I have already moved on to new endeavours. Nevertheless, the ex-
periences that I have gained throughout the PhD-process and the people how
have shaped it, are still dear to me. Somehow, just the right individuals have

come into the process at just the right time. Amardeep Metha has been there from the
start to almost the very end. We have shared plenty of grief and frustration. Our work
gave me many reasons to frequent Umed. Thank you for everything. Also, in the first
year or two, Jakub Krzywda and I quickly realised that all conferences do not always
live up to expectations, but that they can be remedied with the presence of a swimming
pool. After I had gotten started, Jonas Diirango came along and taught me about model
predictive control. A little further along in my studies, Zheng Li dropped in for a post-
doc at the department. He taught me about what constitutes an academic contribution.
Thank you, Zheng, I wished we had collaborated more than we did.

In 2016, about half way through I had the privilege of spending a good part of that
year at the University of Virginia in Charlottesville, VA, USA. What an unforgettable
experience. Visiting Professor John Stankovic’s research group was very refreshing.
Professor Stankovic, thank you for your inclusion and patience with my perspective. I
specifically also want to thank Professor Marty Humphrey for our collaboration, your
frankness, and through-provoking discussions. After returning to the department, I
began working with Per Skarin on what became the final paper in this thesis. Per is a
delight to work with, he is diligent, passionate, and he challenges me both technically
and intellectually. Thank you, Per, our work propelled me over the edge to comple-
tion. In the midst of our test-bed-building, Haorui Peng moved into Zheng’s old office.
Thank you for being a delightful office neighbour. Over the latter part my PhD stud-
ies I frequently interacted with Mohammadhassan Safavi. I truly enjoyed our cultural
exchanges and I hope we can finish all the papers we have started. At the very end of
my studies, and far too late, Lars Larsson joined the group. I don’t think we disagree

XV

on anything other than how much more competent you are than I. I miss our daily con-
versations, they have been genuinely invaluable to me personally, academically, and
professionally. I sincerely hope our paths will cross again under similar circumstances.

Because our research group was very small, I often ventured to other departments
and institutions in search for collaborations. Therefore, I would also like to thank my
friends at Umed University and at the Department of Automatic Control, they have
been like second homes to me. I would also like to thank my supervisors, Maria Kihl
for your incredible patience, always assuming that I will make it, and your diligent pa-
per reviews. Erik Elmroth, thank you for including me in your research group and your
frankness. Martina Maggio, thank you for unknowingly giving me a new benchmark
for academic productivity. Stefan Host and Jens Andersson, it has been great working
with you on countless teaching assignments and labs. I hope all of the material we
have produced over the years will come to good use.

As for my close friends. Shiva and Johanna, other than exquisite company, your
compassion and determination are permanent way-points on my compass. Mikael
Hellberg, you have provided me with much needed intellectual distraction. No one
can put technology in new perspectives as you do. Marcus Kallgren, we got each other
through engineering school with plenty of fu along the way, thank you. My father,
Jacob Mannerstrale, and Hans-Goran Nilsson who inspired me to take up engineering
in the first place. Thank you.

No matter how unimaginative it may sound, the love from my family has shaped
my character. I can always count on their unconditional support. My mother has
given me creativity, compassion, and frugality. My father has given me critical and
analytical thinking and taught me to not give up. My sister relentlessly inspires me to
do more to increase my positive impact on society and challenges me to do more to
decrease my negative impact on this planet. Although she was not quite sure in what
field, I remember that my grandmother, on my father’s side, told me at a young age
that she had always known that I one day will study to become a researcher. I will
always remember you. My in-laws, Christel and Lars Nilsson, and Jepser Welander
have always been there for my and my wife.

Anna, my wife, I have truly enjoyed traversing the PhD-process in tandem with
you, both personally and professionally. Although our fields never quite crossed, the
lifestyle has brought us closer together like nothing else could have and has changed
us profoundly. Who you are and what you do inspires and challenges me in everything
I do. Liam, my son who rightfully takes all my attention away from this thesis. This
work is somehow both impossible and only possible with you in my life. Liam and
Anna, without you, nothing is worthwhile.

XVi

This work was funded by the Swedish Research Council (VR) under contract num-
ber C0590801, the Lund Center for Control of Complex Engineering Systems (LCCC)
also funded by (VR).

William Tdrneberg
Lund, March 2019

XVii

Introduction

ith the obliquity of the Internet, virtualisation, cloud computing, and cloud-

native platforms, compute capacity, which was once contained in a phys-

ical box on our desks is increasingly resembling a utility. Today, compute
resources can be accessed almost instantly in the cloud and can satisfy most applica-
tions. With this gradual change in infrastructure as developers learn to utilise it, the
type and nature of applications are evolving to solve new problems. With a modern
infrastructure, there are few reasons for applications to be built as monolithic blocks
hosted in immutable compute machines but can be devised using distributed micro-
services and scale at will to match demand. As the costs of a digitalised world are
becoming clear, forthcoming applications will no longer adhere to dated screen-based
User Interfaces (Uls) with rigid real-time performance requirements and huge over-
heads. Applications will exist omnipresently in an Internet of Things (IoT) world, be
less visible, more adaptable, and proactive to each user’s expectations, see Figure 1.1.

Staying off the cloud is increasingly indefensible. The breadth and rate of innova-
tion in services and resource management by the large cloud providers is difficult to
match by any individual organisation whose core business is not cloud computing. The
level of technological and business agility achieved with the rapid scalability of cloud
resources is unmatched by privately operated infrastructures.

Cloud computing, as realised today, is however inaccessible to time-sensitive and
mission-critical applications. Contemporary clouds are realised with distant DC ac-
cessed over the public Internet. The intermediate networks introduce delays and un-
certainty the render the cloud an infeasible habitat for time-sensitive applications such
as control loops.

Additionally, hauling vast amounts of data to a distant Data Center (DC), promptly,
can be both technically and economically infeasible. For a DC operator, Input/Output
(I/0) is a precious resource [BCH13]. Therefore, moving vast amounts of data in and

2 Introduction

Smart city services Mission critical systems Smart power grid

S /\ L Autonomous vehicles

Cloud integration

Autonomous
freight convoys

Figure 1.1.: A smart and wireless world

out of a cloud can be costly for its users. Data-heavy IoT applications, in particular,
incur significant bandwidth usage.

The cloud can be a hostile habitat for an application. A cloud is a shared pool of
resources. Other tenants can have an impact on the performance of your application.
Cloud providers implement intricate management policies to meet their internal per-
formance goals. These policies can implicitly conflict with the tenant applications’
goals.

In this thesis, it is assumed that the success of the cloud paradigm is founded on gen-
erality and frugality. Employing bespoke hardware (HW), resource management prin-
ciples, and programming models erode the cloud’s economies of scale and elasticity. It
is therefore assumed that all applications operate in General-purpose Processor (GPP)
environments in the DC and that users access such a DC over the public Internet.

To realise the world depicted in Figure 1.1, cloud computing is getting to the point
where it needs to spatially and conceptually extend towards its users. This is generally
referred to as Fog computing. Fog computing is essentially a heterogeneous hyper-
distributed cloud infrastructure. Its resources span the Radio Base Stations (RBSs) at
the network’s edge to traditional distant DCs. With the Fog, delay and jitter in the
delay can be reduced, and reliability can be improved with proximal placement. Not
only that, with a richer tapestry of resources, applications now have a broader spectrum
of resources to satisfy their capacity needs, given any constraints, such as cost, location,
quality, and RTT.

Fog computing infrastructures are vast and intricate, managing them is non-trivial.
The underlying Fog computing platform must be able to satisfy the needs of hetero-
geneous infrastructures while managing the needs of the applications, at scale, and
staying elastic. The intermediate wired and wireless networks play an essential role in

1.1. Cloud computing 3

realising the Fog. To be successful, the Fog infrastructure must be aware of the state
of the network, while the network must be aware of the application’s needs. Further-
more, applications should be made quality elastic in order to be able to take advantage
of dynamic and heterogeneous resource offerings. The above challenges come with
non-trivial trade-offs. These challenge are the primary topics of this thesis.

This thesis addresses the challenges mentioned above with the Fog computing in
the following manner. The remainder of this chapter provides a background and an
intuition for cloud computing, its challenges, and an overview of Fog computing to
frame the scope of the thesis. Part I discusses a set of fundamental challenges with Fog
computing. Chapters 2 and 3 introduces a set of Fog computing performance models.
The models are used to study the effects of User Equipment (UE) mobility on a Fog
computing infrastructure. In extension, and primarily, the models are used to design
and evaluate two resource management algorithms for the Fog. In Chapter 4, a cent-
ralised, optimal, algorithm is provided for an upper performance bound followed by a
tractable distributed multi-objective algorithm in Chapter 5. Part II explores the chal-
lenges of designing cloud-native IoT applications. Chapter 6 presents an architecture
for an ToT-based mission-critical smart city application using existing cloud services
in a traditional cloud. The resulting evaluation reveals significant limitations and per-
formance challenges with existing platforms. In Chapter 7, a method for limiting the
amount deferred shared state information amongst a set of [oT devices over a 5G link is
presented. The addition of 5G in Fog computing is explored further in Part III. Here, the
properties of Massive MIMO are studied to argue for the trade-off and challenges with
using Massive MIMO for Ultra-Reliable and Low-Latency Communication (URLLC)
in IoT. Finally, Part IV compounds the presented work on Fog computing, IoT, and
5G. In Chapter 9, a 5G Fog computing test-bed for mission-critical and time-sensitive
IoT applications is presented. The test-bed is used to control a physical plant over 5G
with the control-loop implemented as a cloud-native IoT application and executed dis-
tributively in the Fog. Experimentation shows that the Fog can bring real performance
enhancement to mission-critical and time-sensitive IoT applications.

1.1. CLOUD COMPUTING

This thesis deals with cloud computing technologies not as they exist today but as how
they are evolving. This section gives a general introduction to cloud computing to
convey an intuition for the cloud computing dynamics and challenges addressed in this
thesis.

The term cloud computing supposedly first appeared in 1996 [Regl1], came into
fashion in the early 2000s, and has become increasingly prevalent in the 2010s. Cloud
is a debatable metaphor. The image of a cloud has for a while been used as a metaphor
for the Internet. In this context, a cloud is supposedly meant to symbolise computing
accessed over the Internet as opposed to off-line computing, i.e. local computing or
on-premise computing. As with meteorological clouds, clouds that do computing are

4 Introduction

vague, open to broad interpretation, distributed, and like the weather, are unpredict-
able. Recently, cloud computing has become a layman hypernym for any higher-level
software (SW) service accessed over the Internet where its customers are agnostic of
where and how the service is hosted. In contrast to for example a desktop Personal
Computer (PC) or a campus cluster, cloud computing organises computing so that a
seemingly abundant amount of resource can be accessed almost instantly. With these
properties, arguably, cloud computing promises to move us towards ubiquitous com-
puting, where computing is available, procured, and consumed as a utility.

From a technical perspective, in this thesis, we adopt the following definition of
cloud computing. Cloud computing is the spatial and temporal pooling of general-
purpose Information Technology (IT) resources and the expedient management of
those resources. The resulting abstract IT resources and services are offered publicly
or privately and are often accessed over the public Internet, like utilities, in what re-
sembles a marketplace. Typically, these resources and services are packaged with a
certain degree of abstraction, ranging from a form of a VM or container to specialised
HW to a SW platform, and anything in between. A critical technological enabler of
cloud computing has to this point been HW and Operating System (OS) virtualisa-
tion. With virtualisation, physical resources can be partitioned, shared, and isolated
into VMs. A VM can be packaged for expedient portability and replication. Recently,
container have emerged as a nimbler alternative. A cloud customer is ordinarily able
to specify the properties of the virtual resource or service it wishes to procure but is
generally unaware of the actual nature of the underlying physical resource, its physical
location, to the extent in which it is shared, or for how long it will be retained.

As with any utility, a Service Level Objective (SLO), between a cloud provider and
its customers reassures the customer that a resource superficially equivalent to that ini-
tially procured will remain available and responsive. In other words, a cloud provider
and its customer agree upon an expected Quality of Service (QoS). The cloud pro-
viders’ ability to meet these expectations is in no small part a reflection of how they
manage those resources. It is these management principles that is the primary focus
of this thesis. In contrast to off-line computing, the performance of resources and ser-
vices in a cloud are non-deterministic, fuzzily governed by the resource management
objectives of the cloud provider. Furthermore, in return for relinquishing control, a
cloud customer receives access to seemingly abundant low-cost computing resources
with little or no maintenance effort, see Figure 1.2.

An playful metaphor for cloud computing is:

"Using the cloud is like celebrating your birthday at a bar. You can en-
tertain lots of guests, and they can all get as much as they want, but it is
going to cost you. It would have been cheaper to have bought the goods
ahead of time, but if you don’t know how many guests are coming, you
would likely rather have the bar take the risk of having to deal with half-
empty bottles when it’s all said and done. Plus, it is nice to let someone

1.1. Cloud computing 5

Application The Internet Cloud operator _c0

/

Resourc

Off-line computing Cloud computing

Figure 1.2.: Cloud computing vs. off-line computing. Imagine an applic-
ation as a multidimensional blob undulating in all resource di-
mensions. In off-line computing, that blob is contained in an
immutable cage. The blob’s owner is solely responsible for the
health of the blob and cleaning up the cage. In the cloud, across
the Internet, the blob can swell and contract at will but contends
with other blobs and is chaperoned by a supervisor. The blob’s
owner needs not to worry too much about cages but gets a bill at
the end of the month.

else deal with cleaning up. However, the bar is a shared space, and your
assumption that it has an infinite resource supply may prove to be incor-
rect. In spite of this uncertainty, it is still highly preferable to having to
buy your own virtually infinite supply yourself. * - Lars Larsson, 2018

For clarity, in this thesis, a service is a service provided by a cloud provider. From
here onwards, a cloud is the physical and legal entity from which you procure cloud
resources. Additionally, a cloud customer is an entity that procures cloud resources
and services and has a QoS expectation on those resources and services. A cloud
provider hosts applications for cloud customers, utilising the cloud providers services
and resources.

1.1.1. WHAT MAKES A CLOUD

Clouds are realised in large-scale compute, storage, and networking warehouses re-
ferred to as DCs [BCH13]. Contemporary cloud providers excel at running and main-
taining these DCs. Essentially, DCs enable computing at economies of scale and is in
many aspects competitive to off-line computing.

A cloud’s service offering can be public, such as the services provided by AWS,

6 Introduction

On-premise computing Virtualisation

Figure 1.3.: Progression of utility computing implementations.
At 1o the system has no load. At just after 7 the application is
subjected to a load. Here r; >> 1, > t3 and t5 is slightly larger
than 1,

Microsoft, Google, and IBM. In a so-called public cloud, anyone can seemingly indis-
criminately procure cloud resources and services at a market price. Private clouds, on
the other hand, are DCs managed as a cloud but its services are offered only to a private
group of customers, e.g. a corporation.

The services offered by a cloud ranges from direct representations of servers, VMs
in Infrastructure as a Service (IaaS), containers in Constainer-as-a-Service (CaaS) to
hosted SW services, to hosted functions (Function-as-a-Service (FaaS)). They are all
inherently different SW execution environments. Virtualisation has played a key role
in the realisation of the cloud. See Figure 1.3 for an intuitive overview. The primary
service abstractions covered in this thesis are the following:

laaS IaaS was the embryotic resource offering and is still cloud computing’s most
fundamental. Here, a cloud customer procures resources in the form of VMs
and containers (CaaS). The customer installs any SW on the VM and man-

1.1. Cloud computing 7

PaaS

ages it as a server independently of the cloud provider. The performance of
an application hosted on the VM is predominantly a reflection of the quality of
that application, the customer’s ability to manage the instance, the operator’s
ability to schedule collocated VMs and the characteristics of the other VMs’
workloads. Performance guarantees for applications are therefore not provided.
Each SW instance type comes with a set of expected 1/O throughput and cloud-
provider-defined performance abstraction. In AWS, this abstraction is called
EC2 Compute Unit (ECU).

With IaaS, the customer scales its application by adding and subtracting VMs or
containers. Selling containers in this manner is sometimes referred to as CaaS.
VMs have a non-negligible start-up time, containers less so. Additionally, on
any individual server, a VM might be collocated and interfere with other VMs
from other customers [VKF ' 12]. In this paradigm, a cloud customer needs to
make conscious decisions about the type and quantity of VMs it procures and
for how long. In this regard, an application owner faces similar challenges as
with off-line computing, but with the benefit of having access to an abundance
of resources and the ability to rapidly procure and relinquish resources.

Platform-as-a-Service (PaaS) offer customers the ability to host their bespoke
applications on a hosted platform in the cloud. Typically used for web services,
the customer builds an application using an Application Program Interface (API)
provided by the cloud provider and its own code. The cloud provider then scales
and manages application given that it adheres to the confines of the API. In
contrast to IaaS, here the customers do not need to procure and manage VMs
and containers but are instead confined to the abilities of the platform.

FaaS In the FaaS paradigm, the cloud provider hosts a program language runtime,

SaaS

often for dynamic and interpreted languages, enabling execution of predomin-
antly stateless compute functions. An application can be contained within one
of these functions or constructed as a composition of many. A function is lim-
ited to a set of execution time and the amount of memory it can consume. The
customer can instantly execute hundreds of instances of its function, paying
only per execution. Performance guarantees are not provided, see Section 1.2.2.
Although a developer can verify the functionality and stability of the code, it is
non-trivial to estimate how it will perform in the cloud. Within these confines,
the customer is wholly responsible for the stability of the SW. This paradigm fo-
cuses on compartmentalising applications into its fundamental functions and fits
into the realm of micro-services. The major cloud providers offer the means to
trigger functions from a plethora of other services and to pass messages between
them. Messaging between micro-services is often asynchronous and does not
come with any tangible performance guarantees.

In a Software-as-a-Service (SaaS) offering, an application in the form of SW is

8 Introduction

hosted in the cloud and provided as a subscription to the customer. The SW is
often accessed over a web interface and requires no maintenance on behalf of
the customer. In the back-end, the cloud provider scales the SW according to
the clients’ needs. Microsoft Office 365 and Gmail are examples of a SaaS.

1.1.2. ELASTICITY

The expedient management and flexible procurement of cloud resources are the en-
ablers of elasticity. Compared to off-line computing, it should now be clear that
elasticity is cloud computing’s distinguishing quality. Presented below is a distinction
between infrastructure elasticity and process elasticity.

INFRASTRUCTURE ELASTICITY

While off-line infrastructures can adapt in the time scale of days and weeks and are
immutable, the cloud is elastic in the time-scale of minutes, see Figure 1.4. As a
consequence, resource needs can be matched more responsively. Nevertheless, cloud
resources are not perfectly elastic. VMs, containers, and SW platform have start-up
times and are affected by overlying management principles. In a perfectly elastic sys-
tem, deterministic resources on a continuous scale would be available immediately.
Figure 1.4 illustrates the dynamics of infrastructure elasticity.

PROCESS ELASTICITY

An elastic infrastructure allows for elastic processes [DGST11]. Cloud is not only
resource-scalable but is also cost elastic, and both enables and requires quality elasti-
city. With elasticity in three dimensions, cloud computing enables application owners
to set operating criteria that closely match their business needs. Given the volatility
of the cloud infrastructure and the applications’ ingress workloads, this is a non-trivial
task.

Today, cloud-based applications are designed to serve its customers at a fixed quality
level. Applications serve the workload oblivious the state of their execution environ-
ments. The execution environment includes; CPU core count, I/O, and RAM as well
the level of contention in the infrastructure. Applications indiscriminately produce
outputs of fixed quality, without regard to either current operating conditions or what
utility each customer receives at that quality level.

Quality-elasticity is defined as letting applications adapt their mode of operation to
current operating conditions by dynamically adjusting their output quality accordingly.
Quality concessions are achieved through both basic properties of their execution en-
vironments, such as opting for a more memory-intensive algorithm when memory is
more readily available than CPU time, and on current conditions such as system load
and instantaneous contention effects by other execution environments. Crucially, ap-

1.1. Cloud computing

—— Demand — Capacity - - - Served Over prov. Under prov.

Traditional Reactive TaaS/CaaS

Throughput
[\S]

1 4
0 T T t
0 2 4 6
Time Time
Proactive IaaS/CaaS Faa$S (Server-less)
4 o
3 +

Throughput
[\

Figure 1.4.: Illustration of resource matching to demand, as seen from the
cloud customer. Note that for the sake of simplicity, the sys-
tems in the figure are not work-preserving. In traditional provi-
sioning, excessive over-provisioning is common practice. Rep-
resenting a lost opportunity. In [aaS, matching demand can be
challenging. In FaaS, the cloud customer does not nor can not
control the underlying resource provision, but can occupation-
ally notice when demand is not matched.

plications shall provide lower-quality results in cases of resource scarcity, and higher-
quality ones when resources are abundant.
For the applications, the implication is that service instances can more predictably

10 Introduction

handle load spikes and avoid client time-outs by reducing output quality of responses.
This instantly reduces the load and thus helps maintain the desired throughput.

For the cloud providers, higher utilization and an improved ability to adapt deployed
services to resource contention mean that redundant capacity can be reduced. Output
quality reductions, a subset of quality-elasticity, have been shown to optimize cloud
infrastructure in this way [XDB16].

ELUSIVE ELASTIC POTENTIAL

When fully utilising the heterogeneity and elasticity of cloud resources, it can help
application owners to meet their business goals. Over-utilisation and thus overspending
can be capped. The quality of the output can be scaled to match the actual prevailing
requirements on timeliness and granularity.

For a process to take full advantage of process and infrastructure elasticity, the pro-
cess owner needs to have rich insight into the nature of the resource at hand. It also
needs an Elastic Reasoning Mechanism (ERM) of some sorts, such as [CMTD13], and
a definition of what the optimal use of those resources is. Finding that momentary
optimal configuration is reminiscent of the Vector Packing Problem, which is NP-Hard
[CKPO3]. There are several related works on adaptive processes, but few generally
consider decisions involving cost, resources, and quality.

Because the cloud is not perfectly elastic, when resources do not match demand,
applications can enter a state of resource contention. Applications’ ability to serve re-
quests is significantly impeded when resources are scarce. Due to imperfect elasticity,
there is no practical way to scale up the underlying infrastructure instantly. In this state,
requests are either served at a lower rate or, due to client time-outs, perhaps not even
at all. Thus, service utility, resilience, and throughput suffer.

When operating with excessive resources, the problem is two-fold. Firstly, the exe-
cution environment’s resources, that have been paid for are poorly utilised. Secondly,
the underutilised resources represent a missed opportunity to provide higher quality
results at potentially no additional cost.

Low resource utilisation is costly for both application owners and cloud infrastruc-
ture providers alike. Average utilisation is reaching only around 15% [SSHT16]. In a
sense, resources are wasted to essentially keep the lights on [RTG™12, BHO7]. Cloud
providers are also under market pressure to provide seemingly infinite resources, which
requires large buffers of available resources to cope with request peaks. This is costly
and constitutes a barrier to entry for smaller providers. Thus, both service providers
and cloud infrastructure providers have clear incentives to make better use of available
resources.

Eventual consistency, explored at length in [CIL™15], is a form of quality-elasticity
for databases. This mode of operation has taught users to not expect consistent results
to imprecise queries: what products are recommended changes based on factors and
proprietary algorithms that users cannot inspect. Thus, they cannot judge whether these

1.2. Tomorrow’s applications and the cloud frontier 11

results are accurately modelled to their particular preference, instead just trusting that
they have been generated “somehow”. This non-strictness is ripe for optimisation. For
service delivery, we can use this to our advantage, as intuitively, some result (of some
quality) is better than none.

1.1.3. HIGH-LEVEL CONCERNS

Although the cloud has elusive potential, it is not without a set of challenges for its
customers.

Availability Despite all its redundant systems, a DC is a single-point-of-failure. Power
black-outs and brown-outs can hit DCs and intermediate infrastructure. SW
bugs, human error, and malicious attacks can render DCs inoperable. Addi-
tionally, a customer’s Internet Service Provider (ISP) can go down and vary
significantly in quality over tine.

Latency The best-effort networks separating the cloud providers’ DCs with its cus-
tomers provide no performance and availability guarantees. Cloud DCs are
spread far and wide. Network latency delay and jitter in the delay can be sig-
nificant. Additionally, the response times from cloud platforms vary greatly.
These two properties are discussed further in Section 1.2.2.

Vendor lock-in The rate of service innovation and differentiation means that applic-
ations are becoming less portable between clouds, especially when employing
PaaS. The lack of standards across cloud providers is making it difficult to
switch cloud provider or spread across multiple cloud providers.

Data security Once in the cloud, there is almost no transparency as to how and where
data is stored. It is virtually impossible to prove that data cannot and is not
leaked, given the complexity and rate of change of cloud platforms and systems.

Cost Although the cloud is a potential cost saver, it does require a conscious effort.
Cloud deployment costs can quickly escalate if left unchecked. Recent cloud-
native offerings might appear cost-effective but can be costly if not used frugally
or as intended, [VGO™'17].

1.1.4. WHO IS THE CLOUD FOR TODAY?

Start-ups have embraced the scalability of the cloud as the ability to snowball. The
cloud is very suitable for both small companies that want to snowball and that cannot
afford large up-front investments as well as large enterprises that want to become more
agile and cost-effective with their IT infrastructure. Today, the cloud is primarily used
to host web-services, databases, and for Content Delivery Network (CDN)-like content
hosting. The next chapter looks at the next cloud frontier.

12 Introduction

1.2. TOMORROW’S APPLICATIONS AND THE CLOUD FRONTIER

Regardless of the shifting merits of cloud computing, enough momentum has gathered
around this massive compute immigration to grab everyone’s attention. In the midsts
of the hype [Gar], cloud business models go in and out of fashion. However, new and
existing applications still find it challenging to deploy and make the migration to the
cloud, respectively. In this section, emerging computer needs and existing reluctant
cloud incumbents are examined. Their potential success and challenges in the tradi-
tional and in emerging cloud computing paradigms are discussed and contrasted with
the backdrop of general empirical observations.

1.2.1. EMERGING APPLICATION TYPES

Internet access is both kinetically and conceptually increasingly mobile. Humans in-
teract with services from the cognitively arduous confines of mobile devices as they
traverse the surface of the earth. Mobility is a challenge for cloud services. As users
move through the network, switching from mobile to WiFi infrastructures with varying
quality, applications, content, and cloud platforms must adapt and reorganise to meet
the user’s QoS expectations. Additionally, users accessing bandwidth-intensive and
latency-sensitive cloud applications can significantly strain mobile networks. Today,
humans downloading content constitutes a much ten times the amount of bandwidth
as they upload. That ratio is expected to inverse in the coming years as machines
communicate more and more.

Analogously, a great deal, if not the vast majority, of computing workloads are ini-
tiated or conceived by humans. Humans submit queries, tune parameters, create and
remove content, and constitute content popularity churn. From a birds-eye view, most
processes are not only initiated by humans but also have humans in the loop. Some ar-
gue for a formalisation; an introduction or ratification of a social compute unit [DB11].
These human resources will and are doing cognitive tasks that computers still cannot
satisfactorily complete. For example, labelling data for Machine Learning (ML) mod-
els, resolve ambiguous conflicts and approve significant state transitions. However,
perhaps more commonly, humans act as interfaces between SW or human systems.
Waiting an arbitrary amount of time for a human response or interpretation can be a
significant performance bottleneck for any system. Often these responses are predict-
able and can thus arguably be made by Artificial Intelligence (AI). A current example
is Google Duplex [LM18]. Here, a Al-based assistant can successfully make arduous
phone calls on behalf of its human client to another human-based system interface,
without its client’s involvement. The Google Duplex team provide two primary ex-
amples; booking a haircut appointment and making a restaurant reservation. More sys-
tems like these that handle human-to-machine human-to-constraint arbitration might
eliminate some need to for our current app-based work-flows. These types of applica-
tions require that the cloud can close the communication loop with the IoT-world. Here
both delay and data volume is a challenge. Traditional distant DCs is proving to be a

1.2. Tomorrow’s applications and the cloud frontier 13

High-level objectives N\ @N

Database

—Cloud platfrom

Diagnostics [
.
—J
Control system
S A
Time-sensitive
@ ol
) processes
G@]
Production equipment Human operator O Robotic arm

Figure 1.5.: Industry 4.0

challenge. Hauling vast volumes of data over the intermediate network is both costly
and incurs congestion. The latency to distant DCs is often significant, see Section 1.2.2.

Industry 4.0 or industrial IoT is an example that reflects the challenges above. Here,
sensors, actuators, and machines connect to an omnipresent cloud platform. There,
control loops, ordering systems, and analytics systems co-exist, scale, and share data.
Pervasive IoT and micro-services play an essential role in realising industry 4.0, see
Figure 1.5. Real-time automation systems are time-sensitive. At an industrial scale,
they require significant network bandwidth. Such systems require I/O performance
symmetry, something which current cloud providers don’t provide. I/O performance
symmetry refers to the ratio of quantity and timeliness at which that data can be input-
ted and outputted to and from the cloud. Contemporary cloud services are primarily
designed to consume data. Moving data out of the cloud in a timely manner is both
expensive and technically challenging. Most cloud providers’ IoT solutions are good
at hauling data into the cloud but don’t provide the means to create a near real-time
communication loop. Any downstream communication is typically best-effort over
Message Queuing Telemetry Transport (MQTT) topics and is primarily intended for
device management. Section 1.2.2 presents a set of performance challenges for such
applications.

Collaborative computing is another emerging paradigm where computation needs to
be coordinated or even consolidated [GLPL14]. In collaborative computing, intelligent
entities or data sources collaborate to improve the quality of the application’s output
or their performance. The collaboration can be either event-based or continuous. It is

14 Introduction

triggered either by the devices themselves or by a third party. The resulting process or
task can either be shared amongst the entities or completed by a third party.

An application domain ripe for collaborative computing is autonomous and semi-
autonomous vehicles. Here, no single vehicle has the data nor the computational capa-
city to handle every situation. Additionally, as they operate in a shared physical space,
no one vehicle can resolve contention. For example, with collaborative computing,
the intersections of tomorrow might not need traffic lights [RTM17]. For example, an
entity in an intersection detects approaching vehicles, retrieves relevant data from the
affected vehicles, arbitrates the use of the intersection, and finally acts on the vehicles.
One can also imagine situations where the vehicles themselves initiate the collabora-
tion. The sensors in a vehicle only ’see’ so far. If the autonomous entity in a vehicle
determines that its actions are too uncertain, it can plausibly both supplement its data
from proximal cars and augment its computational capacity using other vehicles or a
third party to increase the quality of its output.

These concepts are not necessarily new. They have been around since the dawn of
Vehicle to Vehicle (V2V) communication, but with the arrival of abundant computing
and vehicle technology, they just might become a reality. The cloud is an alluring third
entity in such systems. Its resources are abundant and quickly scalable. However, as
such systems deal with human lives, the level of uncertainty in contemporary clouds
and wireless networks renders such applications inviable.

1.2.2. LATENCY AND UNCERTAINTY CHALLENGES

Traditional cloud computing relies on distant DCs, shared amongst a large number of
applications. Although DCs operate at a low level of utilisation, multi-tenancy has a
significant impact on an application’s performance [BCH13]. Additionally, to be cost-
effective, cloud operators implement resource management mechanisms in their DCs
that balance Operational Expenditure (OPEX) with perceived performance. Analog-
ously, both these factors impact the achieved RTT between a customer and the services
in a cloud provider’s DC and the services therein. Below, RTT includes both network
delay and system delay from the cloud platform.

As areference, an RTT of > 100ms makes real-time and time-sensitive applications,
as we know them today, infeasible. Achieving an RTT of 1 ms, along with carrier-
grade robustness and availability, enables these time-sensitive applications to run in
the cloud. These applications constitute what is known as the Tactile Internet.

A distributed system like the Internet and the global cloud infrastructure can incur
long-tailed delays and jitter in the delay. These are often due to congestions in the
systems and policies implemented to mitigate over-utilisation and cost savings. Even
with a low mean delay, the occasional proportionally larger delay can equate to a cata-
strophic interruption of an application. Because the delays have many sources, they
can even be multi-modal and therefore both correlated and uncorrelated. As a simple
example, network delays within a short time frame are typically not correlated while
for example the delays incurred by warming up a container are correlated.

1.2. Tomorrow’s applications and the cloud frontier 15

NETWORK PERFORMANCE

The network separating a cloud customer from a cloud provider’s DC is not always re-
liable but also incurs delays and jitter in that delay. Figure 1.6 shows the RTT between
the Lund University campus in Lund, Sweden and to all AWS’s availability regions
in the autumn of 2017. The RTT was measured by sending 100 ICMP pings to each
availability region’s lambda endpoint every 30 minutes from August to December in
2017. Considering the quality of the campus network and the ISP, the achieved RTT is
viewed as ideal.

The geographically nearest availability region is eu-central-1, located in Frankfurt,
Germany. Between Lund and eu-central-1 a very consistent RTT of just short of 20ms
is observed. When staying in Europe, the RTT is between 20 — 35ms. Although a
RTT of 20ms can seem low, it is a challenge for real-time applications. For example,
for a process operating at 50Hz, with a RTT of 20ms, every action is applied with a
delay equivalent of one period. Persistent delays can be compensated for using the
practices of networked control [ZBPO01] in some systems. Not compensating for delay
can have a significant, long-lasting impact on process performance and even make
the process unstable. Variance in the delay, i.e. jitter in the delay, is non-trivial and
requires remedies that are bespoke to the application, such as process switching and
quality elasticity.

Going beyond Europe sees the tails grow significantly. Crossing the Atlantic Ocean
adds another 70ms. The network quality to the AWS availability zones in Asia is less
than favourable, and the RTT is well above 250ms. Inter-regional connectivity is re-
latively weak, while intra-regional connectivity is acceptable in the U.S. and Europe
[clo18a]. Interesting to note from Figure 1.6 is that the number of hops does not signi-
ficantly increase with spatial separation.

Connectivity over Ethernet is preferred but stationary. In near all industrial IoT
scenarios, devices are connected either over a fixed or wireless links. Figure 1.7 shows
the same experiment but conducted over a public Long Term Evolution (LTE) network.
Here, the variance, or jitter in the delay, is significant. The mean RTT to eu-central-1
is now above 50ms, with some instances close to 80ms.

A large number of IoT devices need to be connected wirelessly. It is evident that LTE
is not suited for massive IoT deployments, not only with regards to latency but also en-
ergy efficiency and reliability. In many cases, Ethernet performance is not enough. The
results presented in Part III show how Massive MIMO in 5G can facilitate industrial
IoT and the tactile Internet. In short, the increase in spectral efficiency in Massive
MIMO can be utilised to archive URLLC and massive Machine Type Communica-
tion (mMTC), essential for industrial IoT.

Exiting ISP’s network and crossing a continent’s backbone network can result in the
traversal of more than 20 nodes. Figure 1.8 shows the mean latency per hop to all
AWS availability zones from Lund University in Sweden. The figure shows after how
many hops the ISPs’ networks end, on average, and how the jitter in the delay becomes

16

Introduction

significant as you leave the ISPs’ networks.

ap-southeast-1
ap-southeast-2
ap-northeast-2
ap-northeast-1
ap-south-1
us-west-2
us-west-1
us-east-2
ca-central-1
us-east-1
eu-west-1
eu-west-2
eu-central-1

- HI— - —H -
L HTH N H
— HH - -
— i L | -
L HIH N 0~
L HH N N
- i - ——
L i N H N
L M N H] N
. | -
- N — N
7|\ | | | | | | | | | | | | \7
20 50 100 150 200 250 300 350 400 15 20 25 30
Latency (ms) Nbr. hops

Figure 1.6.: Network delay over campus network to AWS availability zones.

ap-southeast-1
ap-southeast-2
ap-northeast-2
ap-northeast-1
us-west-1
us-west-2
ap-south-1
ca-central-1
us-east-2
us-east-1
eu-west-1
eu-west-2
eu-central-1

0

- T -
— HIH- - i
— HIH | R
— HIH - pomemeee |
- HIH - HH
- HIH - R
— HTH |]
— HIH | =
- -HIH | 1
L H\IH | | | | | | | | \l:‘—\{F

50 100 150 200 250 300 350 400 450 15 25 30

Latency (ms) Nbr. hops

Figure 1.7.: Network delay over public LTE network to AWS availability

zones.

CLOUD NATIVE SERVICE PERFORMANCE

Compounding tens of ms of network delay with system delays at the cloud provider’s
DC, the RTT can extend well into 1s. In this section, an IoT-like application is built
using a composition of AWS services to study cloud platform system delays. The
application is then used to gauge the RTT of the application as a composition of AWS
services and its constituent AWS services.
An IoT application is assumed to consist of at least one connected device that sends

1.2. Tomorrow’s applications and the cloud frontier 17

L g — F—
131 H |]
12 | [8

Hop

IRV RNV N N -}
\
=
|

|
0 50 100 150 200 250 300 350 400
Latency (ms)

Figure 1.8.: Number of hops to all AWS availability zones. Blue line indic-
ates median end of ISP’s network.

AWS DAW:B
Lambda yn
—
Logic / < >
Control

Figure 1.9.: Rudimentary IoT application architecture using AWS services.

Device

data to the cloud. The data is processed in the cloud, a result or action is then returned to
the device and saved in the cloud to represent the state of the device or the system. The
application is built using AWS IoT for device management and communication, AWS
Lambda for computation, and AWS DynamoDB for storing state. The device is, in
this case, a desktop PC running Ubuntu Linux 17.04, connected to the Lund University
campus network. The device posts a value to an uplink AWS IoT MQTT topic at a set
rate. A rule in AWS IoT triggers an instance of an AWS Lambda function on the uplink
post. The AWS Lambda function reads a value from an AWS DynamoDB table, com-
bines it with the reported value, updates the Database (DB), and returns the value. The
Lambda function publishes the resulting value on downlink AWS IoT MQTT topic, to
which the device subscribes, thus closing the communication loop. The AWS Lambda
function was implemented in Python and Boto 3 was used throughout. An overview of
the architecture is provided in Figure 1.9.

18 Introduction

—A—1IoT DynDB — + IoT — + DynDB

0.8 -

0 |
0 . 1

Round-trip-time (s)

Figure 1.10.: RTT of AWS services common in cloud-based IoT-
applications. Dashed line represents the ’brute-force’ ap-
proach. + represents the addition of that service, ie. '+
DynDB’ therefore includes all A, 0T, and DynamoDB.

Figure 1.10 shows the eCDF of the RTTs for the targeted IoT application, measured
with 1000 samples every 15 minutes from August to October 2018. Note that the
mean RTTs for the individual services, namely AWS IoT, AWS Lambda, and AWS
DynamoDB are 129ms, 40ms, and 69ms, respectively. It is clear from Figure 1.10 that
communicating over an AWS IoT MQTT queue incurs a significant delay and a heavy
tail. Note that the samples captured during the warm-up period, for each sampling
instance, have been removed. The warm-up time can be up to 300ms for AWS Lambda,
5s for AWS IoT, and 72s for AWS DynamoDB. The values presented in Figure 1.10
should, therefore, be considered to have been produced by a continuously operating
system, under ideal circumstances.

AWS IoT and AWS Lambda are combined in the eCDF labelled *+ IoT’. The com-
plete application with the DB component is presented in the eCDF labelled + DynDB’.
The solid lines show the synchronous RTT. Notice that the incurred RTT for the entire
application (+ DynDB) is significantly greater than the sum of the individual services.
From Figure 1.10 it is clear that accessing DynamoDB in a lambda function comes
with a substantial time penalty.

The dashed lines show the lowest RTT out of 20 near-concurrent asynchronous calls.
The cost of each additional concurrent call grows linearly, but the benefits diminish
exponentially, in both scenarios, as seen in Figure 1.11. The disparity shows that there
are gains to be made with this ’brute-force’ approach and hits at the innate quality
variance of AWS’s services. This effect is an indication of the performance variance

1.3. Fog computing 19

A+ 10T
60 T T

50 |-

20
10 .

0 1 |1

% improvement
(98]
<)
|

A + 10T + DynDB
60 T T \

40 .
30 Ny
20 Ny

10 a
0 1
1 3 5 7 9 11 13 15 17 19 20
Nbr. of concurrent calls

% improvement

Figure 1.11.: Benefit of 20 concurrent asynchronous calls. The pink line
demarks the highest median.

one might encounter with cloud-native or micro-services in the cloud.

1.3. FOG COMPUTING

Fog computing is emerging as a new cloud paradigm in the wake of IoT and an in-
creasingly distributed cloud infrastructure. IEEE 1934-2018 [83818] defines a Fog
computing system as a system of heterogeneous and distributed cloud resources. Be-
fore IEEE’s draft standard what we now know as Fog computing was known by many
different names. For example, half a decade ago; omnipresent cloud, distributed cloud,
infinite cloud, mobile edge cloud, and edge computing were all emerging and partially
overlapping definitions.

The premise of Fog computing is to make cloud computing accessible to time-
sensitive, and mission-critical applications where traditional DCs don’t suffice. By in-
troducing cloud capacity proximal to the end-users, applications are accessed at lower
delay with less jitter in the delay and with greater network reliability. User-proximal
nodes also permit applications to consider data and processing-locality constraints, as
well as more elaborate fault-tolerate mechanisms relying on relative geographic ad-

20 Introduction

Application componenet RBS Internet \Distant datacentre

Compute Intensity : —
Bandwidth Intensity : s
Memory Intensity : =

Compute cost : s
Bandwidth cost : mm
Latency : ®

Application component
placement decision

On-premise datacentre Edge datacentre

Figure 1.12.: Schematic overview of a fog computing infrastructure

vantages. Here, proximal resources are resources near the end customers in contrast to
traditional DCs.

Recently, a distinction has emerged between Edge and Fog computing, [AZTS18].
Edge computing is becoming synonymous with technologies and systems that take
advantage of IoT and mobile devices at the edge of the network. These devices are
managed in a cloud-manner and applications can span across or move between devices
and traditional DCs.

In this work, a Fog computing computing infrastructure is defined as:

A system of a set of heterogeneous hyper-distributed general-purpose cloud comput-
ing nodes with varying degrees of proximity to the system’s end-users. The system’s
resources can be federated and opportunistic, meaning that they are not necessarily
purposefully for Fog computing. Applications deployed to such an infrastructure can
take advantage of the infrastructure’s heterogeneity to meets their performance targets.
Likewise, the infrastructure is actively managed to meet its performance goals as well
as those of the applications.

Figure 1.12 provides a general overview of a Fog computing infrastructure. Here,
cloud resources are distributed in a network ranging from traditional distant DCs to the
edge of the mobile network, e.g. in RBSs. The resources vary in capacity and ability
across the network. Computational capacity arguably decreases with network depth
as DCs further down the network will serve fewer end-users. Conversely, the cost per
compute and time unit arguably increase with network depth as economies of scale
diminish with successively smaller DCs. On the other hand, aggregate bandwidth cost
will likely decrease with depth. In this thesis, the mobile network plays an integral
part of the Fog computing infrastructure. With the arrival of 5G, the networks are
capable enough to support Ultra-Reliable and Low-Latency Communication (URLLC)

1.3. Fog computing 21

and massive Machine Type Communication (mMTC) applications which would justify
Fog computing.

Numerous proposed use-cases have emerged in the Fog computing research sphere.
Massive 0T is a reoccurring theme [BMNZ14] that has gained traction amongst cloud
providers. If an over-engineered IoT-world materialises, it arguably needs the support
of Fog computing. In such a setting; compute, storage, and networking are subject to
data gravity [Y1J17b]. Hauling data to distant DCs is often infeasibly when concerning
both cost and performance [Y1J17a]. Some non-controversial use-cases are; mobile of-
floading, caching, and Network Function Virtualisation (NFV). More targeted use cases
include building smaller DCs in areas with computing needs but with poor connectiv-
ity. One can imagine both ships and oil rigs that continuously produce large amounts of
data and that want to have that data timely analysed for operational efficiency. Oil rigs
and ships often rely on expensive, low throughput, and high latency satellite or radio
links. The idea is here to process the data where it is needed and only communicate
what has value to the outside world. More technically challenging use-cases revolve
around collaborative autonomous vehicles and vehicle platooning [TRAT17]. These
use cases fall under the notion of serendipitous or augmentative computing, meaning
that the vehicles do not necessarily rely on Fog computing but will take advantage of it
whenever and wherever it is available. Due to heterogeneity in both infrastructure and
performance requirements, applications in a Fog computing infrastructure will have to
be process-elastic on a conceivably broad range. Quality elasticity is not just technic-
ally challenging, objectively. Subjectively, users’ expectation has to be appropriately
managed.

A more straightforward but very relevant use case is when obsolete user-proximal
HW is structurally or serendipitously augmented by Fog computing resource. Imagine
a piece of production machinery. Modern production environments are dynamic; pro-
cesses are adapted and integrated to meet particular performance targets. The compute
HW that was delivered with the machinery will not suffice for long in such an envir-
onment. Neither is it in the production machinery manufacturer’s business interest to
supply and support computing capabilities in their machines that will quickly outgrow
their customer’s needs. Instead, ultimately all process can be executed in a proximal
cloud node, sharing data amongst each other and peripheral ordering, monitoring, and
management systems. For a recent comprehensive survey see [YFNT18].

1.3.1. INFRASTRUCTURE CONVERGENCE AND FOG COMPUTING ATTRACTORS

Although an actual Fog computing infrastructure does not currently exist, many industry-
lead developments are resulting in a more distributed end-user-proximal cloud infra-
structure. In many aspects, new and incumbent cloud providers are leaping towards the
edge of the network. For example, investments are being made in edge-aware services
and infrastructure relatively closer to the end-users. 5G and the use-cases it promises
to deliver is often an instigator for these investments. The primary factors driving the
convergence towards Fog computing are detailed in this section.

22 Introduction

With exponential growth in cloud computing usage, providers are continuously in-
creasing their availability presence. The dominant cloud providers are investing in
more and larger DCs in more regions. The result is a geographically denser network
of DCs. Having a DC in the backbone network near to where you operate can both
significantly reduce communication delay and increase availability. Not to mention,
your data can be stored where it can more easily be stored in the originating geograph-
ical region. In some regions, this is required by law. These investments should not
necessarily be seen as a deliberate encroachment towards the edge. These DCs are
superficially equivalent and are meant to increase general availability and not specific-
ally to satisfy edge use cases. Recently, AWS has begun to offer AWS infrastructure
on-premise through a service named AWS Outposts !. This allows customers to run
AWS-native application on their premises and managed as if a AWS DC.

To satisty classic edge use cases, AWS and Microsoft have begun to offer specialised
edge solutions. They come either in the form of CDN-type caches that can host limited
dynamic content (Edge Side Includes (ESI)), to simple on-premise [oT devices running
a SW-platform provided by the cloud operator. These offerings allow developers to
deploy code to the edge or on-premise, typically as a FaaS. Although these locally
hosted platforms are well integrated with the cloud operator’s service offerings, they
are primarily intended as a means to extract and haul data to a distant DC for storage,
processing, and a ML model. Furthermore, the platforms don’t scale as DC-based
cloud computing, and the application owner is responsible for deciding where to place
application components.

CDNs such as Akamai and Cloudflare have extensive networks of user-proximal
DCs. Although not at the magnitude of the big cloud providers’ DCs, they scale well
to the demand in their network vicinity. Typically only hosting static content, CDNs
such as Cloudflare have started to change their infrastructure to allow it to host simple
applications [Clo18b] (ESI). They are primarily intended to intercept and personalise
web responses dynamically and are therefore not equatable to the FaaS services offered
by the big cloud providers. However, ESIs are a significant step towards intercepting,
routing, and manipulating in-transit web and IoT traffic.

Starting with 4G, telcos and Telecom Original Equipment Makers (OEMs) have had
the ambition to virtualise some to all functions of the Radio Access Network (RAN).
NFV involves deploying network functions previously hosted on dedicated and spe-
cialised hardware to cloud-like DCs with GPPs. The idea is to aggregate the func-
tionality to a set of geographically proximal RBSs in one common DC or processing
node. With full virtualisation, a RBS is split into a Remote Radio Head (RRH) and a
Baseband Unit (BBU). The RRH and the BBU can be spatially separate. The RRH
relays any baseband signals over what is called a front-haul network to the BBU for
processing. This paradigm is often referred to as Cloud-RAN [CCY " 15], CRAN, or
virtualised RAN. The prospected benefits are the ability to load-balance workloads

Uhttps://aws.amazon.com/outposts/

1.3. Fog computing 23

across cells, more flexible and scalable HW independent deployments, and reduced
cost. Again, the draw of elastic GPP computing resources is a major attractor. Addi-
tionally, virtualising the telco’s infrastructure would also allow equipment owners to
slice their infrastructure.

Network functions are very latency sensitive, especially lower level Medium Access
Control Layer (MAC) and Physical Layer (PHY) functions [CCY ™ 15]. Latency sensit-
ivity is set to increase as throughput requirements and Radio Access Technology (RAT)
processing increases with each successive 3rd Generation Partnership Project (3GPP)
iteration. Higher level functions such as billing and location registry are already de-
ployed to GPP platforms. Furthermore, routing and fire-walling have been running
successfully in the cloud for some time. However, MAC scheduling decisions, channel
coding, and estimation occur at a very high rate, proportional to the channel through-
out. Therefore, the delay and jitter in the delay subjected to the baseband signal would
have to be much lower than what can be achieved over the public Metropolitan Area
Networks (MANs). Coupled with GPP-based cloud platforms many RAN functions’
real-time constraints cannot be satisfied with the traditional cloud paradigm. Full stack
virtualisation might require bespoke front-haul networks and bespoke hardware in the
BBU. Again, moving away from GPP erodes the benefits of the cloud. Analogously,
these requirements limit the potential geographical reach of virtualised telco systems.

Telcos are new to the cloud domain. They are accustomed to providing availability
rates that are much higher and latencies that are much lower than traditional cloud pro-
viders. Telcos are currently implementing or investigating business-models for selling
any excess cloud capacity embedded in the network. Such services range from CDN-
type caching to dynamic applications, to NFV. This is often referred to as the telco
cloud [SGP™15]. The advantage, a telco cloud can potentially offer application own-
ers deeper integration into the network by for example exposing users’ locations and
prevailing network conditions. The telco-operated DCs will arguably not be at the scale
of traditional DCs and therefore not achieve the same level of economies of scale. Con-
ceivably, they need to operate with a higher utilisation factor.

The positive effects of the fog computing paradigm might be undercut by develop-
ments in RAT, RAN, and Wide Area Network (WAN) technologies. With 5G, RAT
latency is proposed to go down to lms, in what is called Ultra-Reliable and Low-
Latency Communication (URLLC) [SMS™17]. The backbone networks are also con-
tinuously getting upgraded. The star and ring topologies are giving way to more point-
to-point topologies and Software Defined Networks (SDN). Meanwhile, optical fibre
is becoming the norm for the last mile. All of these improvements contribute to lower
latency communication on less congested networks. On the other hand, Network Func-
tion Virtualisation (NFV), SDN, and slicing might contribute to increased aggregate
network delay and jitter in the delay.

24 Introduction

1.3.2. ELASTICITY IN THE FOG AND APPLICATIONS

A fog computing infrastructure provides to a large extent the same degrees of freedom
as traditional cloud computing, namely; cost, resource, and quality, but also adds spati-
ality and heterogeneity. An application deployed to a fog computing infrastructure can
disaggregate, place, and scale individual components at different geographical points
in the network, in whichever constellations it may achieve its desired performance, at
that point in time. Although a Fog computing infrastructure has a wide pallet of re-
sources, they will arguably not be as resource elastic as a traditional DC. Smaller DCs
will have fewer resources on which to scale and will come at a higher cost.

Responding and mitigating to a ephemeral system state and a mobile demand is non-
trivial. Continuously migrating full applications or application components around a
massive fog computing infrastructure, at every whim, is not desirable. Migrating and
starting up VMs and containers, and reconnecting data paths incurs a significant per-
formance overhead and can have a profound negative impact on smaller DC and on the
application itself. With higher load factors and to some degree a constant churn, ap-
plications will arguably be exposed to more execution jitter. With dynamic application
placement, a highly mobile user base, and resource-constrained edge applications the
Fog computing infrastructure can quickly become confined to an undesirable or even
inoperable state.

To take advantage of and cope with increased heterogeneity and uncertainty, applic-
ations in a Fog computing infrastructure should be encouraged to embrace an osmotic
existence. Osmotic computing [VFD116] is an application paradigm that is driven
by the emergence of distributed heterogeneous cloud infrastructures. Operating con-
ditions frequently change because resources can be scarce and are shared by many.
Additionally, a Fog computing infrastructure owner’s management policies also con-
tribute uncertainty. Applications, therefore, need to have the ability to adapt to a con-
tracting environment. An osmotic application takes advantage of the ephemeral and
heterogeneous nature of such infrastructures by continuously practising resource, cost,
and quality elasticity. Application components scale vertically and horizontally in the
infrastructure to where they incur the least cost, perform the best, or where they can
take advantage of a unique resource. Furthermore, applications do not necessarily have
the necessary quantity or type of resources available in the part of the network to meet
lofty or ideal performance targets. Even though the current operating conditions are
undesirable, moving an application or one of its components might not always be cost-
effective or feasible.

This trade-off is non-trivial. For an Elastic Reasoning Mechanism (ERM) to achieve
elasticity in every dimension require a great deal of insight into the infrastructure
and the dynamic properties of the resident applications. Attempts have been made
at designing an ERM for IoT workflows [NND*17].

The principles of osmotic computing do not singularly apply to fog computing. The
service offering by traditional cloud providers is also becoming more heterogeneous.

1.3. Fog computing 25

Additionally, an elastic application is a robust application. For example, a quality
elastic robust web application is proposed in [KMAHR14].

1.3.3. FOG COMPUTING DETRACTORS

Fog computing bows to the same detractors as cloud computing, only exacerbated by
heterogeneity and distribution. Given the scale of these new resources, one can then
argue there won’t be enough elasticity at the edge to allow for the dynamic osmotic
effect that we desire in a fog computing infrastructure. The relative cost of execut-
ing, maintaining, and deploying small edge devices will conceivably only increase as
large DC approach ever greater economies of scale. Moving to a hyper-distributed
infrastructure also implies a software development paradigm shift. Once the dust has
settled, and applications have found their rightful place in the infrastructure, how likely
is it that they will ever have to move and will application developers or operators even
want them to, given the uncertainty this adds?

Part I.

Modelling and managing a Fog
computing infrastructure

27

Mobility

d-user mobility is a key differentiating factor between traditional DC -centric

clouds and Fog computing. In Fog computing, an end-user’s location, within

a few meters or kilometres, determines in which DC an application executes.

The rate at which the end-users move determines to what extent and to where an ap-
plication needs to be migrated to achieve its performance target.

The relationship between application performance and geographic location has re-
ceived little research attention [SNM10, ZDZQ13]. There is thus comparatively little
research bridging state of the art cloud hosting research and a cloud’s ability to operate
in a mobile network with mobile end-users. What is explicitly lacking is how the mo-
bile end-user’s generated workloads will vary and be displaced between Fog computing
DC:s as a consequence of end-user mobility and a study of the associated resource cost.
The authors of [GHMPOS] investigate DC latency in geo-distributed networks in the
context of the operational cost of transmitting and operating the intermediate network
at the desired performance level. The authors of [ADJ 10] studied the effect of mi-
grating end-user instances geographically to existing geo-distributed DCs, in response
to a end-users location on a global, inter/intra-continental scale. However, in Fog com-
puting, end-user movement is potentially significantly more granular.

This work explores the fundamental dynamics of workload displacement as a res-
ult of end-user mobility between independent DCs adjacent to and associated with
an RBS. The paper then proceeds with examining the proportion of workload being
displaced to adjacent DCs, and the proportion of resources the act of migration con-
sumes in a DC proportional to the work it completes. A simulation model is proposed,
that includes the basic building blocks of Fog computing, in conjunction with a mo-
bility model aimed at provoking and exploring basic system workload displacement
vulnerabilities and the dynamic effects on an application’s performance as a result of
mobility.

29

30 Mobility

Radio access node Server node Cell radius: 650 m 650 m Handover threshold
N

g2l *a 10 $0 o *a 10

| AL coooos T g 110-km/h 7
\

09km (
120 passengers Cell coverage area

Figure 2.1.: One dimensional simulation scenario

The results show that end-user mobility in a Fog computing topology prompts a
cumulative spatial displacement of the workload in successive DC. Additionally, when
the DCs are over-provisioned, the simulation reveals that the DCs, at an increasing rate,
spend more time migrating VMs than executing them. As a result, a stable system-wide
waiting time is only attainable with a system load of less than 80%. The simulations
also reveal that despite a stable system, the waiting time still increases in the spatial
domain as a result of end-user mobility. The paper also investigates an end-user’s
utility in subscribing to a Fog computing node.

Section 2.2 details which aspects and abstractions of a Fog computing topology that
are included in the experiments. Furthermore, the resulting simulation model and its
constituent parts are specified in Section 2.3 followed by Section 2.4, which accounts
for the specifics of the simulation experiments. Lastly, Sections 2.5 and 2.6 present the
results and consultations drawn from the experiment.

2.1. TARGETED SYSTEM

An application is geographically migrated with the end-user(s) to the closest DC, to
maintain proximity to its end-user(s) as it moves around the network. Moving to the
closest DC is a naive approach and should be seen as a lower performance bound.
Proposedly, where Fog computing infrastructure is available an application instance
can be migrated from a distant DC where it traditionally resides to a Fog computing
DC in the mobile network. As mobile end-users move through the network, and when
it is deemed feasible to migrate an application given a geographic discrepancy, the
concerned VM is migrated to where latency and congestion are minimised. However,
doing so will incur an additional load both on the receiving and sending DC, and the
intermediate WAN. Moreover, migration and its overhead are minimised when the
amount of work completed in each DC is maximised during a end-user’s residency,
and when inter-DC transmission is minimised.

2.2. TARGETED SCENARIO

To explore an extreme scenario, in this paper, to strictly minimise the proximity to the
end-user, each abstract RBS will host a cloud server entity, a DC, see Figure 2.1. From

2.3. Simulation model 31

now on, an RBS DC pair is referred to as a node. To be able to observe consecutive
workload displacement, end-users are displaced according to a train model at a constant
speed along a linear path through a one-dimensional space. Furthermore, throughout
the one-dimensional space, RBSs are positioned equidistantly.

In the proposed model, end-user movement and network resources are homogen-
eous. As a result, the proportional displacement of workload between comparable
nodes, as end-users move between nodes, can be observed. Additionally, this will also
show the subsequent proportional degradation of perceived application quality, exper-
ienced by the end-user over the whole network. One will also be able to discern the
rate of which an application needs to be migrated, which can be seen as an abstract
measure of the scale of a resulting VM or container migration. The simulation will
show how mobility affects the proportion of sessions that will be migrated between
consecutive nodes, consecutive degradation of waiting time, and the potential resulting
VM migration burden imposed on the system.

2.3. SIMULATION MODEL

The simulation model is discrete-time and contains multiple independent end-users
Ny, each with a unique location determined by a train mobility model. A end-user’s
location within a network determines which singular RBS it is associated with.

The modelled network contains multiple, equidistant RBSs. Each RBS or cell has a
fixed coverage radius, r..;;. The network re-evaluates end-user and RBS association at
a specific rate throughout the simulation. All end-user-generated requests are sent to
its current associated RBS. The RBS forwards subsequently all incoming requests to a
single node which processes the incoming requests at a particular service rate Tye,yice-

2.3.1. APPLICATION MODEL

The adopted application model is based on the open-loop, one tier, long tailed, HTTP
request model detailed in [BC98]. The modelled traffic is consistent with web surfing
on mobile devices, where end-users access mobile-adapted web pages with very little
in-line dynamic content, revisited at a high frequency. Additionally, the duration of
the resulting sessions is proportional to the radius of the networks cells. Each session
spawns some requests proportional to the File size (Sy) and the Request size (S,) in
KB, both Pareto-distributed. Each request is separated by an Inter-request Weibull-
distributed delay (D,). Moreover, each session is separated in time by a Pareto distrib-
uted inter-session delay (Ds).

2.3.2. NETWORK MODEL AND TOPOLOGY

Each RBS is bounded by a cell coverage radius, r..;;. Given that an end-user is within
the aggregated cell coverage of the network, that end-user will always be associated
with the RBS closest to it. The network periodically evaluates each end-user’s proxim-
ity to all the RBSs in the network. If an end-user moves closer to another RBS, at that

32 Mobility

threshold, a handover will occur, and the RBS association will be updated, see Figure
2.1.

2.3.3. MOBILITY MODEL

The simulation model uses a train mobility model in one dimension with clusters of
N, end-users, and a constant velocity, V;.qin. This train model presents an extreme
mobility condition where the total end-user population and thus traffic is displaced in
concentrated groups from node to node, progressively and permanently abandoning
RBSs in rapid succession.

2.3.4. DC MODEL

Each DC in each node is modelled as a single server queue that processes requests from
its deferred queue with an exponentially distributed service time Tepyce. Furthermore,
when a end-user is handed over from one RBS to another, all deferred requests from
that end-user in the active node queue are instantly migrated to the newly associated
node. More precisely, this occurs when the current process is completed and incurs no
additional load to the network or the server. The migrated requests are placed at the
end of the receiving node’s queue. Any ongoing processing is completed before the
migration procedure begins.

The mechanisms that govern the provisioning of network resources and cloud re-
sources are, in this model, independent. The association and connection between RBS
and a DC is not specific to any particular mobile system generation topology.

2.4. EXPERIMENTS

The adopted simulation model was implemented as a discrete-event Java simulator
using simjava [HMO98] as the event engine. To be able to evaluate geographic load
displacement and the subsequent application performance degradation in relation to
server load scenarios, using the model above, server load levels at 50% to 150% were
deployed in the simulation model. Furthermore, server load is defined as the inverse
percentage of the request service time Ty.ice. Moreover, the request service time is
defined as the quotient of the total arrival rate at full end-user residency, see Equation
2.1, where A; is the arrival rate for the ith end-user. For example, a 50 % load is when
Tiervice 18 twice as high as the aggregate inverse arrival rate.

1

Tservice = Z}\«z (21)

To ensure that the system is subject to multiple migrated sessions, the mean applic-
ation session duration is set proportional to the radius of a cell, r..;; and the velocity
of the train. As a result, all requests equal to and below the mean session length will
on average be completed in one node, while those above, will on average, be subject
to migration. Given the previously mentioned node displacement and end-user spatial
density, each end-user will be associated with and reside within the domain of each

2.5. Results and discussions

33

Parameter | Value

Feell 650 m

Ny 120

Vtrain 110 km/h

Tservice 50-150% of 0.0039 seconds
Tsim 8,8 minutes (7 nodes)

Table 2.1.: Simulated environment parameter values

Component | Distribution | Parameters

Sy Pareto K=133000 ac =1.1
S, Pareto K=1000

D, Weibull o =1.46 f =0.382
Dy Pareto K=1 a=1.5

Table 2.2.: Application model parameter values

RBS for 40 seconds.

The simulation runs for Tg;, minutes, through which the train of passengers pass
through 7 RBS domains. Given the application model described in Section 2.3.1, the
simulation reaches its steady state after 3.6 simulation minutes, at which point the first
end-user gets in range of the first RBS. Consequently, the total steady-state simulation
time amounts to 5,2 simulation minutes. The steady-state simulation time is sufficient
to allow each end-user to spawn several open-loop sessions and thus to reveal the fun-
damental dynamics of the system. Designedly, the first node will not be subject to
migrated requests.

The simulation scenario includes several node load levels. Feasibly, homogeneous
nodes subject to a load higher than 100% results in an unstable system with a transient
workload growth. Given a certain end-user velocity, an unstable system will experi-
ance varying application response times with displacement. Note that, as the system is
modelled without signalling latency, the waiting and service times can be regarded as
the server response time.

Furthermore, application model parameters are sampled from the distributions in
Table 2.2 in accordance with [BC98]. Similarly, Table 2.1 details the global simulated
environment parameters.

Each node is sampled for; queue length, waiting time, and processed and migrated
request sizes per session. These parameters allowed us to reveal how mobility affects
the proportion of sessions that will be migrated between consecutively nodes, consec-
utive degradation of waiting time, and the potential resulting VM migration burden
placed on the system. The resulting data is comprised of the mean of 10 independent
replications.

34 Mobility

16000~
14000~
120001
£210000~
8
S 8000
g
o 60001
4000~

20001

0

Figure 2.2.: Queue length displacement at 100%, 110%, and 120% load, re-
spectively. Each node is marked with its corresponding number.

2.5. RESULTS AND DISCUSSIONS

In this section, the results from the simulations and their implications are presented.
Figure 2.2 shows how the workload is spatially displaced when nodes are subject to
a load greater then 100%. As end-users move out-off and in range of the subsequent
node, any incomplete requests will be migrated to the subsequent node. The mean
deferred queue length exhibits growth according to c- nf, where n; is the ith node and
[the load quotient, e.g. 120% = 1.2. Additionally, given that the sessions are longer
than the duration a end-user spends in a node, the subsequent nodes will need to, on
average, be able to absorb the additional migrated load.

Figure 2.2 reveals the load point where the system becomes unstable. Any node
loaded greater than 100%, results in an unstable system with progressive degradation
of waiting times. As a consequence of end-user mobility, a cumulative amount of
workload is migrated to the subsequent nodes to the point where the system is unable
to recover.

Furthermore, note that Figure 2.2 shows how the deferred queue length at 100%
load grows during maximum end-user residency to the point where sessions are not
completed and are thus migrated to the subsequent node. Nevertheless, both the send-
ing and receiving nodes can recover during the transitions between nodes, and thus
maintain stability.

2.5.1. WAITING TIME DEGRADATION

Degradation of waiting time is another consequence of the above-mentioned progress-
ive workload build-up. Degradation occurs when the nodes are subject to loads greater
than 80%, which is shown in Figure 2.3. As can be seen, the mean waiting times dur-
ing max residency increase linearly for each consecutive node. An end-user will thus
experience a linear degradation of the mean response time in space. Also, the mean
waiting times for each node as a function of the load level grows quadratically with
increased load.

As illustrated by Figure 2.2, at the maximum stable load (100%), beyond which, the

2.5. Results and discussions 35

10 20

100

Server node Load (%)

Figure 2.3.: Waiting time degradation

queue length diverges, the system is able to maintain a consistent deferred queue length
and session residency, but because of migration and the resulting session migration
effort, waiting time degrades 5 fold across the span of the network. Only at a load
of less than 80% is the system able to recover the incurred migration effect and thus
maintain a consistent waiting time. This implies that to maintain system stability the
individual nodes can never be provisioned to utilise 100% of its resources.

2.5.2. SESSION AND VM MIGRATION

It was shown above that request migration incurs a degraded response time. Further-
more, each of those requests constitutes a subset of a session. As detailed earlier, each
session is regarded as a VM instance in a generic cloud server. As such, observing the
residence and migration of sessions reveals how often VM migration occurs and the
potential load a VM migration can incur.

The investigations show that at 100% load, 90% of the VM are completed in one
node and are not subject to migration. On the other hand, at 120% load, on average,
a VM in the last of the 7 nodes only completes 10% of its request, the corresponding
value for the first node is 20%. Moreover, at a 120% server load, on average 65% of
the incoming requests receive 0% of that node’s compute cycles. In other words, some
VMs do not receive any resources to complete any of its requests despite the system
spending resources migrating these VMs to the next node. At this point, the paradigm
is contributing far more latency than it is eliminating.

2.5.3. VM MIGRATION TIME

Concerning the VM migration time, to maintain a consistent waiting time and allow
a migration to recover, VM migration needs to be performed within the period of the

36 Mobility

100% load
100¢
80r
60+ — Migrated

Migrated from previous node

Percent of total requests

40t —Processed new requests
201
01 2 3 4 5 6 7
Sevice node
120% load
100r
—Migrated
‘ ; Migrated from previous node
80
—Processed new requests

60

40

20

Percent of total requests

Sevice node

Figure 2.4.: Migrated vs. processed packets

mean waiting time. The simulation discloses that waiting time recovery is only feasible
at less than 80% load, and is only fully able to do so when the system is subject to a
load less than 50%.

2.5.4. REQUEST MIGRATION

In contrast to sessions or VMs, the rate at which requests are processed versus end-user
node residency is a metric of utility. Figure 2.4 displays the proportion of processed
requests that were generated in the domain of that node. The figure reveals that the
total received requests decays exponentially with each subsequent cell. At 120% load,
the first node processes 90% of the requests generated in, while associated with that
node. The rate diminishes to 8% in the final node. Feasibly, the utility of subscribing
to that node is negligible. Moreover, at 100% workload, the amount of requests being
processed that were generated while subscribing to that node decays faster than the
number of migrations, which quickly converges. This behaviour is a contributing factor
to why the waiting time is decaying in an otherwise stable system, as discussed above.

Consequently, the amount of time spent processing migrated requests by each node
grows exponentially, converging to where no intra-node generated requests are pro-

2.6. Conclusions 37

cessed. At this point, the migrated VMs contribute more requests than what is gen-
erated within the domain of the server node. It would arguably be more efficient to
eliminate much of the migration by consolidating multiple nodes and spend those re-
sources on processing tasks.

Furthermore, the mean waiting time in proportion to the time spent in the domain
of a node gives you one metric of how much that node is contributing work. At the
far node, at 120% load, almost the whole residency is rewarded with, on average, 1,11
processed requests. As such, using that node carries very little return. The effect of the
diminishing return of the time spent in a node is shown by Figure 2.4.

2.5.5. SESSION MIGRATION VERSUS NODE RESIDENCY TIME

Another relevant comparison is that of session migration versus node residency, which
corresponds to the general scale requirements of the resources. As one can expect, in
a stable system the number of VMs will remain relatively constant over time, given a
100 % workload. It is made evident by Figure 2.2 that the system can recover from
temporary overloads in one node, as any excess workload is gradually spread to the
adjacent vacant nodes. This self-balancing effect is, of course, proportional to the
distribution of end-users, the speed of which they are moving in and the dimensions of
the RBS cells.

2.6. CONCLUSIONS

The Fog computing model and simulation reveal the challenges facing mobility in Fog
computing. The simulation results made it apparent how mobility incurs severe pro-
gressive workload accumulation, and that VM migration will contribute to a large over-
head, depending on the topology. The incurred VM migration load on the system con-
sumes such a large proportion of the system’s resources that it will require the system
administrators to greatly over-provision the system to maintain consistent performance.

It was also made clear that the return of subscribing to the closest Fog comput-
ing node has a diminishing utility with node order and server load. At the simulated
extremes, slightly more than 1 request is processed during the time an end-user on av-
erage spends in a cell. Thus the cost of migrating the session far exceeded the amount
of work it contributes.

Complementary, it will conceivably be relevant to determine network topological
placement of Fog computing DCs and determine the effects of applications and VMs
migrating to and from a distant DC and horizontally in the network, and through other
network access media, such as 802.11, as a means to load balance the system of dis-
tributed DCs.

Modelling and system architecture

espite the interest in the Fog computing paradigm, there are no simulation mod-

els capable of simultaneously modelling the dynamics of UEs, placement and

capacity of DCs, and network infrastructure. Understanding these relations is
essential for Fog computing stakeholders, e.g., Infrastructure Providers (IP) can use
that knowledge to reduce infrastructure costs, while still delivering competitive per-
formance.

In this chapter, a comprehensive Fog computing meta-model is proposed, which fa-
cilitates experimentation and evaluation of possible configurations, such as placement
and capacity of DCs. The meta-model uses existing, well-established simulation mod-
els, e.g., for RANs or DCs, for modelling of the aforementioned individual parts of
the infrastructure behaviour. The model describes the dynamics of a Fog computing
infrastructure, including QoS, and the associated costs of this paradigm. Additionally,
a meta-model is presented that captures the described dynamics using existing and
composite models.

3.1. EXISTING FOG COMPUTING MODELS

To support the creation of a meta-model that incorporates workload, set-up, and ob-
jectives of the Fog computing described in the previous section, existing models are
surveyed in the following categories: application request generation and resource re-
quirements, UE mobility, networks, DCs, and infrastructure costs.

Most of the models and simulators are assigned to only one of the categories men-
tioned above. However, the capabilities of the four surveyed simulators extend to many
categories. They are summarised in Table 3.1.

39

40 Modelling and system architecture

Table 3.1.: Overview of surveyed simulators.

Framework | RG | RR | M | N | DC
NS-3 v v |V
OMNeT++ v v | v
CloudSim v v
GreenCloud v v

RG — Request Generation, RR — Resource Requirements,
M — Mobility, N — Network, DC — Data Centre.

3.1.1. WORKLOAD MODELS

Applications running in the Fog consist of a set of User Equipments (UEs), users, and
a server processing offloaded computations. Therefore, they should be modelled from
two perspectives: request generation that describes how requests are created and sent to
the DCs; and resource requirements that describes how many computational resources
are needed to process the requests.

TRAFFIC

Traffic models capture a user’s behaviour by primarily representing interaction times,
or the timing clicks through a stochastic process, often Poissonian. A user behavioural
model can be further refined by introducing a stochastic model for the duration of time
a user consumes a particular type of content. The transition between types of content
is conventionally modelled as a Markov process.

Furthermore, the traffic characteristics are commonly modelled with multiple stochastic
processes, encompassing the number of packets in a session, and the size of each
packet. Traffic models are either closed or open looped. In an open loop model, the
generation of each new session is typically a Poisson process independent of the res-
ulting DC action. Conversely, in a closed loop model, the generation of new sessions
is dependent on the timing of the response from the DC and thus the properties of the
previously generated session.

In the packet-level event driven network simulators; NS-3 [RH10] and OMNeT++
[VT01], a node can act as either a client or server. Either by sending packets provided
by a stochastic model, at a given rate, within a specified period, and at a specified
interval, or processing received packets from a buffer, at a given rate. Both server and
client models can be augmented with a more complex system of queues to such an
extent that they can represent an abstract DC that hosts multiple applications.

3.1. Existing Fog computing models 41

RESOURCE REQUIREMENTS

CloudSim [CRB™11], which is a simulator of cloud infrastructure, provides an applic-
ation model that describes computational requirements — the number of resources that
needs to be available (e.g. number of cores, memory and storage); and communic-
ational requirements — the amount of data that needs to be transferred. GreenCloud
[KBK12], which is a packet level simulator based on NS-2, apart from computational
and communicational requirements, also describes QoS requirements, expressed by an
execution deadline. The application model may also include the size of the code that
has to be offloaded and dependencies on other services, e.g., regarding the amount of
data that has to be sent or received [Kov12].

MOBILITY

The NS-3 and OMNeT++ nodes described above can be set into motion given a specific
stochastic mobility model. They can, for example, traverse the space as pedestrians, or
automobiles, with corresponding velocity and rate of change. The spatial relationship
between nodes and RBS affects the current channel properties and RBS-to-node asso-
ciations. Node mobility will also result in handover between RBSs, which in turn will
alter the paths of the node-generated workload in the network.

3.1.2. SET-UP MODELS

Described below are existing models and simulators of networks and DCs, which can
be used to configure the setup of the Fog computing meta-model.

NETWORK

Several well-established event-driven frameworks model computer networks, mobile
networks, applications, packet-level network traffic, infrastructure, and independent
mobile users. The two primary examples are NS-3 and OMNeT++. These two are
commonly deployed in academic network research and provide detailed results on net-
work utilisation, throughput, congestion, and latency.

Both NS-3 and OMNeT++ are comprehensive packet-level network simulation frame-
works that include wired and wireless standards and can simulate communication chan-
nel conditions. Furthermore, both frameworks have detailed models for channel defin-
ition, such as propagation delay, interference, data rate, and medium access schemes.
Also, to a varying degree, NS-3 and OMNeT++, by default or through extension, sup-
port control plane signalling for many wireless standards and complex network topo-
logies.

Both frameworks have support for modelling different types of network nodes, ran-
ging from computers to routers and switches. Each edge and node pair has a defined
communication and medium access standards, such as TCP/IP and Ethernet. Each
packet that is sent over the network is treated in accordance with the current network

42 Modelling and system architecture

and transport protocols and routing standard. In both, the event of arrival and departure
of packets drives the simulation clock.

Furthermore, they require detailed configuration of all communication modes as well
as node behaviour, making it very time-consuming to implement and verify systems
with different levels of abstractions, and are thus cumbersome to model systems that
cannot yet be described in such detail.

A Fog computing infrastructure topology is yet to be defined with unspecified con-
trol planes, it would thus be counter-intuitive and time-consuming to implement Fog
computing infrastructure topologies in either NS-3 or OMNeT++. In some instances,
some modules would have to be redesigned entirely, and others would have to be spe-
cified to much greater detail than the Fog can offer at this stage.

DATA CENTRE

The purpose of this section is to survey the DC models that are the most suitable for
inclusion in the Fog computing meta-model. An extensive list of mathematical models,
simulation approaches, and test beds can be found in [SL13], while [AS14] provides
a survey of twelve cloud simulators. After careful examination, a handful are further
reviewed below.

DC models and simulators are compared based on descriptions provided by the au-
thors of the simulators. For each model the following is described: Resource Provision-
ing — what resources are included and how they are modelled; QoS — what performance
indicators are measured; Costs of computation in the DC; Performance of simulator —
an estimation of the time needed to perform a simulation.

CloudSim is an event-based simulator implemented in Java, for simulation of cloud
computing system and application provisioning environments.

Resource Provisioning. The CloudSim simulation layer offers dedicated man-
agement interfaces for Central Processing Unit (CPU), memory, storage and
bandwidth allocation, as well as, defining policies in allocating hosts to VM
— VM provisioning. Hosts are described by their processing capabilities (in
MIPS) and a core provisioning policy, together with an amount of available
memory and storage. A model supports time-sharing and space-sharing core
provisioning policies on both host and VM levels.

Latency (QoS). The latency model is based on conceptual networking abstrac-
tion, where the communication delays between each pair of entity type (e.g.
host, storage, end-user) are described in a latency matrix as a constant value
expressed in simulation time units (e.g. milliseconds).

Costs. CloudSim provides a two-layered cost model, where the first layer relates
to TaaS, with costs per unit of resources, while the second one relates to SaaS,
with costs per task units (application requests). This model allows calculation

3.1. Existing Fog computing models 43

of the costs of using the cloud from the end-user perspective or the revenue from
the IP perspective.

Performance. CloudSim can perform large-scale simulations, e.g., it can in-
stantiate an experiment with 1 million hosts in 12 seconds. Moreover, memory
usage grows linearly with the host number and even with 1 million hosts it does
not exceed 320 MB.

CloudAnalyst [WCBI10] is a simulator of geographically distributed large-scale cloud
applications, developed with Java and that utilises CloudSim and SimJava.

Resource Provisioning. Cloud Analyst uses the same resource provisioning
model as CloudSim.

Latency (QoS). A latency model allows configuration of network delays, avail-
able bandwidth between regions, and current traffic levels. CloudAnalyst facil-
itates experiments with latency by producing the following statistical metrics:
the average, minimum, and maximum response times of all user requests; and
response time grouped by time of the day, location, and DC.

Costs. CloudAnalyst supports the calculation of costs for using cloud resources,
such as cost per VM per hour and cost per Gigabit of data transfer.

Performance. To improve the performance of simulation entities are grouped
at three levels: clusters of users, a cluster of requests generated by users, and
clusters of requests processed by VM.

GreenCloud is a packet level simulator based on NS-2, for simulation of energy-
aware clouds.

Resource Provisioning. Servers are modelled as a single core node with a
defined processing power limit (in MIPS or FLOPS), size of memory and stor-
age, and implementing different task scheduling mechanisms.

Latency (QoS). Full support for the TCP/IP protocol reference model is provided
and thanks to that the simulator can calculate communication latency with high
accuracy.

Costs. GreenCloud allows detailed modelling of energy consumption by imple-
menting energy models for every DC element.

Performance. Given that GreenCloud has to simulate the full stack of Internet
protocols, each simulation only takes in the order of tens of minutes for a DC
with a few thousands of nodes.

3.1.3. COSTS MODELS

The DC models mentioned above focuses mostly on the costs of running applications
in DCs from the end-user perspective. To be able to investigate Fog computing re-

44 Modelling and system architecture

source management challenges models for Capital Expenditure (CAPEX) and OPEX
are needed.

CAPEX includes costs of peripheral infrastructure and the servers.

Infrastructure Costs. Costs of building, power distribution, (and cooling can
be estimated using a following equation: $200M - (1+cy,) /a;, where c;, is
the cost of money', and a; is the time of infrastructure amortisation [in years]
[GHMPOS].

Server Costs. Costs of servers can be modelled as n - ps - (1 +c¢) / as, where
ng is the number of servers, p; is the price of one server [in $], ¢, is the cost of
money, and a; is the time of server amortisation [in years] [GHMPOS].

OPEX consists of utilities and personnel costs.

Power Costs. Here, power is assumed to be the primary utility expense common
to all DC-types. To estimate costs of power, the following equation can be used,
ng - pcs/ 1000 - PUE - pgwp - 24 - 365, where ny is the number of servers, pc; is
the power consumption of one server [in W], PUE is Power Usage Efficiency,
and pgwy is the price of electricity [in $ per KWH] [GHMPOS].

Personnel Costs. Costs of personnel can be calculated using My -C; +M; -C, +
M3 - C3, where M| is the number of IT personnel per rack, M, is the number
of facility personnel per rack, M3 is the number of administrative personnel per
rack, and Ci, C,, C3 are the average costs per person for each of the above
mentioned categories [PS05].

3.2. FOG COMPUTING META-MODEL

In this section, the models surveyed above are composed into a Fog computing meta-
model. Figure 3.1 visualises of the proposed meta-model. UEs, such as cell phones or
laptops, are carried by end-users, who are in motion. The UEs generate requests which
are sent over the network to a DC. It is also possible that requests are generated by
sensors that may be static (e.g. traffic cameras) or mobile (e.g. trains). The requests
are processed in the DC and the response is sent back to the UE or sensor. Processing
requests, in case of state-full applications, generate a user state, that has to be migrated
with the end-user if he moves to another DC.

The primary objective of the meta-model is to capture the interactions between ap-
plication workload, UE mobility, network topology, DC characteristics, and their influ-
ence on QoS and costs of a Fog computing infrastructure. The parameters that define
the meta-model are presented in Table 3.2 and described in detail below.

ICost of money is the rate of interest or dividend payment on borrowed capital.

3.2. Fog computing Meta-model 45

Request

Data Centre

Application Queue User State

Figure 3.1.: Visualisation of the proposed Fog computing meta-model.

3.2.1. WORKLOAD MODEL

The first group of parameters in Table 3.2 describes the mobility of end-users carrying
UE and the characteristics of requests generated by these UEs.

REQUEST GENERATION

N;er applications may concurrently be deployed in the Fog computing. An application
is modelled as a state-full web application. Each session is separated in time with
a Poisson process Ags [RLGPC199]. Each session produces Nyeq Tequests, sampled
from an inverse Gaussian distribution, where each request is separated in time by Log-
Normal distributed delay D,., in seconds. The size of each request is given by S, KB
and is drawn from a Pareto distribution.

RESOURCE REQUIREMENTS

Application resource requirements are modelled using a linear model specifying the
needed amount of resources, both for an idle application and per processing each re-
quest. An idle application uses CPU,y;, CPU operations, mem;q;, amount of memory,
and disk;q;, amount of storage. Additionally for each processed request, the applica-
tion uses CPU,,, CPU operations, mem,,, amount of memory, and disk,., amount of
storage. The amount of user’s state data created by each request is defined by state and
expressed in absolute value or percentage of request size Sg.

46 Modelling and system architecture

Table 3.2.: Fundamental meta-model parameters.

‘ Type ‘ Parameters ‘ Unit ‘ Description
WORKLOAD
Nier Total number of applications
Request AL,y where i = 1,2,..., Ny S Session arrival rate to DC
k N,‘.eq, where i = 1,2, ..., Ny Number of requests per user session
generation - - - ——
S’m], where i = 1,2,..., Ny, KB Size of requests for a given application
D;.ﬂq, where i = 1,2,...,Nyr s Inter-request time
CPU.,,, CPU,feq, where i = 1,2,...,Ny., | MI CPU cycles used by application
Resource mem.,,, mem’,eq, where i = 1,2,...,Ns, | MB Size of memory used by application
Requirements diskiy,, disk’,eq, where i = 1,2,..., Ny MB Size of storage used by application
state', where i = 1,2,..., Ny, MB Size of user’s state produced per req.
Nue Number of UEs
Mobility s, a;, 8;, o), where i = 1,2,...,Nyg Movements of UEs
SETUP
Ngps Number of RBSs
Network drps m Dimensions of an RBS cell
Dy s Cumulative network delay
Npc Number of DCs
Ng, where i = 1,2,...,Npc Number of servers in DC
Nlpy, where j=1,2,...,N} Number of CPUs per server
Data Centre stpy» Where j=1,2,...,Ni MIPS | CPU’s speed
memory’, where j =1,2,...,Ng MB Amount of memory per server
storage’, where j=1,2,...,Ng GB Amount of storage per server
networky, , where i = 1,2,...,Npc Mb/s | Network bandwidth
tinit» tidles trerm s Times of VM transitions
Service Placement placement ={every, n-closests} Service placement policy
OBJECTIVES
RT!, where i = 1,2,...,Nyer S Application response time
Quality of Service TP', wherei=1,2,...,Ns.r reg/s | Application throughput
Costs Cost $ Total costs of infrastructure
MOBILITY

Nye UEs populate the network, each subscribing to a subset of the N,,, available ap-
plications. The 2-dimensional, multimodal, mobility model detailed in [BetO1] provides
us with an on-average uniform distribution of users, with movement proportional to the
duration of a session and the scale of the mobile network. The model mentioned above
defines the properties of a UE’s movement. A UE’s momentary movement is defined
by its velocity constituted by the current speed s and current direction 6. Changes in
mobility are defined by multiple stochastic processes that describe the duration of its
state. An entity’s speed s is independent of direction 6 and is maintained for 7 seconds,
after which acceleration a is applied between a,,;;, and a,,4x for time T, until it reaches
Smin OF Smayx. Furthermore, direction 0 is maintained for time 7y until the next change-
event where the direction 0 is altered for Ty, seconds with at the rate of ® radians per
second. Ty, T, Ty, and Ty, describing the timing of each change-event, are set for each
mobility mode and are each defined by a probability distribution bounded by maxima
and minima.

3.2. Fog computing Meta-model 47

3.2.2. MODEL PARAMETERS

The second group of parameters in Table 3.2 characterise the network and DCs.

NETWORK

In the proposed model, the core network introduces a cumulative propagation, switch-
ing, and routing delay. This delay is modelled with a Weibull distribution D, in
multiples of the number of network nodes between the source and the destination
[PMF+03].

The network distance between RBSs is equal to the cell dimension dgps. The as-
sociated RBSs are equidistant to their common DC and are for the sake of simplicity
assumed to be separated by one network edge.

Furthermore, forthcoming cell planning practices aim to increase area energy effi-
ciency by favouring smaller cells in urban areas [SKA13, FRF09]. The model em-
ploys a small homogeneous mobile network composed of Ngps equidistantly distrib-
uted RBSs.

Agnostic to a specific mobile generational standard, a UE is handed over between
RBSs at the geographic point where they cross the cell boundary distinguishing two
independent RBSs defined by the width of the rectangular cells dgps.

DATA CENTRE

The DC model captures the influence that its capacity has on performance and costs of
computation. To model DC performance, the quantity and quality of each DC resource
is described. A DC consists of Ng servers. Ng is a function of the DC’s scale. A
server contains Ncpy CPUs capable of executing scpy operations per second. Values
of memory and storage specify the total amount of available memory and storage,
respectively. The network bandwidth is nerworkp,,. The DC model also includes a
provisioning model, that describes how available resources are shared among several
applications, e.g., time-sharing or space-sharing.

In this work, for the sake of simplicity, a DC hosts applications in VMs or containers.
Again, for the sake of simplicity, we refer to these discrete compute units simply as
VMs. An application can be distributed over multiple VMs. The incoming workload
is load-balanced by either a method of round-robin, random selection, or placed in the
VM with the lowest load. However, a user’s requests are always forwarded to the VM
that served its first request. An application can specify a minimum and a maximum
number of VMs it requires. The DC scales the application within these bounds based
on the load-balancing outcome.

To emulate the life-cycle of a VM six VM states are defined. The states and their
corresponding transitions are illustrated in Table 3.3. The transitions between the states
are presented in Figure 3.2. In the beginning, all VMs are in the INACTIVE state. A
VM is initiated when the first request arrives at a DC. It takes f;,;; seconds before

48 Modelling and system architecture

Table 3.3.: States of Virtual Machine.
Name Description
INACTIVE VM is turned off.
INITIATING VM is booting up.
PROCESSING | VM is serving requests.
IDLE VM is waiting for requests.
MIGRATING VM is transmitting data.
TERMINATING | VM is shutting down.

h

——» Migrating — j
[Inactive]—>[Initiating] Idle — | Terminating

(U

Figure 3.2.: Transitions between Virtual Machine states.

a VM is ready to start processing requests or receiving migrated requests and user
state from other DCs. It is assumed that a VM is not able to process requests and
handle migrations at the same time, so it changes state between PROCESSING and
MIGRATION over the time. Moreover, migrations are given a higher priority than
processing, so processing is paused if there are any migrations to perform. When
there are no requests to process and no migrations to handle a VM goes into the IDLE
state. A VM is terminated if IDLE state lasts for longer than #;4;, seconds, and the VM
termination takes #.,,; seconds.

SERVICE PLACEMENT

Service placement policies define in what DC(s) an application should be hosted, what
number of replicas should be running, and when an application should be migrated
between DCs. These decisions depend on the mobility of users, the size of the user’s
state that has to be migrated, and Service Level Agreements (SLAs). For example,
an application can be hosted in n Proximal DCs closest to the majority of its users
(n-closests), or in the case of latency-sensitive applications in every Proximal DC that
is needed to provide acceptable QoS (every).

3.3. Simulation showcase 49

3.2.3. OBJECTIVES MODEL

The third group of parameters in Table 3.2 describe QoS and costs of a Fog computing
infrastructure.

QUALITY OF SERVICE

Combining the resource requirements model, which describes the number of resources
an application needs, with a DC model, allows simulating how collocation of different
applications in a DC influences their response times RT* and throughputs T P'.

COSTS

Cost models available in the literature and described in Section 3.1.3 are arguably
"country dependent”, because of the inclusion of variable parameters such as salaries,
costs of energy or costs of property. They are also not taking into account parameters
important from the perspective of Fog computing, such as the size of DC. There-
fore, the costs of a Fog computing infrastructure are modelled using a basic heuristic
based on the observation that dispersion of infrastructure causes additional costs, e.g.:
increase of administrator travel time between locations, and higher unit costs of com-
putation in proximal DCs because of smaller scale and high initial costs.

Npc
yPC N
As shown in Equation 3.1, the total cost of a Fog computing infrastructure is directly
proportional to the number of DCs and inversely proportional to the total number of
servers in all DCs. This implies that; distributing the same number of servers among
many DCs is more expensive than placing them in one DC.

3.2.4. LIMITATIONS

The proposed meta-model has several limitations. The application model assumes that
all requests generated by one application are homogeneous and each of them consumes
the same amount of resources. The mobile access network model does not take into
account the physical layer, channel provisioning, and cell load balancing. Addition-
ally, the radio access network functions as a mechanism to associate UEs with DCs
propagation and system processing delays are thus not modelled. However, the model
is granular enough to be efficient and includes sufficient dynamics to run a meaning-
ful experiment to study a Fog computing infrastructure’s performance. Additionally,
at this point, not enough is known about Fog computing infrastructures to add more
details to the model.

Cost 3.1

50 Modelling and system architecture

3.3. SIMULATION SHOWCASE

A coarse-grained simulator was implemented using SimJava [HM98] as the underlying
event-driven simulation framework. All modules are implemented from scratch and
are based on the meta-model presented in Section 3.2. The simulator fully implements
the proposed request generation and network models but implements more abstract
mobility, resource requirements, DC, and service placement, models.

To demonstrate the scope of the Fog computing meta-model and the simulator ele-
mentary showcase scenario is introduced below. The scenario is designed for studying
the fundamental relationship between workload — UE mobility, set-up — Proximal DC
catchment, and objectives — the aggregate utilisation of a Fog computing infrastructure.

3.3.1. EXPERIMENTS

A simple scenario with one application is presented below. The size of the simula-
tion is reduced from a full-scale Fog computing infrastructure. The VM scalability
and placement models shall be seen as proofs-of-concept. The goal is to obtain clear
conclusions about the relation between UE mobility, and DC catchment and avoid the
interference of other elements. The scenario is described in detail below.

The telecommunication infrastructure is composed of 16 RBSs, in a 4x4 layout, as
presented in Figure 3.3. The cells, depicted with dashed lines, are tangent but not
overlapping and are dimensioned as a typical LTE micro-cell at 750 m, as detailed in
[SKA13]. The number of DCs varies between the experiments and thus so, also the
DC catchment, represented with the solid lines, and defined as the ratio between DCs
and RBSs, changes between (1:1) and (1:16). Note that a (1:16) catchment covers the
whole simulation area with one DC. In abstract terms, the (1:1) catchment represents a
set-up with one Proximal DCs per RBS. In contrast, the (1:16) catchment approaches
a more traditional case of Remote DC serving all users in the domain.

To study the effects of DC catchment, all DCs are of the same capacity. The number
of VMs in each DC is scaled proportionally to the number of users they serve. The
DC in the (1:16) catchment scenario has 16 VMs, while the DC in the (1:1) scenario
has just one VM. The workload is balanced among available VMs; new sessions are
forwarded to the least loaded VM. To observe the full extent of the effect of user
mobility, user states, and requests are strictly migrated to the geographically nearest
DC.

The request generation model has a session arrival rate of A, described by a Log-
Normal distribution with the parameters u = 3 and ¢ = 1.1. The number of requests per
session Ny, is taken from an Inverse Gaussian distribution with the parameters A = 5
and y = 3. Inter-request time is D,,, seconds and is modelled with with an Exponential
distribution with A = 0.1. The simulation domain is populated by 480 UEs, all sub-
scribing to the same service. Due to the size and simplicity of the network topology
in the proposed scenario, a Markov-based mobility model is deployed. The mobil-
ity mode is based on a car and is as specified in Section 3.2.1, with parameters from

3.3. Simulation showcase 51

\1:11 1:2} 1:4 1:8

Figure 3.3.: RBSs ranges and DC catchments.

[BetO1]. To allow the mobility and workload models to reach a steady state jointly,
the simulation is run for 8 simulated hours. This results in an average processing load
of 30%; this level should give enough margin to for example migrations to complete
successfully.

The user state is proportional to the aggregate size of that user’s sessions with the ap-
plication it subscribes to and is defined by a 5™ order AR-process with linearly decay-
ing parameters. The initialisation of a VM takes tjp;; = 81s, similarly as for m1.small
VM type in Amazon EC2 [OIYT10]. A VM is terminated if it remains in the IDLE
state longer than t;5;, which is equal to the mean inter-session time. It takes fierm = 21s
to terminate a VM.

To investigate the influence of Proximal DC, catchment on the aggregate perform-
ance of a Fog computing infrastructure the simulator observes the life cycle of the VMs
that run within the DCs by recording the amount of time each VM spends in each state.
Two sets of experiments are conducted. In the first set, end-users are static. The second
set of tests introduces mobility. In both sets, the variations in the distribution of time
that VMs spend in each state is investigated.

3.3.2. RESULTS

Figure 3.4 shows the breakdown of the mean time spent in each VM state in the system
per DC catchment. With a (1:1) DC catchment the utilisation suffers from the propor-
tion of time spent in IDLE state due to the relatively low request arrival rate generated
by one-sixteenth of all users. The inefficiency is caused by the time the system spends
in the IDLE, INITIATING, and TERMINATING states. The composition of time spent
in these states changes with DC catchment, and is a reflection of the number of VMs
in a DC and load-balancing effort. Reducing the time spent on starting and terminating
VMs would free up more resources and perhaps also make the system more reactive to
sudden workload changes. The intelligent management of VM scalability and place-
ment is something that needs to be optimised.

Figure 3.4 reveals the overhead of user mobility and the migration effort it incurs.
Depending on the DC catchment, different migration dynamics come into play. As
migrations are more frequent in the (1:1) case than in the (1:8) case, user states do not
have the time to grow as much between migrations in the former case. The migration
effort is therefore not a factor eight lower in the (1:8) case versus the (1:1) case, but

52 Modelling and system architecture

100

L Inactive
O Initiating
80 1 8 Processing
° Idle
g 60 Migrating
= L S |
8 Terminating
2
5 [-
S 40| S |
o
IS
20 1 SHE |
0 [|_|

1:1 1:2 1.4 1.8 1:16 1:1 1.2 14 1.8 1:16
DC catchment DC catchment

Figure 3.4.: DC catchment vs. time spent in each VM state.

rather, they spend 26% and 47% of their time in the MIGRATING state, respectively.
The system dynamics revealed by Figure 3.4, where at worst, 47% of the execution
time is spent migrating users, points to the need to find scaling mechanisms for Fog
computing that take into account mobility and inactivity, so that resources can be freed
dynamically for other revenue generating applications. A policy of strictly migrating
user states and requests to the geographically closest DC, regardless of DC catchment,
to obtain minimal propagation and communication latency, is suboptimal.

Centralised Fog computing resource
management

eeting the objectives of a set of heterogeneous applications and a heterogen-

eous Fog computing infrastructure, is non-trivial. The highly distributed and

heterogeneous nature of the Fog introduces several interesting resource man-

agement challenges arising from a highly dynamic workload, heterogeneous energy

costs and resources, rapid user mobility, and multi-component applications, [KET* 13].

The topology depicted in Figure 1.12 reflects the union of a Mobile Network Operat-

ors (MNO)’s network and a federated cloud infrastructure and should be seen as an
abstraction of a Fog computing infrastructure topology proposed in [BDPW11].

The Fog computing paradigm will proposedly enable and drive new types of ser-
vices and applications that exploit the increased proximity to the end-users and critical
infrastructure components. Contemporary cloud resources are housed in centralised
DCs that are separated from the end-users by the intermediate WANSs, core, and access
networks. The added latency and weak-backhaul introduced by those networks has
proven to inhibit the performance of cloud-based applications [BS10]. Furthermore,
there is a large and growing set of mission critical real-time applications such as tele-
robotic surgery [Bal02], RBS baseband signalling [CCY ' 15], gaming [HTO" 16], and
Augmented Reality (AR) [CKW13] that are unable to operate in such a latency-, jitter-,
and throughout-uncertain environment, provided by a centralised cloud paradigm. The
decreased distance between the cloud infrastructure and the end-users, provided by a
Fog computing infrastructure, reduces the RTT and jitter, increases availability, and
fault-tolerance [SBL15] for the infrastructure’s resident cloud applications.

To operate a viable Fog computing infrastructure, its operator needs to adminis-
ter the admitted applications and the system’s resources such that resources are not
over-provisioned, the total operational cost is minimised, and that all applications’ per-
formance requirements are met. When managing a Fog computing infrastructure, its
operator’s primary degree of freedom is the placement of the system’s resident ap-

53

54 Centralised Fog computing resource management

plications. Continuously and scalably evaluating the placement of a vast set of het-
erogeneous applications over a set of heterogeneous nodes is non-trivial and is the
fundamental problem addressed in this paper.

In this chapter, the feasibility of a Fog computing infrastructure is evaluated by
studying application placement algorithms in such an infrastructure. Because the work-
load is highly mobile, this work focuses on where to run applications in the network
and how to continuously evaluate that decision as an instrument to fulfil the holistic
management objectives of a Fog computing infrastructure. To this effect, an object-
ive function is proposed that minimises the global system cost to manage the DCs
and the network resources of a Fog computing infrastructure when hosted in a tree-
structured network topology. Furthermore, experiments designed to study the validity
of the placement algorithms in the Fog paradigm are provided.

4.1. RESOURCE MANAGEMENT CHALLENGES

One of the foremost challenges in the Fog computing paradigm is how to manage
the highly heterogeneous and distributed resources in a complex system. The sheer
size of the infrastructure and the number of management parameters renders a fully
centralised resource allocation strategy infeasible [ASO7]. As a result, a decentralised
collaborative resource management approach needs to be considered. Before we can
begin to design a distributed management approach we explore the theoretical optimal
solution. A centralised system can provide an optimal management solution but might
be practically infeasible due to, for example, computational complexity, scalability,
and fault tolerance. With the hypothetical and experimental scope of this work, it is
free from such constraints.

4.1.1. SERVICE PARADIGM

The nodes in a Fog computing infrastructure can be viewed as nodes in a federated
cloud [RBL109] whose resources are brokered globally but are for example sought
after for their locality to a specific group of users, sensors, or actuators. Application
components are submitted by application owners from beyond and within the network
to serve a subset of the network’s population. Application owners impose perform-
ance, availability, latency, and locality requirements on the Fog platform in the form of
a SLO or a Service Level Agreement (SLA). Here, Fog platform refers to the SW plat-
form that runs on the Fog computing infrastructure. Additionally, both end-users and
application owners alike are agnostic to where the application is hosted and how the
network and cloud infrastructure is managed. The end-users cannot impose require-
ments on the network or the applications’ performance. Performance requirements,
SLOs, for applications originating from an end-user device, are defined by the ap-
plication owners. Additionally, there is no resource competition between applications
and a Fog computing infrastructure honours no priorities, but rather, applications have
global performance objectives where a Fog computing infrastructure might augment

4.1. Resource Management Challenges 55

performance and facilitate scalability. The decision to deploy an application to the Fog
is therefore assumed to be made by the application owner.

A Fog operator’s overall management objective is to ensure that the fundamental
circumstances for an application to perform according to its SLO or SLA are met. As
such, a Fog operator practices admission control and can reject new applications if the
application will compromise its internal management objectives and the integrity of
the other applications’ SLO or SLA. Once an application component has been placed,
the performance of an application is the result of the applications’ properties and the
internal resource management policies of the DC the application is running on, and is
beyond the scope of this work. Note that this work is thus not concerned with VM
or application to Physical Machine (PM) mapping. Application components hosted in
the Fog are assumed not to have a scheduled deadline but are instead being terminated
based on the application’s internal management objectives.

4.1.2. RESOURCE MANAGEMENT OBJECTIVES

The management objectives for a Fog infrastructure operator are similar to those found
when operating a wireless network, such as user mobility and limited network capacity.
Nevertheless, there is a clear paradigm chasm between Telecom and cloud services.
Telecom provided services such as voice have very well defined and strict SLAs. De-
pending on the service type, cloud service SLOs on the other hand are more loosely
defined, where the service offering is multidimensional and given the nature of the
resource offering, performance responsibility is more opaque [Bas12]. Additionally,
operable core and access networks are prerequisites to hosting and accommodating
cloud resources and traditional Telecom services in the network. As such, the success-
ful operation of the access and core networks are therefore prioritised over the cloud
services. The scope of this work does therefore not cover MNO services and network
infrastructure virtualisation, as their objectives overlap with that of a Fog computing
infrastructure.

It is assumed that a Fog computing infrastructure is managed on top of the existing
Telecom infrastructure. The Fog computing infrastructure management process is ag-
nostic the momentary load and objectives of the Telecom network. The objective of the
Fog computing’s management entity is, therefore, to minimise the resource usage and
thus the resulting operational cost and incurred load on the shared Telecom network,
and to provide a service with a finite set of resources.

4.1.3. CHALLENGES

The internal Fog computing management challenges are found in the union of cloud
and mobile infrastructure. a Fog infrastructure operator has only a few degrees freedom
to control the operations of the infrastructure. An operator can alter:

e The number of applications in the network.

e The pallet of applications and

56 Centralised Fog computing resource management

application’s heterogeneity.
e Which pieces of infrastructure to run.
e Where to run the application components.

Continuous evaluation of application component placement is the common denom-
inator. No assumptions are made about how specific applications or set of users behave.
It is therefore assumed that any application can behave in any manner in the realm
of what is physical and computationally possible. When re-evaluating an application
placement, the management process determines if the energy, computing, network, and
latency costs fall short of any of the possible placement possibilities that qualify, for
a certain period. The systems’ rate of change determines the duration under which a
decision is valid. The number of possible placement combinations and the rapid rate
of change means discrete placement decisions need to rely on the prevailing workload,
resource availability, and user location. The system needs to re-evaluate the placement
of application components, whenever workload changes for an application, when new
applications arrive or are terminated, when applications scale up or down, or when
foreground traffic volumes change. The triggers and decisions need to be at the granu-
larity of individual application components.

Operating a profitable network relies on an operational network and the ability to
cost-manage that network. The resource heterogeneity of a Fog computing infrastruc-
ture, the mobility of the users in the network introduce and the heterogeneity of the ap-
plications to which they subscribe introduce a complex set of management decisions.
A Fog infrastructure operator will need to manage the placement decision and the sub-
sequent placement revaluation of application components in a manner that minimises
the overall resource usage.

4.2. EXTENDED FOG MODEL

Here, although analogous, the model presented in Chapter 3 is augmented and re-
worked to fit the extended problem addressed in this chapter. Also, the notation has
been modified and made more compact to better fit the formulations below.

The placement and scale of a Fog computing infrastructure’s DCs is dependent on
the degree virtualisation of a MNO’s infrastructure [ZZGTG10], the degree of conver-
gence of core and access networks, and the prevailing geographic demand for proximal
compute capacity. Although some bounds can be identified, these properties are not
yet defined as the design of forthcoming mobile access network standards and topo-
logies are far from being finalised [SS12]. Additionally, no assumptions are made of
DC placement or scale but the models are generic enough to handle many possible
next-generation infrastructure topologies.

As a whole, a Fog computing infrastructure is modelled as an undirected forest or
tree graph [RMKT09, BDPW11, JPET 11, MPZ10], where the vertices are DCs and the

4.2. Extended Fog model 57

Network link: ¢;

T
Data centre: v; E:tr;?\vg;?z?.
Compute capacity: & Link cost: =
Memory capacity: m

Bandwidth: &

DC cost: ¢

o Application: q,
O Position: p» € {1,2,...,1}
Compute intensity:
O Memory intensity: o=
(V) o | Uplink usage: 8
- —

. W Downlink usage: -
Application demand: v, o Maximum delay: &
Location: ¢, o

Figure 4.1.: Model overview

edges are network links, each with a set of finite resources, see Figure 4.1. Applications
are hosted in a DC and are subject to demand through the network links, originating
at the leaf nodes. The graph, G = (V,E) denotes a tree depicting a Fog computing
network topology, where

V={v|i=12..1},

E={ej|j=12,..J},
where v is the root node. The subscript i of the node v; is named such that all the
nodes v; between v; and v follows

4.1

dist(vk,vl) < diSt(V,',Vl), Vk <1, 4.2)

where the distance betweennodesve Vandw eV, dist(v, w) is measured in number

of vertices that is on the shortest path from v to w. RBSs connect the leaf vertices

from which the end-users access the network. Thus, the leaf vertices are geographic
aggregation points of application demand.

4.2.1. DATA CENTRE MODEL

The Fog compute resources will proposedly reside in existing MNO infrastructure
[BDPW11], such as in a MNO'’s regional offices or what remains of previous gen-
eration network infrastructure. Furthermore, the compute capacity is proportional to
the aggregate demand of applications from their users that have access to it, thus suc-
cessively decreasing with depth. Henceforth, the computing cost will increase with
depth.

58 Centralised Fog computing resource management

Each vertex is a DC and hosts applications using a set of finite resources. Vertex v;,
i €{1,2,...,1} in the graph has the following features:

o Compute capacity ¢;, a number describing the total compute capacity of the
DC.

e Memory capacity m;, a number describing the amount of memory on the DC.

e Bandwidth, b;, a number describing the maximum throughput that the DC can
handle.

In addition to the features above, vertex v;, i € {1,2,...,1} is associated with the
following operational cost

e DC cost {;, a function of resource usage (compute, memory, and bandwidth)
that returns the DC’s running cost per time unit.

In general, the leaf vertices of the graph correspond to smaller DCs and thus the
compute costs are arguably more significant at the leaf vertices than at vertices at lower
depths in the tree, [BCH13].

4.2.2. NETWORK MODEL

Existing 3" and 4™ generation mobile access networks are generally tree-structured
[EEsS14]. Future mobile infrastructure generations will feasibly inherit this struc-
ture. Furthermore, bandwidth availability as well as communication latency and jitter
decrease with tree depth. Additionally, the network topology is modelled as a tree-
structured graph, where each edge has network resources and exhibits latency and con-
gestion.

Each edge e, j € {1,2,...,J}, in the graph has the following features

o Bandwidth 7;, a number specifying the maximum throughput over the edge.

e Latency d;, a function of the throughput that returns the delay caused by that
link’s resource utilisation and length.

In addition, each edge has the following operational cost

e Link cost 1;, a function of throughput that returns the link’s running cost per
time unit.

The communication latency of an application is dictated and maintained by the ap-
plications’ relative locations to its demand and the level of congestion on the links
it employs. As the demand mobility from one edge node to another can be highly
dynamic, the size and location of applications’ demand can vary with time. Latency
is modelled as a function of propagation delay and network congestion [FTDO03]. In
general, the bandwidth cost increases with the distance to the root vertex.

4.2. Extended Fog model 59

4.2.3. APPLICATION MODEL
A Fog computing infrastructure hosts applications a,, where n = 1,2,...,N. Let A =
{a, | n=1,...,N} denote the set of all applications hosted in the Fog. Application ay,
n€ {1,2,...,N}, see Figure 4.2, has the following features:

Position p, € {1,2,...,I}, a number specifying that the application component
is running on the DC at vertex v, .

Compute intensity 7,, an increasing function of the demand of the application
component that describes the number of computational resources required by
the application component.

Memory intensity G, an increasing function of the demand of the application
component that returns the amount of memory required by the application com-
ponent.

Uplink usage B, an increasing function of the demand of the application com-
ponent as well as the locations of the application component’s end-users that
returns the uplink throughput associated with the application component,

Downlink usage f3,,, an increasing function of the demand of the application
component as well as the location of the application component’s end-users that
returns the downlink throughput associated with the application,

Maximum delay d,, the longest delay (latency) that provides the users of the
application component a satisfactory experience. This delay is specified in the
SLA between MNO and application owner.

Applications thus scale vertically in a DC, as a function of demand.

Note that in the experiment section of the current work, only single-tier applications
are considered. However, the model can be generalised to account for multi-tier applic-
ations. In the multi-tier setting, application a, can be considered as being composed
of s, stages or sub-applications. Each of these sub-applications will have the same
features as a single tier application. The relationship between application components
is expressed with a demand affinity as described in [UPST05]. As an alternative to the
viewpoint of handling multi-tier application would be to include general affinity and
anti-affinity constraints between application components.

4.2.4. USER MODEL

Finally, let U = {u,, | m = 1,2,...,M} be the set of users of the Fog computing infra-
structure. Each user u,,,, m € {1,2,...,M} has the following features

Location /,, € {1,2,...,1}, anumber specifying that the user is currently served
by the DC at vertex v;,,.

60 Centralised Fog computing resource management

Upstream traffic intensity

Memory intensity

-

Demand \’ -
§ / ~._--~ ™ Application

Downstream traffic intensity

Figure 4.2.: Application model

e Active applications A,, C A, a set of application components that the user cur-
rently runs.

For future notation, U, = {u,, € U | n € A,, is the demand for an application com-
ponent n and let U, ; = {uy, € Uy, | ¢,y = i}. Note that for the numerical experiments
in this chapter, users are not explicitly tracked, only the demand of each application
component at each leaf vertex.

4.3. OPTIMISATION FORMULATION

In this section the proposed Fog application placement algorithms are detailed. The in-
frastructure is restricted by resources with finite capacity and can thus not host an infin-
ite number of applications. Furthermore, not all placement constellations can meet all
application constraints. Accommodating an application’s constraints and meeting its
SLA/SLO is a prerequisite to generate revenue. Therefore, analogously, when search-
ing for possible placement options applications’ constraints are the primary concerns.
Applying the application’s resource and performance constraints, prunes the search
tree. After that, the algorithm searches for a set of placement options that incurs the
least overload in that point, over time.

4.3.1. RESOURCE UTILISATION METRICS AND CONSTRAINTS

The primary objective of the optimisation in this paper is to decrease the running
costs of a Fog computing infrastructure by placing/moving the applications on dif-
ferent DCs by normalising the usage of the infrastructure’s DC resources and minim-
ising the incurred network usage. Here, the control or decision variable is the vector

4.3. Optimisation Formulation 61

p = (p1,p2,---,pn), that holds the position of all applications. For full generality, the
set of admissible placements are

A={peZ"|p,e{l....1}}. (4.3)
To detail the relations resources and how they are utilised, the following objects are
defined: Let P, denote the path from DC i to DC 7, that is, the set of edges that
connects the two DCs. Moreover, let E; = {e € E | v; € e} be the set of edges that
represents links that are connected to DC i.
The throughput ¢; over link j is the total usage (uplink plus downlink) for all pairs of
users and applications such that the link is on the path connecting the DC serving the
user and the DC hosting the application. More precisely, the throughput is given by

1=)3 (BJ (1Untl) + By (1Un |)> : 4.4
s,)
For each application a, € A and user u,, € U, of that application, the latency d,, ,
experienced by the user is the sum of all latencies on the path connecting the DC
serving the user and the DC hosting the application. Thus, the latency d,, can be
computed as

dom= Y, di(t)). (4.5)
{ilej€Ppyim}
Any additional latency incurred by intermediate DCs is not included. The computing
and memory usage at DC i is the sum of the corresponding usage by the applications
that are running at the DC, that is,

ci= Y, Ya(|Ud) (4.6)
{nlpn=i}
and
mi= Y o,(|U). 4.7
{n‘Pn:i}

The throughput over vertex i is the sum of the throughputs of all edges that are connec-
ted to the corresponding DC. Thus,
bi= Y 4.8)
{jle;€Ei}
Each of the resource metrics is associated with a constraint connected to the features
of the DC, application, and network models. These constraints are

¢i/6 <1, i=12,....1 4.9)
m;/m; <1, i=1,2,....1, (4.10)
bi/b;i <1, i=1,2,...1, 4.11)
1/t <1, j=12,....J, (4.12)
dym/dy <1, n=12,...,Nand {m|u, € U,}. (4.13)

All constraints above are written on the form a/a < 1, that is that the relative usage (or
latency) of a particular resource should be at most 1. The choice of a common form
simplifies the discussion about the formulation of the optimisation problem below.

62 Centralised Fog computing resource management

4.3.2. OPTIMISATION PROBLEM

The objective function in Equation (4.14) is designed to capture the application ex-
ecution cost and the overload penalty on the node as well as edge resources in the
system. Here, the objective function is constructed from the infrastructure providers’
viewpoint. Primarily, they want to minimise the overall running cost.

I J
J(p) = Y Cicrmibi) + Y mj(1;). (4.14)
i=1 j=1

In this work, it is assumed that the cost for running the DCs is linearly proportional to
their compute resource usage and that the cost for the network is linear to the through-
put over each link. Remark that adding a constant background cost that represents the
cost for when the links and DCs are idle does not influence the possible savings by
migrating the applications. Thus, in principle, the optimisation problem is formulated
as

min J(p), (4.15)
peAa
subject to constraints (4.9-4.13).

The problem formulation above is straightforward and intuitive. A Fog computing
infrastructure is subject to a highly volatile workload. Even small changes in the loca-
tion and quality of demand can render any previously optimal solution obsolete. In the
worst case, significant migrations would be required to resolve the infeasibility. To en-
sure feasibility of the constraints stating that the relative usage should be smaller than
1 and to avoid link or vertices becoming overloaded, therefore a penalty initialisation
point ¥ < 1 is introduced, and a penalty—barrier function is defined as;

B 0, 1fx<)?, 4.16
felx) = N U e

1—x
In the equation above, x should be viewed as the relative usage (or latency) that is the
quotient on the left hand side in constraints (4.9—4.13). For the case when x > X, the
first term is selected to ensure that f3(x) — oo as x — o and the second term is selected
so that fz(¥) = fz(X) = 0, that is, to guarantee that f; is continuously differentiable in
the interval [0,1).

By construction, the function f% acts as both a penalty and a barrier function; it is a
penalty function for constraints of the type x < % and a barrier function for the constraint
x < 1. In essence, this makes it easy to modify the point where the penalisation starts
for each constraint separately. The algorithm utilises this versatility by having different
penalty initialisation points for constraints corresponding to different features. A more
elaborate set-up could, for example, have a penalty initialisation point for the comput-
ing resource usage that depends on the level in the tree that the corresponding DC is
located. To compute the overall penalty G, the penalty—barrier function corresponds to

4.4. Proposed Application Placement Method 63

all constraints with their respective penalty initialisation points. That is,

I)
G(p) =Y. fe(ci/@) + Y fin(mi/)+
i=1 i=1
! J
+) 5 (bi/bi) + Y il /) + .17)
i=1 j=1

N
+ Z Z de (dn,m /dirL) s

n=1{m|meU,}
where &, 7, b, T, and d are the penalty initialisation points corresponding to the con-
straints for compute usage, memory usage, DC throughput, link throughput, and ap-
plication latency, respectively. Here, the individual penalty—barrier functions for all
constraints are added. This corresponds to taking the 1-norm of the vector whose ele-
ments hold the values of the individual penalty—barrier functions for all constraints. An
alternative overall penalty—barrier method is obtained by taking another vector norm
of the constraint vector.

To conclude, rather than solving problem (4.15) subject to constraints (4.9—4.13),

we solve the following problem

min J(p) +uG(p), (4.18)

pcA

where u is a positive penalty parameter and J and G are defined in expressions (4.14)
and (4.17). Dimension for J is in terms of monetary cost per time unit, whereas G is
dimensionless. Hence, the unit for ¢ is the monetary cost per time unit.

4.4. PROPOSED APPLICATION PLACEMENT METHOD

One approach to solving the optimisation problem (4.18) is to perform a so-called ex-
haustive search, that is to evaluate the objective function for each admissible placement.
The computational complexity of this approach is exponential, since |.4| = N'. For ex-
ample, to evaluate the objective function in a setting with 22 applications and 12 DCs
would require O(10') summation operations (each evaluation of the objective func-
tion requires O(10%) summation operations). Thus, even for relatively small problems,
this approach is computationally intractable. Here, a local search algorithm is em-
ployed, described below, to find approximate solutions to optimisation problem (4.18).
The objective function is re-evaluated, J 4+ uG, during runtime to compute the total
cost for running all the applications inside the infrastructure. The re-evaluations are
triggered either by an internal event in the infrastructure, entity, or application or is
triggered by a periodic heartbeat signal, agnostic to the state of the system.
For each p € 4, a k-neighbourhood of