
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Response Time Driven Design of Control Systems

Xu, Yang; Årzén, Karl-Erik; Bini, Enrico; Cervin, Anton

2014

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Xu, Y., Årzén, K.-E., Bini, E., & Cervin, A. (2014). Response Time Driven Design of Control Systems. Paper
presented at 19th IFAC World Congress, 2014, Cape Town, South Africa.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/b1791f61-4b3b-42ea-b61d-5eeb51107134

Response Time Driven Design of Control

Systems ⋆

Yang Xu, Karl-Erik Årzén, Enrico Bini, Anton Cervin

Department of Automatic Control, Lund University, Sweden (e-mail:
yang, karlerik, bini, anton@control.lth.se).

Abstract: A correct design of controllers must necessarily account for the schedule of the
controller task over the processor. Existing design techniques are based on the assumption that
there is no delay, or the delay is constant over time. However, in practice, almost all controllers
have time-varying delay, hence invalidating this assumption. In this paper, we introduce a period
design policy, in which the controller delay is modelled by the distribution of the task response
time. We show, via simulation, that our method can reduce the control cost compared to the
state-of-art methods.

Keywords: Real-time systems; scheduling algorithms; control systems; LQG control; time delay

1. INTRODUCTION

The demand for efficient resource utilization in embedded
and cyber-physical systems has led to an increased focus
on co-design approaches, including control and scheduling
co-design. The scenario studied here consists of a number
of linear-quadratic-Gaussian (LQG) controllers, each im-
plemented as a task executing on a single processor that
uses preemptive fixed priority scheduling. The co-design
problem consists of selecting the task periods and design-
ing the individual controllers so that the total control
performance is maximized.

As controllers are scheduled over a processor, their ex-
ecution is subject to all effects that the task scheduler
introduces.

• Since the computation of the control law consumes
some execution time on the processor, there is always
a delay between sampling and actuation (so called
input-output delay).
• When a task can be preempted by the others then
the amount of delay is not constant, since it depends
on the (time-varying) number of times the task was
actually preempted.

In earlier work, as later described in the related works
section, the optimal task period selection problem has
been approached either by ignoring the effects of the delay
on the performance or by approximating the delay by a
constant. In this work the delay is instead modeled by
the task response time distribution, and the controller is
designed to give optimal performance for a delay that
varies according to such a distribution, i.e., a robust
control design approach is used. This is done using the
techniques by Nilsson et al. (1998) that enable the optimal
design of controllers that are subject to an input-output

⋆ This work was supported in part by the LCCC Linnaeus Center,
the eLLIIT Excellence Center at Lund University, and the Marie
Curie Intra European Fellowship within the 7th European Commu-
nity Framework Programme.

delay, which is assumed to be a random variable with
known distribution. One hypothesis behind this technique
is that the delay of each job is independent from the others,
which is certainly not the case in real systems. However,
if the parameters of all tasks are known in advance, it is
possible to determine the entire task schedule within the
least common multiple of the periods (called hyperperiod),
which is then repeated over time.

The picture, however, does drastically change if the con-
trollers have to be designed, that is, if the task periods
are variables of an optimization problem. In this case, the
hyperperiod may not even exist (if any pair of task periods
are incommensurable) and then the task schedule cannot
be computed.

The design of controllers (which includes also the selection
of their period) that are aware of the job delay pattern is
a challenging problem, which is considered in this paper.
In the next section, we review the related works.

Seto et al. (1996) studied the optimal task rate assignment
such that a given performance index is maximized and
the available computational resources are not overloaded.
In this work, which is a milestone in the literature of
real-time control co-design, however, the delay between
sensing and actuation is still assumed to have no impact
on the performance of the system. This was pointed out
by Kim (1998). He expressed the cost as a function of
both periods and delays, and then found the periods
assuming that the delays are given. Then, the new delays
are computed by simulating the schedule of all the tasks
up to the hyperperiod, and iteratively the periods are
computed again assuming the new values of delay. Clearly,
this method can be extremely time consuming because
it depends on the length of the hyperperiod. Another
limitation of (Seto et al., 1996) was that they assumed as
feasibility constraint the utilization upper bound from Liu
and Layland (1973). However, the utilization upper bound
is only a sufficient condition when a fixed priority scheduler
is used. Bini and Di Natale (2005) proposed an algorithm

that finds the optimal period assignment of control tasks
scheduled by fixed priority. In their work, the delay is
guaranteed not to exceed the period for all tasks. Since
the optimal method requires a time-consuming branch-
and-bound algorithm to be executed, they also proposed a
faster algorithm to find a sub-optimal period assignment
taking advantage of some geometrical considerations in
the space of feasible activation rates. Similarly to this
paper, Bini and Cervin (2008) proposed an iterative period
assignment routine based on an analytic solution of the
linearised problem, by assuming a constant delay equal to
an approximated response time. More recently, Aminifar
et al. (2012) proposed a method to assign task periods so
that the stability of the plants is guaranteed. The delay-
related cost, however, is not taken into account.

In the context of on-line assignment of periods to control
task, Mart́ı et al. (2004) and Henriksson and Cervin (2005)
suggested to reallocate more resources to the control loop
currently in need. However, none of these considered the
control delay in their resource allocation schemes.

The work by Nilsson et al. (1998) assumed that the vari-
ability in delay was smaller than the sampling period.
This limitation was later lifted by Lincoln and Bernhards-
son (2000), who derived the LQG-optimal controller for
networked control systems with arbitrarily long delays.
However, no stationary solution was found, implying that
the optimal controller involves quite heavy on-line com-
putations. In this work, therefore, we design controllers
based on truncated distributions so that the variability is
always smaller than the period, even though this approach
is suboptimal.

Closely related to our work, Samii et al. (2009) proposed a
control-scheduling co-design procedure, where the control
design step took the response-time distribution — found
by schedule simulation — into account. However, the
controllers were designed based on the average delay only.
Also, the overall optimization was based on a genetic
algorithm, which assigned controller periods within a fixed
and given set only.

In this paper, we propose a design technique for controllers
sharing the same processor. We show, assuming overall
cost is a function of periods, how the local and global
optimal period assignment can be found. Our method
can also be used when the offset of job release time
exists or when the execution time is distributed. The
main contribution of this paper is the period assignment
including the effects of delay and jitter by using response
time analysis.

In Section 2.1 the task run-time model is presented.
The controller and the definition for the control cost are
introduced in Section 2.2. Validation for modeling the
delay with the response-time distribution is provided in
Section 3. In Section 4 the optimal period assignment
problem is defined together a local sequential search-based
method. In Section 5 this method is compared with a
non-linear direct optimization method in a simulation
evaluation where the cost is evaluated using the TrueTime
simulation tool Cervin et al. (2003).

2. REAL-TIME CONTROL SYSTEM MODEL

2.1 Task run-time model

We consider a set of n independent control tasks, each one
controlling a plant. The tasks run over the same shared
processor. A task τi is characterized by the following
independent parameters:

• the worst-case computation time Ci is the maximum
execution requirement that a task can require. We
highlight that the computation time of controllers
is often quite static and predictable, since the code
typically has not many conditional branches;
• the period of the task activations Ti is the time
separation between two consecutive activations;
• the task priority. Without loss of generality we as-
sume that the priority is implicitly assigned by the
task ordering, such that τi has higher priority than
τi+1.

Other characteristics of the tasks, which depend on the
above mentioned parameters, are

• the response time Ri of the task is the time that
elapses from the task activation to its finishing time.
Since Ri varies over time depending on the inter-
ference from higher priority tasks, we represent it
by a random variable with cumulative distribution
function Fi : [0,∞) → [0, 1]. The value Fi(r) is the
probability P{Ri ≤ r} that any job released by τi
has response time smaller than or equal to r. The
distribution Fi depends on the parameters of the
tasks {τ1, τ2, . . . , τi}, since they are the only ones
which can affect the response time of τi;
• the task utilization

Ui =
Ci

Ti

,

which measures the worst-case amount of computa-
tional resources required by the controller. If

∑

i Ui >
1, then we say that we are in overload conditions.

2.2 Model of the control cost

We assume that the plant to be controlled by each task is
described by a linear system

ẋ(t) = Ax(t) +Bu(t) + vc(t)

y(tk) = Cx(tk) + e(tk)
(1)

where x is the plant state, u is the controlled input, and vc
is a continuous-time white noise process. The output y is
measured at discrete time instants tk, with measurement
noise e described by a discrete-time Gaussian white noise
process. A, B, and C are matrices of appropriate sizes.

The controller τi then reads the output of the correspond-
ing plant every period Ti, computes the control law, and
then actuates the control input to the plant after a con-
stant delay ∆i due to its own computation as well as to the
interference of higher priority tasks. To measure the cost of
this action, we adopt a linear-quadratic Gaussian (LQG)
framework (Åström and Wittenmark, 1997), in which the
cost is measured by a standard quadratic cost function

J = lim
t→∞

1

t
E

{
∫ t

0

(

xT (s)Qx(s) + ρu2(s)
)

ds

}

. (2)

The parameter ρ > 0 is a weight used to trade between
the relative importance of input u and the state x.

If the delay of the controller varies as a random variable
with a given probability density, it is also possible to
determine the optimal control law (Nilsson et al., 1998),
which minimizes the cost of (2). In this case, it is done
through an iterative solution of the corresponding stochas-
tic Riccati equation. MATLAB and the Jitterbug toolbox
(Lincoln and Cervin, 2002) can be used to compute both
the optimal control feedback and the corresponding cost.

Since the cost Ji of the controller τi depends on the
response time distribution, which in turn depends on the
period of the higher priority tasks, then it can be written
as

Ji(T1, . . . , Tn) (3)

with
∂Ji
∂Tk

= 0, ∀k = i+ 1, . . . , n. (4)

The model used assumes that the sampling is performed
at the task release times, i.e., without any jitter. This can,
e.g., be achieved by performing the sampling in the the
clock interrupt service routine, or in a dedicated high-
priority task that then communicates the sample to the
controller task, using, e.g., a mailbox. Modelling the delay
of the controller using the task response time assumes
that the actuation is performed at the end of the task.
Normally, this is not the way a controller is implemented.
Instead the code is structured in two section: a Calculate-
Output section that contains the calculations that directly
depend on the current sample, and an UpdateState section
where the internal states of the controller are updated. The
actuation is then performed as soon as the CalculateOutput
section is completed. However, since the approach in this
paper is based on simulating the total task schedule it
is straightforward to extend it to this case instead. An
additional assumption implicitly made is that the task
execution time is relatively constant from one job to the
next. Although this is not true for general tasks, the
assumption is more valid for controller tasks, since the
code size is relatively small and the amount of branches is
low. Furthermore, it is assumed the kernel allows the task
periods to have arbitrary real-valued values. This implies
a so-called tick-free kernel.

3. VALIDATING THE MODEL OF THE TASK DELAY

3.1 Choice of the response time distribution

The design approach in this paper is based on the pos-
sibility to design the controller taking the distribution
of the delay caused by the task scheduling into account.
This is done by modelling the delay by the response
time distribution. However, when the tasks have constant
execution times, the delay is actually deterministic, al-
though following a pattern, which is not easily character-
izable (Lehoczky, 1990). It is then necessary to validate
the appropriateness of modelling the delay as stochastic.

Consider the following example. Assume a task set con-
sisting of two tasks defined as

Task Ti Ci Priority
τ1 0.24 0.12 High
τ2 0.3 0.12 Low

where task τ2 implements a LQG-controller with sampling
period, T2 = 0.3, controlling an inverted pendulum process
modelled by the Laplace-transfer function P (s) = 1/(s2−
1). The continuous-time input noise has the covariance
R1c = 1 and the discrete-time measurement noise has the
covarianceR2 = 0.01. The cost function that the controller
should minimize is given by Equation (2), with ρ = 0.001
and

Q =

(

1 0
0 0.01

)

.

The schedule of the tasks is illustrated in Figure 1.
The schedule repeats every hyperperiod, that is the least

0.24 0.48 0.72 0.96

0 0.3 0.6 0.9 1.2
0.24 0.240.18 0.12

τ1

τ2

Fig. 1. Schedule of the two control tasks.

common multiple of the task periods (1.2 for these tasks).
The task execution times are assumed to be constant and
given by Ci.

As it can be noticed in the figure, the response time
for task τ2 will have the following repetitive cycle R2 =
0.24, 0.18, 0.12, 0.24, . . . (the interested reader can find
more details in the work by Lehoczky (1990)). Hence, the
worst-case response time is 0.24, the best-case response
time is 0.12, and the average-case response time is 0.195.

We now compare the costs for four different LQG-
controllers:

LQGB The controller is designed assuming a constant
delay equal to the best-case response time.

LQGA The controller is designed assuming a constant
delay equal to the average-case response time.

LQGW The controller is designed assuming a constant
delay equal to the worst-case response time.

LQGS The controller is designed assuming that the delay
is governed by a stochastic variable with a discrete-time
distribution function corresponding to the above cycle,
i.e., the likelihood is 50% that the delay is equal to 0.24,
25% that it is equal to 0.18, etc.

The costs will be evaluated for two execution scenarios:

ES The delay is a stochastic variable with the distribution
function defined previously.

ED The delay varies from job to job according to the
deterministic repetitive cycle defined previously. This
scenario corresponds to the true execution according to
the schedule.

The costs for the eight cases are given below.

Controller ES ED

LQGB 0.6561 0.7112
LQGA 0.5959 0.6200
LQGW 0.6413 0.6169
LQGS 0.5891 0.6125

In this example, for both execution scenarios the controller
designed using the delay distribution gives the lowest cost,
which speaks in favour of the approach adopted in this
paper. Also, the cost for the true deterministic execution
scenario is quite close to the cost for the stochastic execu-
tion scenario. This also speaks in favour of the proposed
approach. Furthermore, when as in the current case the
task periods are derived through numerical optimization it
is unlikely that there will exist any hyperperiod, i.e., there
is no repeating pattern for the delay. As will be shown
by the evaluations presented in the following the error
introduced by assuming a stochastic delay is in general
quite minor.

3.2 Computation of the response time distribution

In Section 3.1 we showed that adopting the response
time distribution as model for delay provides results that
are quite similar to the ones obtained by considering
the exact pattern of job delays. However, to best of our
knowledge, today there is no analytical method, which
provides the response time distribution as a function of
the task parameters. Hence, we can only proceed by
simulation.

Our simulation-based computation of the response time
distribution must necessarily use a finite number of jobs for
which the response time is computed. Next, we investigate
the impact of the number of jobs on the accuracy of the
response time distribution.

Let R(k) denote the random variable of the job response
time extracted among the first k jobs, and FR(k)(r) its cu-
mulative distribution function (CDF). With this notation
in mind and for the purpose of measuring how sensitive
the distribution of R(k) is to k, we define the following
incremental normalized distance:

d(k) =
1

T
E
{

|R(k)−R(k + 1)|
}

(5)

with E{·} denoting the mathematical expectation, and T
being the period of the task. Intuitively, d(k) represents the
diversity of R(k + 1) w.r.t. R(k). The factor 1/T is added
to properly normalize such a distance. We observe that
d(k) is zero if and only if R(k) and R(k+1) are coincident
almost everywhere. Moreover, we have

lim
k→∞

d(k) = 0

since as k grows, the two random variables R(k) and
R(k + 1) tend to coincide.

Such a quantity d(k) can be used to determine the number
of jobs after which the simulation can be stopped. In fact,
if d(k) is small it means that adding new samples of the job
response time is not going to affect significantly the new
response time distribution. As shown by Vallender (1974),
the value d(k) of (5) can be computed as

d(k) =

∫

∞

−∞

|FR(k)(r) − FR(k+1)(r)| dr. (6)

In Figure 2, we report the value d(k) computed for the
response time of the lowest priority task, as the number of
jobs increases. The plot is reported for several task sets,
each denoted in the format [(C1, T1), (C2, T2), . . . , (Cn, Tn)]
in Fig. 2. Observe that when the task periods are integers

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100

d(k)

k

[(1,2),(2,5)]
[(1,π),(1,5),(0.1,π2)]
[(0.2,5),(1,7),(2,8),(5,100)]
[(0.2,

√

2),(1,π),(2,π2),(5,30),(11,123.7)]

Fig. 2. d(k) as a function of the number k of jobs.

(such as in the 1-st and 3-rd case) the distribution of the
response time does not vary roughly over time. Instead,
it is interesting to notice that when any pair of periods
is incommensurable (such as in the 2-nd and 4-th cases)
the response time of some job does not conform to the
distribution computed until that point in time.

Finally, we remark that the goal of this paper is not to
determine the most accurate possible distribution of the
task response time. Instead, we aim at determining a re-
sponse time distribution, which models the task delay well
enough to allow an improved selection of the task periods.
As we will show later in the experiments, selecting the first
100 jobs for computing the response time distribution is
a suitable choice for determining task periods which more
aggressively reduce the control cost.

4. PERIOD ASSIGNMENT

The period selection problem can be formulated as follows:

• find the controller periods [T1, . . . , Tn],
• such that the cost

J =
n
∑

i=1

Jj , (7)

with Ji defined in (2), is minimized, and
• the set of controllers is feasible, that is

n
∑

i=1

Ci

Ti

≤ 1. (8)

Since the cost Ji of (2) has no explicit form and can only
be computed numerically (through Jitterbug, in our case),
we solve this problem with numerical optimization. Below
we provide more details for the optimization procedure.

4.1 Choice of the initial periods

Since the problem is non-convex, the choice of the initial
solution (initial periods in our case) may affect the final
solution. Three methods to obtain initial values were
evaluated:

• equal periods, that is setting ∀i, Ti =
∑

j Cj ,
• even utilization assignment, that is setting Ti = nCi,
and
• random initialization.

However, all three methods gave initial periods that were
far from the optimal solution.

Instead the delay-aware period assignment method (Ri-
Approx) from Bini and Cervin (2008) was used to provide

initial task periods. In this approach a linear approxima-
tion of the cost function J =

∑

αiTi + βi∆i is minimized
assuming that the delay ∆i equals an approximation of
the average response time.

4.2 Cost calculation

The change of Ti affects the response time distribution
of task j when j ≥ i. And the change of response time
distribution affects the cost of the current task. So the
overall cost J is a function of each period Ti of tasks.
For the given computation time Ci and period Ti of each
task with fixed priority, the differentiation process for the
overall J with respect to each Ti consists of the following
steps:

(1) Compute the response time distribution of each task
i using the method in Section 3.2;

(2) Design the LQG controller using the response-time
distribution as the delay distribution, for each task i
using the method in Section 2.2;

(3) Calculate the LQG cost Ji of each task i;
(4) Calculate the overall cost J by (7).

For the example in 3.1, we plotted the overall cost J as
a function of periods T1 and T2 (Fig.3). The function is
non-linear and non-convex, even though there are only two
tasks.

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

2

4

6

8

10

12

14

T
2

T
1

J

Fig. 3. J as a function of periods T1 and T2.

4.3 Local optimal solution

Gradient based optimization methods could be used to
find the local optimal overall cost J , but they are time-
consuming. So instead, we introduce a sequential search-
based optimization method, which is derivative free. The
method is presented in Algorithm 1. Since low priority
tasks are disturbed by interference from high priority tasks
the algorithm starts by finding the optimal periods for
higher priority tasks and fix them, before proceeding to
lower priority tasks. Since larger periods of high priority
tasks give more utilization to the low priority tasks, the
algorithm begins by trying larger periods and then smaller
ones. The utilization requirement U ≤ 1 is checked before
assignment of smaller periods. This heuristic approach is
called sequential search in the sequel.

Algorithm 1 Local optimization

procedure SequentialSearch(T1, T2, ..., Tn)
calculate J at the initial value T1, T2, ..., Tn

for i = 1 : n do
T ′

i ← Ti +∆Ti

calculate J ′ at T1, T2, ..., T
′

i , .., Tn

moved← 0
while J ′ < J do

T1 ← T ′

i

J ← J ′

T ′

i ← Ti +∆Ti

calculate J ′ at T1, T2, ..., T
′

i , .., Tn

moved← 1
end while
if moved = 0 then

T ′

i ← Ti −∆Ti

U ←
∑

Ci

T ′

i

if U ≤ 1 then
calculate J ′ at T1, T2, ..., T

′

i , .., Tn

while J ′ < J do
T1 ← T ′

i

J ← J ′

T ′

i ← Ti −∆Ti

calculate J ′ at T1, T2, ..., T
′

i , .., Tn

end while
end if

end if
end for
return T1, T2, ..., Tn ⊲ The local minimum

end procedure

4.4 Global optimal solution

Our interest here is not only in the locally optimal solution.
According to the characteristics of the LQG cost as a
function of periods, we are certain to say it is a typi-
cal global optimization problem. So several optimization
methods could be applied for its solution. As mentioned,
the derivative-based optimization method were avoided,
since they are very time-consuming in the current problem.

The DIRECT optimization method (Jones et al., 1993) is
a sampling-based algorithm. It is a global derivative-free
method. In the given domain, DIRECT optimization sam-
ples some points without initial value, then decides where
to do the next search based on the known information. It
converges to a global minimum value. It is widely used in
’black box’ problem, in which the relation between inputs
and outputs is complex.

5. EVALUATION

In this section the proposed response time driven period
assignment method is evaluated comparing with the delay-
aware period assignment method (RiApprox) from Bini
and Cervin (2008). To better understand the properties
of the proposed period assignment method, tasks sets are
randomly generated to control randomly generated plants
with varying characteristics. The evaluation is performed
using the TrueTime toolbox.

5.1 Simulation setup

Plant sets were randomly generated from the following
three different plant families.

• Family I: All plants have two stable poles and each
plant is drawn from P1(s) and P2(s) with equal
probability where

P1(s) =
1

(s+ a1)(s+ a2)

P2(s) =
1

s2 + 2ζωs+ ω2

with a1, a2 ∈ U(0, 1), ω ∈ U(0, 1), ζ ∈ U(0, 1).
• Family II: All plants have two stable or unstable
poles, with each plant drawn with equal probability
from

P3(s) =
1

(s+ a1)(s+ a2)

P4(s) =
1

s2 + 2ζωs+ ω2

with a1, a2 ∈ U(−1, 1), ω ∈ U(0, 1), ζ ∈ U(−1, 1).
• Family III: All plants have three stable or unstable
poles, with each plant drawn with equal probability
from

P5(s) =
1

(s+ a1)(s+ a2)(s+ a3)

P6(s) =
1

(s2 + 2ζωs+ ω2)(s+ a3)

with a1, a2, a3 ∈ U(−1, 1), ω ∈ U(0, 1), ζ ∈ U(−1, 1).

For the LQG controllers, ρ = 0.01, R1c = BBT , and
R2 = 0.01tr{R1c} were used. Robust LQG controllers were
designed with the assigned period T and response time
distribution. The LQG cost is computed using the same
LQG parameters.

The evaluation examined systems of n ∈ {3, 5} control
tasks. The nominal task utilization Unom

i were generated
using an n-dimensional uniform distribution with total
utilization 1. The execution time was given by Ci ∈
U(0.04, 0.4)/n. The task priorities were assigned based on
the periods returned by Seto et al. (1996).

In the optimization procedure, the cost values and the
LQG controllers were calculated using the Jitterbug tool-
box. However, Jitterbug can only design LQG controllers
when the delay variation is less than the period. Therefore
the obtained delay distributions were truncated from be-
low if the delay variation was larger than the period. The
truncation was performed in such way that the average
delay remained the same before and after the truncation.
The upper limit was set to worst-case response time (Rwc

i),
and the lower limit was set to Rwc

i − Ti.

In general, the stability of the plants under control decides
the sensitivity towards delay and jitter. Therefore, it can
be expected that the cost obtained for Family I has the
smallest value, while the cost for Family III has the highest
value. This is also shown by the evaluation.

5.2 Evaluation results

The RiApprox method was used to compute the initial
periods. The different period assignment methods were

n = 3 n = 5

RiApprox 4.0519 5.3972
Initial 4.0110 5.3415

Sequential search 3.8557 5.2496
DIRECT optimization 3.8552 5.2300

Table 1. Evaluation of the cost: Family I

n = 3 n = 5

RiApprox 19.5711(1) 7.3223(3)
Initial 5.2573 7.0249

Sequential search 4.9206 6.6345
DIRECT optimization 4.9206 6.6310

Table 2. Evaluation of the cost: Family II

n = 3 n = 5

RiApprox 15.0433(1) 24.7611(3)
Initial 14.3951 23.2661

Sequential search 12.3179 20.0072
DIRECT optimization 12.3179 19.8083

Table 3. Evaluation of the cost: Family III

evaluated by Monte Carlo simulation, where the plants (in-
cluding the disturbances), the controllers, and the sched-
uler were simulated in parallel using TrueTime. From each
family of plants, 10 random plants were generated. After
the period assignment the plants and controllers were
simulated for 1000 s, and total cost, J , was recorded.

The utilization requirement U ≤ 1 should be always
fulfilled. In sequential search algorithm, when the step
has been changed, the utilization is checked to avoid the
situation that the utilization is larger than 1. In DIRECT
optimization algorithm, if the utilization is more than
1, the cost is set to a very large number to enforce the
optimization result away from this situation.

The evaluation results are based on n ∈ {3, 5} plants and
controllers. In each family, the cost values are compared
for four period assignment methods:

• RiApprox by Bini and Cervin (2008), in which the
LQG controllers are designed for a constant delay
and the task periods are obtained from a linear
approximation of the cost function;
• Initial, in which the task periods obtained from RiAp-
prox are used but the LQG controllers are redesigned
based on the response time distributions;
• Sequential Search is the local search algorithm de-
scribed in Algorithm 1, initialized with the periods
computed in the previous method; and
• DIRECT optimization that is the global optimization
approach proposed by Jones et al. (1993) and avail-
able in Matlab.

The total costs for the three plant families are shown in
Tables 1, 2, and 3.

For Family III the RiApprox method sometimes gives rise
to unstable control loops, i.e., infinite cost. Therefore, the
total cost is divided by the number of plants for which the
cost is finite. In parentheses, the number of times (out of
10) that RiApprox gives an infinite cost is shown.

The evaluation shows that the response time driven period
assignment methods gives better LQG performance than
the RiApprox method in all cases. The difference is larger

Sequential search DIRECT method

Family I
n = 3 8.2912 114.2827
n = 5 18.4958 198.2194

Family II
n = 3 3.4655 123.5941
n = 5 11.9846 215.4092

Family IIII
n = 3 5.0514 128.8757
n = 5 14.4181 266.7887

Table 4. Run-time of the methods.

when the task set is large or when the plants are unstable.
The sequential search-based method gives results that in
all cases are very close to the results obtained by the global
DIRECT method.

However, the sequential search-based method requires
much fewer computations than the DIRECT method. In
order to evaluate this, for each plant family, n plants were
randomly generated and n corresponding controllers were
designed. The computation times of Sequential search and
DIRECT optimization were compared using the tic and
toc method in Matlab. The computation times are shown
in Table 4 As can be seen difference is approximatively a
factor of 2.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we have introduced response time driven
design of LQG controllers. The major contribution of
the paper is the proposed period assignment method
based on the task response time distribution and the
sequential search-based algorithm. Through a simulation-
based evaluation it was shown that the method may lead
to very good results. The control performance, as measued
by the LQG cost, was improved compared to previous
approaches and the local search-based heuristic algorithm
gave results that were very close to the global optimum,
with 50% less computation effort compared to the global
optimization method.

In future work, the task priority assignment will be in-
tegrated with the period assignment. Also, the Earliest-
Deadline-First (EDF) scheduling case, which is really rel-
evant for safety-related control systems, will be investi-
gated.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the suggestion to
adopt the Wesserstein’s distance to compare the distribu-
tion of two random variables, by Giacomo Como.

REFERENCES

Amir Aminifar, Soheil Samii, Petru Eles, Zebo Peng, and
Anton Cervin. Designing high-quality embedded control
systems with guaranteed stability. In Proceedings of the
33rd IEEE Real-Time Systems Symposium, pages 283–
292, San Juan, Puerto Rico, 2012.

Karl Johan Åström and Björn Wittenmark. Computer-
Controlled Systems. Theory and Design. Prentice Hall,
third edition, 1997.

Enrico Bini and Anton Cervin. Delay-aware period as-
signment in control systems. In Proceedings of the 29th

IEEE Real-Time Systems Symposium, pages 291–300,
Barcelona, Spain, December 2008.

Enrico Bini and Marco Di Natale. Optimal task rate
selection in fixed priority systems. In Proceedings of the
26th IEEE Real-Time Systems Symposium, pages 399–
409, Miami (FL), U.S.A., December 2005.

Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker,
and Karl-Erik Årzén. How does control timing affect
performance? IEEE Control Systems Magazine, 23(3):
16–30, June 2003.

Dan Henriksson and Anton Cervin. Optimal on-line
sampling period assignment for real-time control tasks
based on plant state information. In Proceedings of
the 44th IEEE Conference on Decision and Control and
European Control Conference, Seville, Spain, December
2005.

Donald R. Jones, Cary D. Perttunen, and Bruce E. Stuck-
man. Lipschitzian optimization without the lipschitz
constant. Journal of Optimization Theory and Applica-
tions, 79(1):157–181, 1993.

Byung Kook Kim. Task scheduling with feedback latency
for real-time control systems. In Proceedings of the 5th

International Workshop on Real-Time Computing Sys-
tems and Applications, pages 37–41, Hiroshima, Japan,
October 1998.

John P. Lehoczky. Fixed priority scheduling of periodic
task sets with arbitrary deadline. In Proceedings of the
11th IEEE Real-Time Systems Symposium, pages 201–
209, Lake Buena Vista (FL), U.S.A., December 1990.

Bo Lincoln and Bo Bernhardsson. Optimal control over
networks with long random delays. In Proceedings of
the International Symposium on Mathematical Theory
of Networks and Systems, January 2000.

Bo Lincoln and Anton Cervin. Jitterbug: A tool for
analysis of real-time control performance. In Proceedings
of the 41st IEEE Conference on Decision and Control,
Las Vegas, NV U.S.A., December 2002.

Chung Laung Liu and James W. Layland. Scheduling
algorithms for multiprogramming in a hard real-time
environment. Journal of the Association for Computing
Machinery, 20(1):46–61, January 1973.

Pau Mart́ı, Caixue Lin, Scott A. Brandt, Manuel Velasco,
and Josep M. Fuertes. Optimal state feedback based re-
source allocation for resource-constrained control tasks.
In Proceedings of the 25th IEEE Real-Time Systems
Symposium, pages 161–172, Lisbon, Portugal, December
2004.

Johan Nilsson, Bo Bernhardsson, and Björb Wittenmark.
Stochastic analysis and control of real-time systems with
random time delays. Automatica, 34(1):57–64, January
1998.

Soheil Samii, Anton Cervin, Petru Eles, and Zebo Peng.
Integrated scheduling and synthesis of control applica-
tions on distributed embedded systems. In Proc. Design,
Automation & Test in Europe (DATE), April 2009.

Danbing Seto, John P. Lehoczky, Lui Sha, and Kang G.
Shin. On task schedulability in real-time control sys-
tems. In Proceedings of the 17th IEEE Real-Time Sys-
tems Symposium, pages 13–21, Washington, DC, USA,
December 1996.

S. S. Vallender. Calculation of the Wasserstein distance
between probability distributions on the line. Theory of
Probability & Its Applications, 18(4):784–786, 1974.

