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1 Introduction 

The motivation for this report is the following. It has been noted that for distribution ca-
bles, the loss angle for the zero sequence impedance increase with length. The zero se-
quence resistance is important for the earth fault protection in Petersén earthed system. A 
key issue is to explain the physics behind this effect. In simulations it has been noted that 
the resistive losses increase. Can this be explained by analysis, or is it simply caused by 
limitations in the simulation models? 

2 Transmission line theory 

Suitable references for transmission line theory are [1] and [2].  

Assume that the line, or cable, has constant parameters with notations, c is capacitance in 
F/km, l is inductance in H/km and r is resistance in ohm/km. Constant parameters means 
that we ignore frequency dependence in resistance and inductance. Skinn-effect cause the 
resistance to change with frequency. The return path of the zero sequence current is influ-
enced by frequency, so that zeros sequence resistance and inductance are influenced. At 
higher frequencies the zero sequence return current goes closer to ground surface that 
significantly increase resistance but slightly decrease zero sequence inductance.  

If needed, it is straightforward to include frequency dependent r and l in the analysis. 

Another aspect that might be needed fro higher frequencies, say over 100 kHz, is to in-
clude the damping effect of the cables semi-conducting layers that is located between 
conductor and insulation. Publication [3] shows that these layers significantly influence 
the damping of higher frequencies. 

2.1 Wave equations 

Consider a general model of a transmission line, were the physical component could be 
either an over-head line, or a cable with the following parameters for series impedance 
and shunt admittance. The parameters can be for either positive sequence, or zero se-
quence.   

ljrz ω+=  

cjy ω=  

Two equations describe voltage, )(xU ,  and current )(xI  at a given position x along the 
line 

)()( xIz
dx

xdU
=  

)()( xUy
dx

xdI
=  

2.1.1 Wave propagation constant 

Introduce the following definitions.  The wave propagation constant is 

yz=γ  
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2.1.2 Characteristic impedance 

The characteristic impedance is 

y
zZC =  

2.1.3 Wave velocity 

The wave velocity is 

cl
v 1
=  

2.1.4 Wave length 

The wave length for a specific frequency f  is  

f
vvT ==λ  

2.2 ABCD parameters of distributed line 

The relation between voltage and current at the sending end, index s, and the receiving 
end, index r, is 
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with 

unitper       )cosh( dDA γ==  

ohm     )sinh( dZB C γ=  
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C

γ=  

where d is the distance between sending and receiving end. 

2.3 Line with load at receiving end 

Consider the case with a load impedance  RZ  connected at the receiving end. Using the 
ABCD-parameters  
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and that RRR IZU =  gives 
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We are interested of the impedance seen from the sending end, thus 
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Open line end means that ∞→RZ , then  
C
AZS →open .  

Short circuited line end means that 0=RZ , then  
D
BZS =ksl .  

2.4 Minimal impedance magnitude for line with receiving end open 

For a line with open remote end,   

)exp()exp(
)exp()exp(

)sinh(
)cosh(

dd
ddZ

d
dZZ CCS γγ

γγ
γ
γ

−−
−+

==  

with 

y
zZC =  

The task is to find the distance d that minimize SZ . 

Since CZ  is independent of the length d, it is equivalent to study the impedance 

)exp()exp(
)exp()exp(

1 dd
ddZ

γγ
γγ
−−
−+

=  

The wave propagator yz=γ  is rewritten as a complex number as jba +=γ , then 

[ ] [ ]
[ ] [ ])exp()exp()sin()exp()exp()cos(

)exp()exp()sin()exp()exp()cos(
1 dadabdjdadabd

dadabdjdadabdZ
−++−−
−−+−+

=  

We rewrite in hyperbolic functions  

)cosh()sin()sinh()cos(
)sinh()sin()cosh()cos(

1 adbdjadbd
adbdjadbdZ

+
+

=  

Use the notation M for the square magnitude, that is 
2

1ZM = gives 

)(cos2)2cosh(1
)(sin2)2cosh(1

2

2

bdad
bdadM

−+
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=  

The task is to find the distance d that gives the minimal value of 1Z  is equivalent to find 
the d that gives the minimal value of M. Rewrite 

)(sin21)2cosh(
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Calculating the derivative with respect to the distance d gives 
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Simplifying 

[ ] )2cosh()cos()sin(8)(sin21)2sinh(4 2 adbdbdbbdadafggf −+−=′−′  

⇒= 03

dd
Zd

 

Direct calculation leads to 

0)2sin()2cosh()2cos()2sinh( =+ bddabbddaa  

Rewrite as 

0)2sin( =+θbdA  

with 
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To find the solution we need to solve πθ =+bd2 , that is, solve the equation  
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At this moment, it is an open question how to solve this equation analytically. A practical 
approach is to use a simple numerical iteration schemes. One iteration scheme to find the 
distance d that gives minimal SZ  is: 

 
2

 1 b
d π
=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅= )2tanh(arctan ad

b
a

kθ  



       6 
 

 

b
d k

k 21
θπ −

=+  

Example  
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The iteration scheme converges quickly. A plot confirms that the distance 109.6 km gives 
minimal SZ .  

2.5 Minimal impedance for lossless line 

To check that the result above is reasonable, we assume a lossless line, that is 0=a , 
then 

0 )2sin(03 =⇔= bd
dd
Zd

 

We exclude the trivial case when d=0, then  

...3,2,1for     2 == nnbd π  

So  
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The constant b is the imaginary part of the wave propagator, without losses  

lcyzb ωλ === )Im()Im(  

This gives 
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    1
lc

v =  

For our line we have 

      F/km  100.3317 -6
0 ⋅=c  

      H/km  103.5 -3
0 ⋅=l  

This gives 

    km/s 1035.29 3⋅≈v  

We calculate d for Hz 50 0 =f  and n=1, thus 

    km 147
504

1035.29 
3

1 ≈
⋅
⋅

=d  

3... 2, 1,kfor     km 147 =⋅≈ kdk  
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