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Abstract

Modes of propagation of electromagnetic pulses in closed, cylindric wave-
guides with bi-isotropic fillings are analyzed systematically using complex,
time-varying electromagnetic fields. The emphasis is on the circular bi-isotro-
pic waveguide and the bi-isotropic parallel-plate waveguide. For both geome-
tries, seven Volterra integral equations of the second kind, which are to be
solved simultaneously for each specific mode, are derived.

1 Introduction

Time-harmonic wave propagation in chirowaveguides attracted considerable atten-
tion during the 1990’s. The basic theory of the closed, cylindric chirowaveguide,
which consists of a single, hollow, perfect conductor with chiral filling, was presented
by Pelet and Engheta [15]. The important case with circular cross section was an-
alyzed in detail in [6], and a numerical solution technique using the finite element
method (FEM) was discussed in [21]. One reason for studying wave propagation in
this kind of device is that a waveguide is a better environment for measurements
than a free-space arrangement, and that the analysis could be of use for the so called
inverse problem of determining the material parameters of a chiral slab [16]. Results
of such inverse experiments were reported in [2]. The closed bi-isotropic waveguide is
a more general type of waveguide, consisting of one single, hollow, perfect conductor
with bi-isotropic filling. A theory of time-harmonic wave propagation in closed and
open bi-isotropic waveguides based on the wave-field concept is presented in Lindell
et al. [14]. Basically, the wave fields are the same fields as those used in [15].

Pulse propagation in bi-isotropic waveguides, however, seems not to have been
discussed. Such problems are complicated by material, anomalous, temporal disper-
sion in addition to dispersion caused by the presence of the waveguide [5, 12, 13, 17–
19]. Pulse propagation in empty closed waveguides has been discussed by Kristens-
son using time-domain wave splitting [11], and Bernekorn et al. generalized the
theory to waveguides with stratified, isotropic fillings using similar techniques [1].
In this article, the theory of pulse propagation in closed bi-isotropic waveguides is
developed systematically using complex, time-dependent field vectors, see, e.g., [3–
5, 14, 20]. It is conjectured that the results can be used to solve inverse problems
for bi-isotropic slabs using electromagnetic pulses, c.f. [2, 16]. By specialization,
the technique in [1] for the homogeneous medium is improved. The complex fields
correspond to the wave fields that have been used with success in the analysis of
monochromatic wave propagation phenomena in linear bi-isotropic materials [14].

1.1 Notation

The radius vector is denoted by r, the time by t, the electric and magnetic field
vectors at (r, t) by E(r, t) and H(r, t), respectively, and the corresponding flux
densities by D(r, t) and B(r, t). Each field vector is written in the form E(r, t) =
exEx(r, t)+eyEy(r, t)+ezEz(r, t), where ex, ey, and ez are the basis vectors in the
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Cartesian frame. The dynamics of the fields is modeled by the macroscopic Maxwell
equations: ∇× E(r, t) = −∂tB(r, t) and ∇× H(r, t) = J(r, t) + ∂tD(r, t), where
J(r, t) is the current density at (r, t). For brevity, the independent variables (r, t)
are often suppressed.

1.2 Constitutive relations

The constitutive relations of a linear, homogeneous, bi-isotropic material are given
by c0η0D = εE + ξη0H and c0B = ζE +µη0H , where the relative permittivity and
permeability operators are ε = 1 + χee(t)∗ and µ = 1 + χmm(t)∗, the relative cross-
coupling operators are ξ = χem(t)∗ and ζ = χme(t)∗, and the asterisk (∗) denotes
temporal convolution: [ζE] (r, t) = (χme∗E)(r, t) =

∫ t

−∞ χme(t−t′)E(r, t′) dt′. This
is one of several proper ways to model the temporal dispersion of the bi-isotropic
medium in the absence of a material optical response [8]. The constants c0 and η0

are the speed of light in vacuum and the intrinsic impedance of vacuum, respectively.
The integral kernels χee(t), χem(t), χme(t), and χmm(t) are the susceptibility kernels
of the medium. Due to causality, the susceptibility kernels are identically zero for
t < 0. For t > 0, they are assumed to be twice continuously differentiable. Pasteur
media satisfy χme(t) = −χem(t) and Tellegen materials χme(t) = χem(t). In the
short-wave limit, the constitutive relations reduce to the ones in vacuum provided
that the susceptibility kernels are absolutely integrable. This is deduced from the
Riemann-Lebesgue lemma. Furthermore, the continuity condition

χee(+0) = χem(+0) = χmm(+0) = χme(+0) = 0. (1.1)

is imposed on the isotropic chiral filling. This continuity condition implies that
wave fronts propagate through the medium without attenuation or rotation. The
condition χee(+0) �= 0 is referred to as “unphysical” in a major textbook on classical
electrodynamics [7]. The most often used model for bi-isotropic materials, Condon’s
(dispersion) model, satisfies χee(+0) = 0 but, unfortunately, χem(+0) �= 0 [5].

2 The complex electromagnetic fields

Substituting the constitutive relations into the Maxwell equations gives a linear sys-
tem of first-order hyperbolic integro-differential equations in the electric and mag-
netic field vectors only:{

∇× E = −c−1
0 ∂t (ζE + µη0H) ,

∇× η0H = η0J + c−1
0 ∂t (εE + ξη0H) .

This system of equations can be decoupled by a linear transformation defined by{
E = E+ + E−,

η0H = iY+E+ − iY−E−,
(2.1)
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where i is the imaginary unit and the relative admittances Y± = 1 + Y±(t)∗ are
complex-conjugated, temporal integral operators to be determined. The inverse of
transformation (2.1) is given by

E± = (Y+ + Y−)−1 (Y∓E ∓ iη0H) .

The complex fields E± satisfy the linear system of first-order hyperbolic integro-
differential equations

∇× E± = ∓ ic−1
0 ∂t (Y+ + Y−)−1 (∓iY∓ (ζE + µη0H) + εE + ξη0H)

∓ (Y+ + Y−)−1 iη0J

= ∓ ic−1
0 ∂t (Y+ + Y−)−1 (ε∓ iY∓ζ + (ξ ∓ iY∓µ)iY+) E+

∓ ic−1
0 ∂t (Y+ + Y−)−1 (ε∓ iY∓ζ − (ξ ∓ iY∓µ)iY−) E−

∓ (Y+ + Y−)−1 iη0J .

Thus, the conditions on the relative admittances for decoupling are

ε± iY±ζ ± (ξ ± iY±µ)iY± = 0, (2.2)

with solutions

µY± = ±i
ξ + ζ

2
+ N ,

where the real, temporal integral operator N is defined by1

N =

√
µε− (ξ + ζ)2

4
= 1 + N r(t) ∗ .

The real kernel N r(t) satisfies the Volterra integral equation of the second kind

2N r(t) + (N r ∗N r)(t) = χee(t) + χmm(t) + (χee ∗ χmm)(t) − (χ ∗ χ)(t),

where χ(t) = χem(t)/2 + χme(t)/2 is the nonreciprocity kernel. Volterra integral
equations of the second kind are uniquely solvable in the space of of continuous
functions in each compact time-interval and the solutions depend continuously on
data [10]. Consequently, the kernel N r(t) inherits causality and smoothness prop-
erties from the susceptibility kernels. The admittance kernels can be written as
Y±(t) = Y r(t) ± iY i(t), where the components Y r(t) and Y i(t) are real functions.
The admittance kernels satisfy the Volterra integral equation of the second kind

Y±(t) + (Y± ∗ χmm)(t) = N r(t) − χmm(t) ± iχ(t).

In particular, the admittance kernels inherit causality and smoothness properties
from the susceptibility kernels. Unique solubility gives that the admittance kernels
of the bi-isotropic medium are real iff the medium is Pasteur, that is, χ(t) = 0.

1The positive square-root-operator has been chosen. This choice is not of importance, since
choosing the negative square-root-operator only implies that the complex fields E± change roles.



4

As a consequence of (2.2), (Y+ + Y−)−1 (ε∓ iY∓ζ ± (ξ ∓ iY∓µ)iY±) = µY∓±iξ.
Thus, the complex fields satisfy the first-order, dispersive vector wave equations

∇× E± = ∓ic−1
0 ∂tN±E± ∓ iN−1µη0J/2, (2.3)

where the refractive indices N± = 1 + N±(t)∗ are complex-conjugated, temporal
integral operators defined by

N± = ±i
ξ − ζ

2
+ N .

In terms of the kernel N r(t) and the chirality kernel κ(t) = χem(t)/2 − χme(t)/2,
the complex refractive kernels are N±(t) = N r(t) ± iN i(t) = N r(t) ± iκ(t). The
refractive kernels are real iff the medium is Tellegen, that is, κ(t) = 0.

Equations (2.3) show that the complex fields E± are independent. Having ob-
tained these fields, the electric and magnetic fields are obtained from (2.1). It can
happen that these linear combinations are found to be complex. The real parts of
the complex electric and magnetic fields are then solutions to the Maxwell equations:{

E = Re (E+ + E−),

η0H = Re (iY+E+ − iY−E−).
(2.4)

Without this simple but important observation, the number of possible solutions in,
e.g., waveguide problems is severely confined.

Notice that the continuity condition (1.1) implies that

N±(+0) = Y±(+0) = 0. (2.5)

3 Pulse propagation in bi-isotropic waveguides

Consider a straight, cylindric waveguide extended in the z-direction. The interior
of the guide is denoted by V and the boundary of the guide by S. The cross-section
of the waveguide is denoted by Ω and the boundary of the cross-section by ∂Ω. The
reference direction of the normal vector field n = n(r⊥) along ∂Ω is outward with
respect to the bi-isotropic filling. The tangential vector field τ = τ (r⊥) along ∂Ω is
defined by τ = n × ez. The binormal vector field along ∂Ω is thus ez.

3.1 Decomposition into transverse and longitudinal fields

The complex fields are decomposed uniquely in transverse and longitudinal fields
as is standard in waveguide theory: E± = E±,⊥ + ezE±,z. Similarly, the nabla
operator is written ∇ = ∇⊥ + ez∂z and the Laplacian ∆ = ∆⊥ + ∂2

z . In the absence
of sources, the first-order vector wave equations (2.3) for the complex fields are

∇× E± = ∓iK±E±, (3.1)
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where K± := c−1
0 ∂tN±. Alternatively,

∂zE±,⊥ = ∇⊥E±,z ± iK± ez × E±,⊥, (3.2)

where E±,z = ∓iK−1
± ∇⊥ · ez × E±,⊥. Taking the curl of both members of (3.1)

under consideration of ∇ ·E± = 0 gives second-order vector wave equations for the
complex fields: −∆E± = −K2

±E±. In particular, for the longitudinal component,

−∆E±,z = −K2
±E±,z. (3.3)

3.2 Modes of propagation

An up-going mode of propagation can be written formally as

E± (r⊥, z, t) = exp
(
−zc−1

0 ∂tNz

)
e± (r⊥, t) , (3.4)

where the complex, temporal integral operator Nz = 1+Nz(t)∗ is referred to as the
longitudinal index of refraction of the mode and the kernel Nz is causal. Observe
that wave fronts travel along the axis of the guide with the speed of light in vacuum.

Equation (3.2) now reads (−KzI⊥⊥ ∓ iK±ez × I⊥⊥) · e±,⊥ = ∇⊥e±,z, where
Kz := c−1

0 ∂tNz, and multiplying both members by (−KzI⊥⊥ ± iK±ez × I⊥⊥) gives

e±,⊥ =
(
K2

z −K2
)−1

(−KzI⊥⊥ ± iK±ez × I⊥⊥) · ∇⊥e±,z. (3.5)

Here e± = e±,⊥ + eze±,z and I⊥⊥ = exex + eyey. Equation (3.3) becomes

−∆⊥e±,z =
(
K2

z −K2
±
)
e±,z. (3.6)

3.3 Propagators

The integral kernel Nz(t) is supposed to inherit causality and regularity from the
susceptibility kernels; in particular

Nz(+0) = 0. (3.7)

Consequently, the propagator exp (−zKz) = exp
(
−zc−1

0 ∂tNz

)
can be factored as

δ
(
t− zc−1

0

)
∗ exp

(
−zc−1

0 N ′
z(t)∗

)
= δ

(
t− zc−1

0

)
∗ (1 + P (z, t)∗) ,

where the propagator kernel P (z, t) satisfies the temporal Volterra integral equation

tP (z, t) = −tzc−1
0 N ′

z(t) −
(
tzc−1

0 N ′
z ∗ P

)
(z, t) (3.8)

in terms of the refractive kernel N ′
z(t). Propagators are well-known from one-

dimensional propagation and scattering problems, see, e.g., [9], where the integral
equation (3.8) is solved for fixed Nz(t). A more general discussion of functions of
integral operators as exp (−zKz) can be found in the appendix.
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3.4 Boundary conditions

At the boundary of the waveguide, n × E = 0, i.e., n × E+ + n × E− = 0, r ∈ S.
For a specific mode, the boundary conditions become (τ = n × ez)


0 = e+,z + e−,z,

0 = (K2
z −K2

+)−1(−Kz∂τe+,z − iK+∂ne+,z)

+ (K2
z −K2

−)−1(−Kz∂τe−,z + iK−∂ne−,z)

(r⊥ ∈ ∂Ω), (3.9)

where the tangential and normal derivatives at the boundary are defined by ∂τe±,z =
τ · ∇⊥e±,z and ∂ne±,z = n · ∇⊥e±,z = −τ · ez × ∇⊥e±,z, respectively. The second
condition unables time to be separated from the spatial variables.

3.5 Fundamental problem

The fundamental problem for the bi-isotropic waveguide is to determine the set of
refractive indices such that equations (3.6) for the longitudinal fields subject to the
boundary conditions (3.9) are solvable. The transverse fields are obtained from (3.5),
and, finally, the complete time-domain propagation mode follows from (2.4) and
(3.4):{

E (r⊥, z, t) = Re (exp (−zKz)(e+ (r⊥, t) + e− (r⊥, t))),

η0H (r⊥, z, t) = Re (exp (−zKz)(iY+e+ (r⊥, t) − iY−e− (r⊥, t))).
(3.10)

Observe that the longitudinal refractive indices appear in complex-conjugated pairs.
It is not possible to develop the general theory of the closed bi-isotropic waveguide

further. For achiral waveguides (isotropic or Tellegen fillings), however, time can be
separated from the spatial variables. This section is finished by presenting this the-
ory. In sections 4 and 5, two special bi-isotropic waveguide geometries are analyzed.

3.5.1 Achiral guide

In the achiral guide, (3.6) becomes −∆⊥e±,z = (K2
z −K2) e±,z, where K = K+ = K−.

Since the boundary condition e+,z + e−,z = 0 implies that ∂τ (e+,z + e−,z) = 0,
the second boundary condition (3.9) transforms into ∂n(e+,z − e−,z) = 0, and the
fundamental problem separates into a Dirichlet type of problem for the sum of e+,z

and e−,z and a Neumann type of problem for the difference between e+,z and e−,z.
The two types of solutions are independent:

1. e+,z(r⊥, t) = e−,z(r⊥, t) = v(r⊥)f(t)/2, where the complex function f(t) is
arbitrary and the real function v(r⊥) satisfies the Dirichlet problem{

−∆⊥v(r⊥) = λ2v(r⊥) (r⊥ ∈ Ω) ,

v(r⊥) = 0 (r⊥ ∈ ∂Ω) .
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The longitudinal fields are{
Ez (r⊥, z, t) = exp (−zKz)v(r⊥) Re f(t),

η0Hz (r⊥, z, t) = exp (−zKz)v(r⊥) Re (i(Y+ − Y−)f(t))/2.

These solutions reduce to TM solutions in the isotropic case, Y+ = Y−.

2. e+,z(r⊥, t) = −e−,z(r⊥, t) = w(r⊥)g(t)/2, where the complex function g(t) is
arbitrary and the real function w(r⊥) satisfies the Neumann problem{

−∆⊥w(r⊥) = λ2w(r⊥) (r⊥ ∈ Ω) ,

∂nw(r⊥) = 0 (r⊥ ∈ ∂Ω) .

The longitudinal fields are the TE solutions{
Ez (r⊥, z, t) = 0,

η0Hz (r⊥, z, t) = exp (−zKz)w(r⊥) Re (i(Y+ + Y−)g(t))/2.

In both cases, K2
z − K2 = λ2 = λ2δ(t)∗, so that the longitudinal refractive kernel

associated with λ is obtained by solving the Volterra equation of the second kind

2Nz(t) + (Nz ∗Nz)(t) − 2N(t) − (N ∗N)(t) = c2
0λ

2tH(t). (3.11)

Equation (3.11) constitutes an improvement of the solution technique in [1].

3.5.2 The empty waveguide

In the empty waveguide, the kernel N in (3.11) is zero, and the longitudinal index of
refraction can be computed exactly using the method of successive approximations.
Setting N⊥(t) = c0λH(t) yields

Nz(t) =
∞∑

k=1

(
1
2

k

) {
(N⊥∗)2k−1N⊥

}
(t) = H(t)

∞∑
k=1

(
1
2

k

)
(c0λ)2k

(2k − 1)!
t2k−1 =

= H(t)

∫ t

0

{ ∞∑
k=1

(−1)k−1

(2k)!!

(c0λ)2k

(2k − 2)!!
t2k−2

}
dt = H(t)

∫ t

0

c0λ

t
J1(c0λt) dt,

where a Bessel function expansion (A.4) has been used. This result was derived
in [11] using a different technique. Notice that the result is in accord with (3.7).

4 Circular bi-isotropic waveguide

The polar coordinates are denoted by ρ, φ, i.e., x = ρ cosφ and y = ρ sinφ. For a
waveguide of circular cross-section of radius a, Ω = {(x, y) : ρ < a}, set

e±,z (r⊥, t) = Jn

(
ρ
√
K2

z −K2
±

)
exp (−inφ)f±(t) (ρ < a), (4.1)
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where Jn is a Bessel function of the first kind and integer order n and f± = f±(t) are
complex functions. The functions of integral operators present in (4.1) and in (4.2)
below are defined in the appendix and in Section 4.1.

Since ∂τ = −a−1∂φ and ∂n = ∂ρ, the boundary conditions give the system of
integral equations(

Jn

(
a
√
K2

z −K2
+

)
Jn

(
a
√

K2
z −K2

−

)
A+ A−

)(
f+

f−

)
=

(
0
0

)
,

where

A± = − (K2
z −K2

±)−1Kz(a
−1in)Jn

(
a
√
K2

z −K2
±

)

∓ iK±(K2
z −K2

±)−1/2J ′
n

(
a
√
K2

z −K2
±

)
.

The condition Jn

(
a
√
K2

z −K2
+

)
A− − Jn

(
a
√

K2
z −K2

−

)
A+ = 0 for non-trivial so-

lutions becomes

− n

a

(
(K2

z −K2
−)−1 − (K2

z −K2
+)−1

)
KzJn

(
a
√
K2

z −K2
−

)
Jn

(
a
√
K2

z −K2
+

)

+ K−(K2
z −K2

−)−1/2J ′
n

(
a
√
K2

z −K2
−

)
Jn

(
a
√
K2

z −K2
+

)

+ K+(K2
z −K2

+)−1/2J ′
n

(
a
√
K2

z −K2
+

)
Jn

(
a
√
K2

z −K2
−

)
= 0.

(4.2)

This dispersion equation is in concordance with the fixed frequency result (4.78) in
Lindell. Complex conjugation shows that Kz �= K∗

z unless n = 0 (or K+ = K−).

4.1 Analysis of the dispersion equation

Due to the continuity conditions (2.5) and (3.7), the square-root operators of interest
are of the form

a
√

K2
z −K2

± =
√

λz − λ± + U±(t)∗, (4.3)

where

λi = 2a2c−2
0 N ′

i(+0) (i = +,−, z), (4.4)

are dimensionless numbers and the kernels U± satisfy the equations

2
√

λz − λ±U±(t) + (U± ∗ U±) (t) = (λz − λ±) (Nz(t) + N±(t))/2

+
[
2(N ′′

z (t) −N ′′
±(t)) +

(
(N ′′

z −N ′′
±) ∗ (Nz + N±)

)
(t)

] (
ac−1

0

)2
.

(4.5)
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Since, by definition, Nz(t) = (H ∗N ′
z)(t), and, consequently,{

N ′
z(t) = N ′

z(+0)H(t) + (H ∗N ′′
z )(t),

Nz(t) = N ′
z(+0)tH(t) + ((tH) ∗N ′′

z )(t),
(4.6)

equations (4.5) are temporal Volterra integral equations of the second kind in the
unknown kernels U±(t) and N ′′

z (t) for a fixed value of λz = 2a2c−2
0 N ′

z(+0).
The Bessel functions operators are given by


Jn

(
ρ
√
K2

z −K2
±

)
= Jn

(
ρ/a

√
λz − λ±

)
+ V±,n(ρ, t)∗,

J ′
n

(
ρ
√
K2

z −K2
±

)
= J ′

n

(
ρ/a

√
λz − λ±

)
+ W±,n(ρ, t)∗

(4.7)

where the kernels V±,n(ρ, t) and W±,n(ρ, t) for fixed ρ satisfy the temporal Volterra
integral equations of the second kind

(ρ/a)2
(√

λz − λ± + U±(t)∗
)2

(tW±,n(ρ, t))

+ ρ/a
(√

λz − λ± + U±(t)∗
)

(tV±,n(ρ, t))

+

(
(ρ/a)2

(√
λz − λ± + U±(t)∗

)2

− n2

)
(
Jn

(
ρ/a

√
λz − λ±

)
+ V±,n(ρ, t)∗

) (
tρa−1U±(t)

)
= 0,

(4.8)

where

tV±,n(ρ, t) =
(
J ′

n

(
ρ/a

√
λz − λ±

)
+ W±,n(ρ, t)∗

) (
tρa−1U±(t)

)
(4.9)

in terms of the kernels U±(t).
If now the operators (4.3) and (4.7) (with ρ = a) are substituted into the disper-

sion equation (4.2), the thus obtained equation and equations (4.5), (4.8), and (4.9)
(with ρ = a) constitute a system of seven coupled Volterra integral equations of the
second kind in the seven kernels N ′′

z (t), U±(t), V±,n(a, t), and W±,n(a, t). Solving
these equations simultaneously determines the modes of propagation. Since Volterra
integral equations of the second kind are stable, good results can be anticipated.

4.2 Variety of modes

So far the variety of modes pf propagation has not been considered. Matching the
principal parts in the dispersion equation (4.2) gives the transcendental equation

− n
(
(λz − λ−)−1 − (λz − λ+)−1

)
Jn

(√
λz − λ−

)
Jn

(√
λz − λ+

)
+ (λz − λ−)−1/2J ′

n

(√
λz − λ−

)
Jn

(√
λz − λ+

)
+ (λz − λ+)−1/2J ′

n

(√
λz − λ+

)
Jn

(√
λz − λ−

)
= 0.

(4.10)
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Figure 1: The functions f(λz) in (4.11), J0(
√
λz), and J1(

√
λz) restricted to the

interval 1 < λz < 50 when λ± = 1± i/10. The four (visible) zeros of f(λz) are close
to the two (visible) zeros of J0(

√
λz) and the two (visible) zeros of J1(

√
λz).

The complex roots of this equation, λz, determine the modes. For n = 0, one gets

f(λz) := (λz − λ−)−1/2J1

(√
λz − λ−

)
J0

(√
λz − λ+

)
+ (λz − λ+)−1/2J1

(√
λz − λ+

)
J0

(√
λz − λ−

)
= 0

(4.11)

using the identity J ′
0(z) = −J1(z). For n > 0, one obtains

− (λz − λ−)−1/2Jn+1

(√
λz − λ−

)
Jn

(√
λz − λ+

)
+ (λz − λ+)−1/2Jn−1

(√
λz − λ+

)
Jn

(√
λz − λ−

)
= 0

using the identities J ′
n(z) = ∓Jn±1(z) ± nJn(z)/z.

If λ+ = λ− := λ, equation (4.10) simplifies to J ′
n

(√
λz − λ

)
Jn

(√
λz − λ

)
= 0

with solutions λz = λ + ξ2
nk and λz = λ + η2

nk, where ξnk and ηnk are the zeros of
Jn(x) and J ′

n(x), respectively. Consequently, there are infinitely many roots in this
(constructed) case. Since the imaginary parts of λ± can be anticipated to be small
compared to the real part, a similar behavior is expected in the case λ+ �= λ−. In
Figure 1, the function f(λz) in the left member of (4.11) is plotted in the interval
1 < λz < 50 when λ± = 1 ± i/10. Observe that f(λz) is real on the real axis.

4.3 Determination of a specific mode

Once a value of λz = 2a2c−2
0 N ′

z(+0) has been determined, one proceeds by solving a
system of Volterra interval equations of the second kind as described in Section 4.1.
This procedure gives the kernel N ′′

z (t). Since N ′
z(+0) is known, the kernel N ′

z(t) can
be obtained by straightforward integration, see (4.6). In this way, the longitudinal
refractive kernel Nz(t) characterizing the mode is obtained.
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In the procedure, the kernels U±(t) present in (4.3) have been obtained as well.
Using these kernels, the kernels V±,n(ρ, t) and W±,n(ρ, t) in (4.7) for any ρ < a can
be determined by solving the four Volterra interval equations of the second kind,
that (4.8) and (4.9) constitute, simultaneously. This gives the longitudinal fields
e±,z (r⊥, t) in (4.1), whereupon the transverse fields e±,⊥ (r⊥, t) can be calculated
using (3.5). Finally, the electric and magnetic fields associated with the mode can
be computed using (3.10).

4.4 Achiral limit

In the achiral limit, K+ = K−, one gets the expected solutions:

Jn

(
a
√
K2

z −K2
)

= 0 =⇒ a
√

K2
z −K2 = ξnkδ(t)∗ =⇒ f+ − f− = 0,

J ′
n

(
a
√
K2

z −K2
)

= 0 =⇒ a
√

K2
z −K2 = ηnkδ(t)∗ =⇒ f+ + f− = 0.

The upper condition gives TM pulses (see equation (3.10)),{
Ez (r⊥, z, t) = exp (−zKz)Jn (ρ/aξnk) 2 Re (exp (−inφ)f+(t)),

η0Hz (r⊥, z, t) = 0,
(ρ < a),

and the lower condition represents TE pulses,{
Ez (r⊥, z, t) = 0,

η0Hz (r⊥, z, t) = exp (−zKz)YJn (ρ/aηnk) 2 Re (i exp (−inφ)f+(t)),
(ρ < a).

5 Bi-isotropic parallel-plate waveguide

The cross-section of the parallel-plate waveguide is defined by Ω = {(x, y) : |y| <
d/2}. There are two kinds of solutions, namely odd (w.r.t. y) longitudinal fields
and even (w.r.t. y) longitudinal fields.

5.1 Odd longitudinal fields

For odd longitudinal fields, one has

e±,z (r⊥, t) = sin

(
y
√

K2
z −K2

±

)
f±(t) (|y| < d/2),

where f± = f±(t) are complex functions, d/2
√
K2

z −K2
± =

√
λz − λ± + U±(t)∗,

λi = d2c−2
0 N ′

i(+0)/2 for i = ± and i = z, and the kernels U±(t) satisfy (4.5) with a
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substituted for d/2. The sine and cosine operators are defined in the appendix:


sin

(
y
√

K2
z −K2

±

)
= sin

(
2y/d

√
λz − λ±

)
+ V±(y, t)∗,

cos

(
y
√

K2
z −K2

±

)
= cos

(
2y/d

√
λz − λ±

)
+ W±(y, t)∗,

where the kernels V±(y, t) and W±(y, t) for fixed y satisfy the temporal Volterra
integral equations of the second kind


tV±(y, t) = 2y/d cos

(
2y/d

√
λz − λ±

)
tU±(t) + 2y/dW±(y, t) ∗ (tU±(t)) ,

−tW±(y, t) = 2y/d sin
(
2y/d

√
λz − λ±

)
tU±(t) + 2y/dV±(y, t) ∗ (tU±(t)) .

The boundary conditions yield the system of integral equations(
sin

(
d/2

√
K2

z −K2
+

)
sin

(
d/2

√
K2

z −K2
−

)
A+ A−

)(
f+

f−

)
=

(
0
0

)
,

where A± = ∓iK±(K2
z−K2

±)−1/2 cos
(
d/2

√
K2

z −K2
±

)
. The condition for non-trivial

solutions becomes


sin

(
d/2

√
K2

z −K2
+

)
K−(K2

z −K2
−)−1/2 cos

(
d/2

√
K2

z −K2
−

)

+ sin

(
d/2

√
K2

z −K2
−

)
K+(K2

z −K2
+)−1/2 cos

(
d/2

√
K2

z −K2
+

)
= 0.

Modes are obtained using the same method as was sketched for the circular guide.
Seven Volterra integral equations of the second kind are to be solved simultaneously.

The principal part of the dispersion equation is

g(λz) := (λz − λ−)−1/2 cos
(√

λz − λ−

)
sin

(√
λz − λ+

)
+ (λz − λ+)−1/2 cos

(√
λz − λ+

)
sin

(√
λz − λ−

)
= 0

(5.1)

In Figure 2, the function g(λz) in the left member of (5.1) is plotted in the real
interval 1 < λz < 50 when λ± = 1 ± i/10.

In the achiral limit, K+ = K−, one gets the expected solutions:


sin
(
d/2

√
K2

z −K2
)

= 0 =⇒ d/2
√

K2
z −K2 = nπδ(t)∗ =⇒ f+ − f− = 0,

cos
(
d/2

√
K2

z −K2
)

= 0 =⇒ d/2
√
K2

z −K2 = (n + 1/2)πδ(t)∗ =⇒ f+ + f− = 0.

The upper condition gives the TM pulses (see equation (3.10)),

Ez (r⊥, z, t) = exp (∓zKz) sin (2πny/d)2 Re (f+(t)) (|y| < d/2),

and the lower condition represents the TE pulses,

η0Hz (r⊥, z, t) = exp (∓zKz)Y sin (2π(n + 1/2)y/d)2 Re (if+(t)) (|y| < d/2).
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Figure 2: The functions g(λz) in (5.1), sin(
√
λz), and cos(

√
λz).

5.2 Even longitudinal fields

For even longitudinal fields, one has

e±,z (r⊥, t) = cos

(
y
√
K2

z −K2
±

)
f±(t) (|y| < d/2),

which yields the dispersion equation


cos

(
d/2

√
K2

z −K2
+

)
K−(K2

z −K2
−)−1/2 sin

(
d/2

√
K2

z −K2
−

)

+ cos

(
d/2

√
K2

z −K2
−

)
K+(K2

z −K2
+)−1/2 sin

(
d/2

√
K2

z −K2
)

= 0

with principal part

h(λz) := (λz − λ−)−1/2 sin
(√

λz − λ−

)
cos

(√
λz − λ+

)
+ (λz − λ+)−1/2 sin

(√
λz − λ+

)
cos

(√
λz − λ−

)
= 0.

(5.2)

The dispersion equation is solved on the same way as in the previous section. Note
the similarity between (4.11) and (5.2). In Figure 3, the function h(λz) in the left
member of (5.2) is plotted in the real interval 1 < λz < 50 when λ± = 1 ± i/10.

Appendix A Functions of convolution operators

In this appendix some functions of causal convolution operators are defined and
convolution equations for these functions derived.

If c is complex constant and if C(t) is a complex function that vanishes for t < 0
and is bounded and continuous for t < 0, then C = c + C(t)∗ = (cδ(t) + C(t)) ∗ is
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Figure 3: The functions h(λz) in (5.2), sin(
√
λz), and cos(

√
λz).

said to be a causal convolution operator with the kernel cδ(t) + C(t). The operator
C is said to be of the first kind if c = 0; otherwise, it is of the second kind.

Recall the simple facts that convolution is commutative and that causal convo-
lution is associative. Among the causal convolution operators, there exists a causal
convolution operator of the second kind, referred to as the identity operator and
denoted by I = δ(t)∗, with the property that IC = C for each causal convolution
operator C of the first or of the second kind. To each causal convolution operator C
of the second kind, there is a causal convolution operator of the second kind, referred
to as the inverse of C and denoted by C−1, with the property that CC−1 = I. By
introducing F (z) = z−1, one has CF (C) = I and F (C) = F (c) + FC(t)∗, where

cFC(t) + F (c)C(t) + FC(t) ∗ C(t) = 0. (A.1)

The inverse of C can also be written explicitly as

C−1 = c−1

(
1 +

C(t)

c
∗
)−1

= c−1 + c−1

∞∑
n=1

(−1)n

(
C(t)

c
∗
)n

,

where the series converges uniformly in each bounded interval. The set of kernels
of causal convolution operators of the second kind and the convolution operation ∗
constitute an Abelian group, a fact that often, tacitly, will be used below. Unless
stated otherwise, C will denote a given second-kind causal convolution operator.
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A.1 Entire functions

Let F (z) be an entire function, let f(z) = F ′(z) be the derivative of F (z), and define

F (C) =

∞∑
n=0

FnCn,

f(C) = F ′(C) =
∞∑

n=0

nFnCn−1,

where the complex numbers Fn are the coefficients in the Taylor expansion of F (z):

F (z) =
∞∑

n=0

Fnz
n.

Then F (C) and f(C) are causal convolution operators of the form{
F (C) = F (c) + FC(t)∗ = (F (c)δ(t) + FC(t)) ∗,
f(C) = f(c) + fC(t)∗ = (f(c)δ(t) + fC(t)) ∗,

where the causal kernels FC(t) and fC(t) are related as

tFC(t) = f(c)tC(t) + fC(t) ∗ (tC(t)) . (A.2)

For use of tδ(t) = 0 and t(U(t) ∗ V (t)) = (tU(t)) ∗ V (t) + U(t) ∗ (tV (t)) gives

t

( ∞∑
n=0

FnCnδ(t)

)
=

∞∑
n=0

nFnCn−1 (t (Cδ(t))) ,

that is,

t (F (C)δ(t)) = F ′(C) (t (Cδ(t))) , (A.3)

which is equivalent to the wanted formula. Observe that C may be of the first kind.

A.2 Exponential, sine, and cosine functions

Equation (A.2) applies to the exponential function, F (z) = exp (z) = f(z):

tFC(t) = exp (c)tC(t) + FC(t) ∗ (tC(t)) .

Moreover, it applies to the sine and cosine functions. If F (z) = sin (z) and
G(z) = cos (z), then f(z) = G(z) and g(z) = −F (z), and equation (A.3) gives two
Volterra integral equations of the second kind to be solved simultaneously:{

tFC(t) = cos (c)tC(t) + GC(t) ∗ (tC(t)) ,

−tGC(t) = sin (c)tC(t) + FC(t) ∗ (tC(t)) .
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A.3 Bessel functions

Since the Bessel functions

Jn(z) =
(z

2

)n
∞∑

j=0

(−1)j 1

j!(n + j)!

(z

2

)2j

(A.4)

of the first kind and integer order are entire functions, (A.3) can be applied to their
first derivatives:

t (F ′(C)δ(t)) = F ′′(C) (t (Cδ(t))) . (A.5)

Combining (A.3) and (A.2) with the Bessel equation

z2J ′′
n(z) + zJ ′

n(z) +
(
z2 − n2

)
Jn(z) = 0

gives useful identities. Operating with C2j′n(C) + CJ ′
n(C) + (C2 − n2) Jn(C) = 0 on

the function t (Cδ(t)) = tC(t) — recall the notation jn(z) = J ′
n(z) — results in{

C2 (t (jn(C)δ(t))) + C (t (Jn(C)δ(t))) +
(
C2 − n2

)
Jn(C) (t (Cδ(t))) = 0,

t (Jn(C)δ(t)) = jn(C) (t (Cδ(t))) ,

which, since {
Jn(C) = Jn(c) + JnC(t)∗ = (Jn(c)δ(t) + JnC(t)) ∗,
jn(C) = jn(c) + jnC(t)∗ = (jn(c)δ(t) + jnC(t)) ∗

constitutes a system of convolution equations in the kernels JnC(t) and jnC(t):


(c + C(t)∗)2 (tjnC(t)) + (c + C(t)∗) (tJnC(t))

+
(
(c + C(t)∗)2 − n2

)
(Jn(c) + JnC(t)∗) (tC(t)) = 0,

tJnC(t) = (jn(c) + jnC(t)∗) (tC(t)) .
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