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Relations Between Control Signal

Properties and Robustness Measures

Per-Ola Larsson, Tore Hägglund

Department of Automatic Control
Lund University

Box 118, SE-211 00 Lund, Sweden
E-mail: {perola,tore}@control.lth.se

Abstract: In this paper we consider control signal properties, such as maximum magnitude and
activity, as well as system robustness measures. We derive an ideal controller and control signal
for exponential disturbance rejection for a first order process with time delay. For the resulting
closed-loop system, it is shown analytically that there are strong interconnections between
robustness measures and control signal properties regarding load disturbance attenuation. The
results imply that popular controller design methods implicitly take control signal properties
into consideration.

Keywords: controller constraints and structure, disturbance rejection, constrained control,
robust time-delay systems, robustness analysis.

1. INTRODUCTION

One of the main advantages of feedback is the ability to
counteract unmeasured load disturbances acting on the
process. The counteraction should normally be as fast as
possible under specified constraints on e.g., robustness,
control signal magnitude, and control signal activity. It
is natural that a fast return to set-point demands a rapid
controller response, and hence, the gain at high frequencies
is required to be large for this property. On the other
hand, as the control signal is actuated, there is an upper
limit on how rapid the response can be due to e.g.,
actuator dynamics as well as wear. Often, rapid control
signal changes are allowed as long as the amplitude is
small compared to full control signal range. Additionally,
the upper limit on high frequency gain is also affected
by, for instance, output measurement noise and process
variations. Thus, a certain robustness margin must be
taken into consideration. There are hence clear trade-offs
on how rapidly the controller should act, and how the
control signal can behave, at load disturbances in practice.

Popular design methods of e.g., PID controllers, include
minimizing the error at load disturbance, for instance in-
tegrated error (IE), with respect to controller parameters.
Robustness is included by constraining the maximum of
the sensitivity and complementary sensitivity function, see
e.g., Åström and Hägglund (2005). However, these design
methods do not explicitly take control signal properties
into account, as is done in for instance linear quadratic
control where a control signal weight is applied in the cost
function. The control signal properties are instead assumed
to be implicitly covered by the constrained robustness
measures.

In this note, we will derive the ideal control signal and con-
troller for exponential disturbance recovery for a first order
process with time delay. The in practice limited properties,
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Fig. 1. Closed-loop system with process P (s), controller
C(s), output Y (s), and load disturbance D(s).

maximum amplitude of the control signal and control
signal activity, will be deduced as functions of process
parameters and load disturbance response specifications.
It will be shown that they can be closely connected to
robustness measures, which indicates that the assumptions
in the control design methods are correct. Additionally, the
cost of fast load disturbance attenuation in terms of control
signal magnitude, activity, and robustness, is visualized.

2. PROBLEM FORMULATION

In process control, the most common process model is the
first order with time delay (FOTD), since it is easy to
estimate with e.g., step response methods using a small
amount of effort and time. Consider such a process,

P (s) =
K

sT + 1
e−sL = P0(s)e

−sL, (1)

where P0(s) is the the delay free part, L the time delay,
K the static gain, and T is the process time constant. The
process is in a feedback control loop with controller C(s),
and a load disturbance D(s) acts on the process input, see
Figure 1. It is assumed that the set-point is 0.
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Fig. 2. Load response of an FOTD process in feedback
divided into three parts.

Assume a load disturbance step D(s) = d0/s at time 0.
The load response of the feedback system can be divided
into three main parts as indicated in Figure 2,

(1) t ∈ [0, L). The process output is identically zero
because of the time delay in the process.

(2) t ∈ [L, 2L). The load step begins to affect the output,
which follows the first order response, i.e.,

y(t) = d0K
(

1 − e−
t−L

T

)

.

By this there is a control error and the controller
generates a counteractive control signal. Due to the
time delay L, the control signal will not affect the
output until t = 2L.

(3) t ∈ [2L,∞). The output tends to set-point value.
Note that the output does not have to decrease
monotonically due to constraints on the system.

The first two intervals can not be affected by a feedback
controller, while the third is a direct function of the control
input on the interval t ∈ [L,∞). Thus, theoretically, for a
FOTD process, the maximum deviation from set-point is
at t = 2L, as shown in Figure 2. For convenience later on,
we define

y0 = 1 − e−
L

T > 0, (2)

which gives y(2L) = d0Ky0.

With the control signal limitations discussed in Section 1,
we know that the decay towards set-point can not be
made arbitrarily fast. When tuning a control system, it
would be practical to see how maximum amplitude and
activity of control signal, as well as system robustness,
depend on how fast the load disturbance is attenuated.
This paper concerns the third part of the load response
and hence these relations. In particular, the case when
the response is chosen, by tractability, as an exponential
decay with specified time constant Td. In Shinskey (1994),
the concept of how the controller should act, in order to
get a fully attenuated disturbance after 3L seconds, was
studied. The return to set-point was given by a piecewise
constant control signal with zero magnitude except in the
interval t ∈ [L, 2L). In practice, this is not viable for
systems with short dead-time, since the control signal must
be within certain limits. Here, we will not use a piecewise
constant control signal. Instead, the control signal will be

derived as an explicit function of process parameters and
load disturbance specification. This will give the relations
searched for.

3. CONSTRUCTION OF IDEAL CONTROL SIGNAL

Without choosing controller structure, the load distur-
bance response is specified as

y(t) = d0Ky0e
−

t−2L

T
d , t ∈ [2L, ∞),

that is, exponentially decaying with time constant Td. The
constants d0Ky0 gives a continuous output, see Figure 2.
Denote by H(t) the Heaviside function

H(t) =

{
0 t < 0
1 t ≥ 0.

The specified output y(t) at a load disturbance can then
be expressed for all t as

y(t) = H(t − L)d0K
(

1 − e−
t−L

T

)

︸ ︷︷ ︸

I

− H(t − 2L)d0K
(

1 + e−
t−2L

T (y0 − 1)
)

︸ ︷︷ ︸

II

+ H(t − 2L)d0Ky0e
−

t−2L

T
d

︸ ︷︷ ︸

III

,

(3)

where y0 was defined in (2). The three parts of the
expression have the following interpretations,

I. Response of load disturbance without control action.
Note that this is the only part that is not 0 in the
interval t ∈ [L, 2L).

II. Undesired part of the load response is removed, i.e.,
for t ≥ 2L we have I − II = 0.

III. Desired part of the load response for t ≥ 2L, i.e.,
exponential decay with time constant Td.

Taking the Laplace transform of (3) yields

Y (s) =
d0K

s(sT + 1)
e−Ls − d0K

(
1

s(sT + 1)

+ y0

T

sT + 1
− y0

Td

sTd + 1

)

e−2Ls.

(4)

From the process dynamics in (1) we have

U(s) + D(s) =
sT + 1

K
esL Y (s).

Thus, the control signal has the Laplace transform

U(s) = −D(s) +
sT + 1

K
esL Y (s)

= −
d0

s
e−sL − d0y0Te−Ls + d0y0Td

sT + 1

sTd + 1
e−sL

= −
d0

s
e−sL − d0y0

T − Td

sTd + 1
e−Ls, (5)

which in time domain is equal to

u(t) = −H(t − L)d0

(

1 + y0

(
T

Td

− 1

)

e
−

t−L

T
d

)

. (6)

The control signal is hence an explicit function of T , L, d0,
and Td, and can be divided in two parts as suggested in the
last parenthesis. The first part is a direct removal of the
load disturbance while the second part adds control action
to give arbitrary time constant Td. Note that if Td ≥ T , the
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Fig. 3. Control signals for different values of Td and the
process P (s) = K/(s + 1) e−s.

control signal will not go further away from 0 than −d0,
while if Td < T the control signal will have an overshoot.
Examples of control signals with different T/Td–ratios are
found in Figure 3.

4. IDEAL CONTROLLER

From the specified output Y (s) and the control signal
U(s), one can derive a controller realization. Using the
expressions from (4) and (5) and the fact that C(s) =
−U(s)/Y (s) when set-point is 0, yields

C(s) =
(1 + sT ) (1 + s (Td + y0 (T − Td)))

K (1 + sTd − (1 + s (Td + y0 (T − Td))) e−sL)

=
(1 + sT )(1 + sT1)

K(1 + sTd − (1 + sT1) e−sL)
, (7)

where we have defined

T1 = Td + y0(T − Td). (8)

Note that the controller has integral action since as s → 0,
we have

C(s) ≈
1

sK (L + y0(Td − T ))
.

The resulting controller can be compared to known control
structure by rewriting (7) as

C(s) =
Q(s)P−1

0

1 − Q(s)P−1

0
P

, Q(s) =
sT1 + 1

sTd + 1
,

which is the common internal model controller (IMC), see
e.g., Morari and Zafiriou (1989) and references therein. For
the special case of Td = T , we have

C(s) =
sT + 1

K(1 − e−sL)
,

which is equal to the PDτ controller without derivative fil-
ter, see e.g., Shinskey (1994). Thus, the exponential decay
specification results in well known controllers, justifying
the undertaken approach.

5. CONTROL SIGNAL PROPERTIES

Control signal properties such as maximum magnitude
and activity can now be defined as functions of process
parameters and specified load attenuation.
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Fig. 4. Maximum magnitude umax of control signal as
function of normalized time delay τ .

5.1 Maximum Control Signal Magnitude

The maximum of the control signal magnitude is defined
as

umax = sup
t

|u(t)|,

and it can easily be verified from (6) that

umax

|d0|
=







1, Td ≥ T

1 + y0

(
T

Td

− 1

)

, Td < T.
(9)

For the case Td ≥ T , the maximum is achieved as t → ∞.

Introducing the normalized time delay

τ =
L

L + T
,

we can write

umax

|d0|
=







1, Td ≥ T
(

1 +
(
1 − e

τ

τ−1

)
(

T

Td

− 1

))

, Td < T.

In Figure 4, umax/|d0| is shown as a function of τ and
specified time constant Td. We see that a delay dominated
process (large τ) in general requires a larger control
signal. This is due to the fact that the second part of
the step response, illustrated in Figure 2, is longer and
hence, the output is able to go further away from set-
point prior control action response. The exponential decay
specification yields that the further away from set-point
y(t) is, the steeper will the return be, and thus the larger
will umax be. Figure 4 can hence be seen as a cost of fast
disturbance rejection in terms of maximum control signal
magnitude.

5.2 Control Signal Activity

Studying Figure 3 one can find that a reasonable definition
of control signal activity is the magnitude of the initial step
of u(t). Thus, by setting t = L in the modulus of (6), we
define

Activity = |u(L)| = |d0|

(

1 + y0

(
T

Td

− 1

))

.
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Fig. 5. Activity/|d0| as function of normalized time delay
τ for different values of Td/T .

Note that by this definition, we have Activity = umax for
Td < T . It is easy to understand that the activity will be
smallest as Td → ∞. This can also be seen from the state
space realization of the system. Assume that t = 2L and
d0 > 0, then

T ẏ(2L) = −y(2L) + Kd0 + Ku(L).

To stop y(t) going further away from set-point, we must
have

0 ≥ −Kd0(1 − e−
L

T ) + Kd0 + Ku(L),

which gives the lower bound for the Activity

Activity ≥ |d0|e
−

L

T = |d0|e
τ

τ−1 ,

that is independent of Td. The inequality also holds for
d0 < 0.

Using the normalized time delay, the activity can explicitly
be written as

Activity = |d0|

(

1 +
(
1 − e

τ

τ−1

)
(

T

Td

− 1

))

.

In Figure 5, which can be seen as an extension of Figure 4,
Activity and its lower bound are shown as functions of
the normalized time delay τ . As intuition implies, if we
require a response that is faster than the process time
constant, i.e., Td < T , we must have a control signal
activity that is larger than the magnitude of the load
disturbance entering. The analogous holds for Td ≥ T . An
interesting observation can be made for processes with no
time delay, τ = 0. Due to the specified exponential decay,
the controller will directly give a step of size d0 that has
opposite sign to the load and hence the activity will be
|d0| irrespective of Td.

The simplicity of exponential decay, i.e., that we demand
the output derivative to change sign instantly, gives an
initial step in the control signal for all parameter sets. That
is, the activity will always be greater than 0. Although,
this response specification gives a fair picture of parameter
relations for a non-ideal controller.

Analogous to umax, we can see Activity as a cost of fast
load disturbance attenuation in undesired rapid control
signal change.

6. ROBUSTNESS MEASURES

Two common measures used to show robustness of a closed
loop system are the maximum of the complementary sensi-
tivity and sensitivity function, T (s) and S(s), respectively,
defined as

MT = max
ω

|T (iω)|

MS = max
ω

|S(iω)|.

MT gives for instance an estimate of how large relative
error that can be accepted in the process model while
maintaining stability and MS shows e.g. the worst case
amplification of measurement noise.

The measures can be illustrated in a Nyquist diagram
as two circles with centers at −M2

T
/(M2

T
− 1) and −1,

respectively, and radii equal to

MT /(M2

T − 1), 1/MS, (10)

respectively. For the closed loop system to fulfill the
robustness margins, the Nyquist curve is not allowed inside
the circles.

For the controller in (7) we have that

P (s)C(s) =
1 + sT1

1 + sTd − (1 + sT1) e−sL
e−sL

and hence

T (s) =
1 + sT1

1 + sTd

e−sL

S(s) = 1 −
1 + sT1

1 + sTd

e−sL,

where T1 was defined in (8).

MT can now easily be obtained by the following,

M2

T = max
ω

|T (iω)|
2

= max
ω

(

1 + α
ω2T 2

d

1 + ω2T 2

d

)

, (11)

where

α =
y0 ((2 − y0)Td + y0T )

T 2

d
︸ ︷︷ ︸

>0

(T − Td).

Since T, Td > 0, α has the properties

α ≤ 0 if Td ≥ T

α > 0 if Td < T,

and the maximum value is hence determined by the last
term in (11) being 0 or 1 for ω = 0 and ∞, respectively.

To simplify, notice that

1 + α =

(

1 + y0

(
T

Td

− 1

))2

.

Thus, the following expression for MT is obtained

MT =







1, Td ≥ T

1 + y0

(
T

Td

− 1

)

, Td < T.
(12)

Figure 6 shows the relationship between MT and Td for
different values of τ . We see that for a lag dominant process
(small τ), the permissible relative process model error is
larger than for a delay dominant process (large τ). And
also, for faster disturbance rejection, we need a better
process model. Thus, Figure 6 yields a ballpark estimate
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Fig. 6. The trade-off between MT and Td for different
values of the normalized time delay τ for the process
P (s) = 1/(s+1) e−sL. Note that choosing T 6= 1 gives
slightly changed curves.

of the trade-off between process uncertainty and fast load
disturbance rejection when designing a controller.

The maximum of the sensitivity function, MS can partially
be given an explicit expression. By definition,

MS = max
ω

∣
∣
∣
∣
1 −

1 + iωT1

1 + iωTd

e−iωL

∣
∣
∣
∣
.

When Td < T ,

T1 = Td + y0(T − Td) > Td

and hence
1 + sT1

1 + sTd

is a lead filter. The maximum of the sensitivity function
will now be obtained when

1 + iωT1

1 + iωTd

e−iωL

is real valued and as small as possible. Using the fact that
e−iωL = −1 for ωL = π + 2πk, k ∈ Z, and that

lim
ω→∞

1 + iωT1

1 + iωTd

=
Td + y0(T − Td)

Td

,

we have

MS = 1 +
Td + y0(T − Td)

Td

= 1 + MT , Td < T. (13)

For Td ≥ T , no explicit solution for MS can be found,
although it is easy to show that

lim
Td→∞

MS = 1 + e−
L

T . (14)

The explicit expression in (13) together with numerical
estimates of MS for Td ≥ T are shown in Figure 7. It is
clear that for Td < T , MS follows the same pattern as MT

while for Td ≥ T it is a more complex function, although
decreasing with Td. Note that the convergence to the limit
value in (14) is dependent on process properties.

7. ROBUSTNESS AND MAXIMUM CONTROL
SIGNAL MAGNITUDE

Robustness measures and control signal magnitude can
now be related to each other. Comparing the expressions
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Fig. 7. The trade-off between MS and Td for different
values of the normalized time delay τ for the process
P (s) = 1/(s+1) e−sL. Note that choosing T 6= 1 gives
slightly changed curves.

in (9) and (12) we see that the following holds,
umax

|d0|
= MT .

This simple relation can be seen from the fact that the
transfer function from D(s) to U(s) is −T (s) and T (s)
can be written as

esL T (s) =
s (Td + y0 (T − Td)) + 1

sTd + 1

= 1 + y0

(
T

Td

− 1

)

+ y0

(

1 −
T

Td

)
1

sTd + 1
,

where the direct term is umax as Td < T , and umax = T (0)
as Td ≥ T .

An analogous expression can be derived for MS even
though there is no explicit expression for MS as Td ≥ T .
For this case, it is easy to see that

MS = max
ω

∣
∣
∣
∣
1 −

1 + iωT1

1 + iωT
e−iωL

∣
∣
∣
∣

≤ 1 + max
ω

∣
∣
∣
∣

1 + iωT1

1 + iωT
e−iωL

∣
∣
∣
∣
= 2.

Thus, an upper conservative bound on MS is found.
Combining this with the knowledge that umax = |d0| for
this case, the following relationship is found,

umax

|d0|
=

{
1, MS ≤ 2
MS − 1, MS > 2.

The relations between MT , MS, and umax are shown in
Figure 8. Note that MS has lower limit of 1 in the figure,
corresponding to L → ∞ in (14).

8. ROBUSTNESS AND CONTROL SIGNAL
ACTIVITY

Bounds on the activity of the control signal is, as men-
tioned in the introductory section, present in practice. We
can see that, since Activity was equal to umax for Td < T ,
it follows that Activity/|d0| = MT for this case. When
decreasing Activity to be less than |d0|, that is Td ≥ T ,
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MT will be 1. Hence, the relationship between these two
parameters becomes non-informative in this case.

For MS , an analogous discussion yields Activity/|d0| =
MS − 1 for Td < T . For the other case, Td ≥ T , no
explicit expression can be found, although, simulations can
by ease give the relation. Figure 9 shows, by simulation,
how Activity depends on MS. It implies that specifying
an activity bound also gives a rough estimate of the
robustness measure. A controlled delay dominated process
will be more sensitive to measurement noise than a lag
dominated one when requiring the same control signal
activity level. The fact that the activity do not tend to zero
for lag dominated processes is, as mentioned in Section 5.2,
due to the exponential disturbance attenuation

The fact that MT does not give any information about
activity of the control signal when Td ≥ T can easily be
understood as follows. We see from (10) that as MT → 1,
the circle radius tends to infinity and the circle becomes
the closed half plane {s ∈ C

∣
∣ Re{s} ≤ −1/2}. This implies

that
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Fig. 10. Nyquist curve for P (s) = K/(sT + 1) e−sL with
Td = 5T = 5 and L = 9 and corresponding circles for
MS = 1.64 and MT = 1.

Re {P (iω)C(iω)} ≥ −
1

2
, ∀ω, Td ≥ T,

where we have equality for Td = T . The only way we
can affect the high frequency gain of the controller in this
situation is to use the MS circle, i.e., decrease or increase
MS. In Figure 10, an example of the Nyquist curve and
the robustness circles are presented for this case.

9. CONCLUSIONS

In this paper, we have considered relations between con-
trol signal properties and robustness measures. We have
derived explicit expressions for maximum control signal
magnitude and activity as functions of FOTD process pa-
rameters and load disturbance rejection specification. The
resulting closed-loop system’s robustness in terms of max-
imum sensitivity and complementary sensitivity has been
derived. It has been shown that the control signal prop-
erties are well correlated with the robustness measures.
This implies that limitations on control signal magnitude
and activity regarding load disturbances are covered by
the constrained robustness measures in common controller
design methods.
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