Some distance properties of tailbiting codes

Handlery, Marc; Höst, Stefan; Johannesson, Rolf; Zyablov, Viktor V.

Published in: [Host publication title missing]

DOI: 10.1109/ISIT.2001.936153

2001

Citation for published version (APA):

Total number of authors: 4
Some Distance Properties of Tailbiting Codes

Marc Handlery, Stefan Höst, Rolf Johannesson
Department of Information Technology
Lund University, Box 118
S-221 00 Lund, Sweden
E-mail: {marc, stefanh, rolf} @it.lth.se

Victor V. Zyablov
Inst. for Problems of Information Transm.
Russian Academy of Science
Moscow, Russia
E-mail: zyablov@iltpt.ru

I. INTRODUCTION

Tailbiting codes can be obtained by terminating rate R = b/c convolutional codes into block codes of length l c-tuples [1]. For simplicity, we consider only binary codes. The error correcting capability of a block code is estimated via its minimum distance \(d_{\text{free}} \). In order to describe the error correcting capability of a tailbiting code beyond the minimum distance \(d_{\text{min}} \), we define the active tailbiting segment distance \(d_{\text{act}} \). We also give an upper bound on the length of a tailbiting code so that \(d_{\text{min}} \) equals \(d_{\text{free}} \) of the corresponding convolutional code.

II. THE ACTIVE TAILBITING SEGMENT DISTANCE

Consider the convolutional code \(C \) encoded by a rate \(R = b/c \) encoder. The binary matrix \(\sigma_t \) denotes the encoder state at time \(t \). Let \(S_{[t_1, t_2]} = \{ \sigma_{t_1}, \ldots, \sigma_{t_2} \} \) be the set of state sequences that start in state \(\sigma_{t_1} \) and terminate in state \(\sigma_{t_2} \), and do not have any consecutive zero states with zero input in between. Let \(j_s \) be the smallest positive integer such that \(S_{[0, j_s]} \neq \emptyset \). The \(j \)th order active burst distance [2] is \(\alpha^j \triangleq \min_{j \geq j_s} \{ w_H(\sigma_j) \} \). For any code \(C \), \(\alpha^j \) is invariant over the set of its canonical encoders [2]. It is lower-bounded by a linearly increasing function \(\gamma_j \geq \alpha^j + \beta^j \), where \(\alpha \) is the asymptotic slope, and \(\beta^j \) is chosen as large as possible. Let \(j^* \) be the smallest number of steps that, starting in the allzero state, take us to any reachable state.

Definition 1 The \(j \)th order active tailbiting segment distance is \(\alpha_{\text{act}}^j \triangleq \min_{\sigma_t, \sigma_{t+1}, \ldots, \sigma_{t+j-1}} \{ w_H(\sigma_j) \} \), where \(\sigma \) denotes any possible encoder state.

Theorem 1 The active tailbiting segment distance is lower-bounded by \(\alpha_{\text{act}}^j \geq \alpha(j + 1) \), for all \(j \geq 0 \).

III. PROPERTIES OF TAILBITING CODES VIA THE ACTIVE DISTANCES

We define an incorrect path at the receiver to be any trellis path differing from the transmitted path. For any \(k_1, k_2 \) such that \(k_1 < k_2 \), let \(e_{[k_1, k_2]} \) be the Hamming weight of the error pattern \(e_{[k_1, k_2]} = e_{k_1} e_{k_1+1} \ldots e_{k_2} \). We also give an upper bound on the length of a tailbiting code so that \(d_{\text{min}} \) equals \(d_{\text{free}} \) of the corresponding convolutional code.

Example 1 A tailbiting code \(C_{\text{tb}} \) of length \(l = 18 \) 2-tuples encoded by a convolutional encoder. Then, for \(j_0 < l \), a maximum likelihood (ML) decoder corrects all error patterns \(e_{[0, j_0]} \) that satisfy \(e_{[0, j_0]} \leq \min \{ a_j^1, a_{j-1}^1 \} \) for \(0 \leq j < l \), for \(0 \leq l < l \). For \(j_0 \geq l \), all error patterns that satisfy \(e_{[0, l]} \leq \min \{ a_{l-1}^1 \} \) are corrected.

Consider a tailbiting code of length \(l \) c-tuples with minimum distance \(d_{\text{min}} \). The free tailbiting length \(l_{\text{free}} \) is the shortest length \(l \) for which \(d_{\text{min}} \) will remain equal to \(d_{\text{free}} \) of the corresponding convolutional code for all tailbiting lengths greater than or equal to \(l_{\text{free}} \). The free tailbiting length is upper-bounded by \(l_{\text{free}} \leq \lceil \alpha d_{\text{free}}/\alpha \rceil \).

IV. ENSEMBLE PROPERTIES OF THE ACTIVE TAILBITING SEGMENT DISTANCE

The concept of the active distances can be generalized to time-varying convolutional encoders.

Theorem 3 There exists a rate \(R = b/c \) convolutional code \(C \) encoded by a time-varying encoder of memory \(m \) such that \(d_{\text{free}} > \rho(f) + O(\log m) \), for \(f = O(\log m) \), \(m \rightarrow \infty \), where \(\rho = h^{-1}(1 - R) \) is the Gilbert-Varshamov parameter, \(h(\cdot) \) is the binary entropy function, and \(f_0 \) is the smallest integer satisfying \(1 - R(f + 1)c/f_0 \geq 4 \log m \).

Using the Heller asymptotic bound we obtain

Theorem 4 There exists a tailbiting code \(C_{\text{tb}} \) encoded by a time-varying encoder of memory \(m \), such that \(l_{\text{free}} = \infty \).

REFERENCES