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Abstract - The active tailbiting segment distance 
for convolutional codes is introduced. Together with 
the earlier defined active burst distance, it describes 
the error correcting capability of a tailbiting code en- 
coded by a convolutional encoder. Lower bounds on 
the new active distance as well as an upper bound on 
the ratio between tailbiting length and memory of en- 
coder such that its minimum distance dmin equals the 
free distance dfree of the corresponding convolutional 
code are presented. 

I. INTRODUCTION 
Tailbiting codes can be obtained by terminating rate R = b/c 
convolutional codes into block codes of length 1 c-tuples [l]. 
For simplicity, we consider only binary codes. The error cor- 
recting capability of a block code is estimated via dmin. There 
is no description which error patterns with more than Ldmi;-l 1 
errors can be corrected. In order to describe the error correct- 
ing capability of a tailbiting code beyond the minimum dis- 
tance argument, we define the active tailbiting segment dis- 
tance U S b s .  We also give an upper bound on the length of a 
tailbiting code so that dmin equals dfree of the corresponding 
convolutional code. This is useful when analyzing concate- 
nated coding schemes containing tailbiting encoders. 

11. THE ACTIVE TAILBITING SEGMENT DISTANCE 
Consider the convolutional code C encoded by a rate R = b / c  
encoder. The binary matrix ut denotes the encoder state at 
time t. Let SG$T, 0 5 tl < t z ,  be the set of state sequences 
u [ t l , t z l  = utl . . . ut2 that start in state U ,  and terminate in 
state ue, and do not have two consecutive zero states with 
zero input in between. Let j b  be the smallest positive integer 
such that S:,:b+ll # 8. The j t h  order active burst distance 

[2] is U,” {W. ( V [ ~ , ~ I ) } ,  j 2 j b .  For any code c,  
a,” is invariant over the set of its canonical encoders [2].  It is 
lower-bounded by a linearly increasing function ab > aj + ,Bb, 
j > j b ,  where a is the asymptotic slope, and ,6 is chosen as 
large as possible. Let j ,  be the smallest number of steps that, 
starting in the allzero state, take us to any reachable state. 

Definition 1 T h e  j t h  order active tailbiting segment dis- 
tance is  ajbs 4 mins-,- ~ j T , j ~ + ~ ~ l l  {wH (VLjT,jT+jl)}, where de- 
notes any possible encoder state. 

minso,o 
[O.j+lI 

b ?  - 

Theorem 1 The active tailbiting segment distance is lower- 
bounded by USbs > a( j  + l), f o r  all j > 0.  
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111. F’ROPERTIES OF TAILBITING CODES VIA THE 
ACTIVE DISTANCES 

We defiiile an incorrect path at the receiver to  be any trellis 
path differing from the transmitted path. For any k1,kz < 1 ,  
let e[k,,k:, l  denote the Hamming weight of the error pattern 
e [ k , , k 2 1  =: e k l e k l + l . .  . e k 2 ,  where ei, 0 5 i < 1, are c-tuples 
and all indices are evaluated modulo 1. Then, we have 

Theorenn 2 Consider a tailbiting code Ctb of length 1 c-tuples 
encoded t5y a convolutional encoder. Then ,  f o r  j b  < 1 ,  a 
m a x i m u m  likelihood (ML) decoder corrects all error patterns 
e [ o , l - l ]  that satisfy eLt, t+j mod 11 < min {a,”/2, ~ : ! ? ~ / 2 }  f o r  
0 5 t < 1, j b  5 j < 1. For j b  2 1, all error patterns that 
.satisfy e[c,,l-l] < ~ : ! ? ~ / 2  are corrected. 

Example 1 A tailbiting code of length 1 = 18 2-tuples en- 
coded’by G(D)  = (1 + D + D2 1 + 0’) with dmin = 5 is  used 
o n  a binary symmetric channel. From Theorem 2 follows that 

e [ o , 1 7 ~  == 10 00 00 01 00 00 00 00 01 00 00 00 10 00 00 00 00 00 
is corrected b y  a n  M L  decoder although the error pattern con- 
tains four  channel errors which exceeds Ld”’;-’].  

Consider a tailbiting code of length 1 c-tuples with min- 
imum distance dmin. The free tailbiting length lfree is the 
shortest Lsngth 1 for which dmin will remain equal to dfree of 
the corresponding convolutional code for all tailbiting lengths 
greater than or equal to Ifree. The free tailbiting length is 
upper-bounded by lfree I Ldfree/aJ. 

Iv. ENSEMBLE PROPERTIES OF THE ACTIVE 

The concept of the active distances can be generalized to time- 
varying convolutional encoders. 

Theorem 3 There exists a rate R = b / c  convolutional code 
C fecoded by a time-varying encoder of memory  m such that 

m + 00 

where p = hK’(1-R) is  the Gilbert- Varshamov parameter, h ( )  
is the binary entropy function, and j,, is  the smallest integer 
satisfying (1 - R ) ( j  + 1). 2 4 log m. 

Using the Heller asymptotic bound we obtain 

Theorem 4 There exists a tailbiting code Ctb encoded 
b y  a time-varying encoder of memory  m, such that 
limm+oo liiee/m I &. 

TAILBITING SEGMENT DISTANCE 

a j  > p( j  + 1)c + O(Iog m), f o r  j = O ( m )  > j ,  
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