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Abstract

In this paper some of the consequences of the model for optical activity sug-
gested by Condon are analyzed. The scattering problem is solved for a semi-
infinite and a finite homogeneous slab, respectively. Specifically, the non-
causal effects of this model are demonstrated. These effects are disturbingly
large for many materials and the model has to be discarded as unphysical.
The rotation of the polarization plane is shown to agree with the fixed fre-
quency results when the transient part of the solution has died out. Moreover,
a new delta sequence that is associated with the Fresnel integrals is analyzed.

1 Prerequisites

The Maxwell equations are the basic equations that model the dynamics of the
electromagnetic fields. 

∇× E(r, t) = − ∂

∂t
B(r, t)

∇× H(r, t) =
∂

∂t
D(r, t)

(1.1)

These equations, which give the dynamics of the fields, are not complete as a model
of the wave propagation in a complex medium. There are in total 12 unknown
(4 vector fields), but only 6 equations. The missing 6 equations are given by the
constitutive relations, which model the dynamics of the charges in the medium.

The reborn interest in chiral media or, more generally, in bi-isotropic media, has
motivated several studies and reviews of the constitutive relations, see, e.g., [4–8]. In
a work from 1937 Condon suggests a model for optical rotatory power. Condon [3]
suggested the following constitutive relations (see also [7]):

D(r, t) = εE(r, t) − α
∂

∂t
H(r, t)

B(r, t) = α
∂

∂t
E(r, t) + µH(r, t)

(1.2)

where the magneto-electric effects are modelled by the real constant α. This con-
stant can be both positive and negative, and it has the dimension of reciprocal
acceleration. The constants ε and µ are the ordinary permittivity and permeability,
respectively, of the medium in the absence of magneto-electric effects.

The aim of this paper is to study the propagation of electromagnetic waves in a
medium characterized by the constitutive relations in (1.2). Especially, the violation
of causality is investigated and its consequences are discussed.

The Maxwell equations (1.1) and the constitutive relations (1.2) can be com-
bined. The result is

∇×
(

E
ηH

)
=

1

c

(
0 −I3

I3 0

)
· ∂
∂t

(
E
ηH

)
− α

∂2

∂t2

(
E
ηH

)
(1.3)
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where η =
√
µ/ε and c = 1/

√
εµ, and I3 is the three-dimensional identity dyadic1.

It is, of course, possible to eliminate one of the fields, say the magnetic field H , in
(1.3), but the order of the partial derivatives then increases to fourth order in time.
There are also other reasons, such as energy transport, that are more conveniently
expressed as a pair of fields, and, therefore, in this paper, we analyze the equations
as they are given in (1.3).

In Section 2 the problem is simplified to a problem with variation in just one
spatial coordinate. In Sections 3–4 we address the scattering problem. The discus-
sion on causality and the validity of Condon’s model is found in Section 5. Some
technical calculations are presented in a series of appendices.

2 One-dimensional spatial variation

The fields in the previous section were general functions of all spatial coordinates
x, y, z. In this section, the fields are restricted to vary only in one coordinate, say the
depth z. An alternative, more physically appealing, interpretation is to consider this
one-dimensional variation as a result of averaging over the transverse coordinates x
and y.

Assume the variation in the fields are one-dimensional, e.g.,

E(r, t) = E⊥(z, t) + ẑEz(z, t) = x̂Ex(z, t) + ŷEy(z, t) + ẑEz(z, t)

where

E⊥(z, t) = ẑ × (E(z, t) × ẑ)

In a dyadic notation, the rotation then becomes

∇× E(r, t) = J · ∂
∂z

E⊥(z, t)

where the constant two-dimensional dyadic J is defined as

J = ẑ × I2

where I2 is the two-dimensional identity dyadic in the x-y-plane. This dyadic rep-
resents a rotation of π/2 in the x-y-plane. Notice that

J · Jt = −J · J = I2

where the superscript (t) denotes the transpose of the dyadic.
The transverse components of (1.3) can then be written as

∂

∂z

(
J · E⊥
ηJ · H⊥

)
=

1

c

∂

∂t

(
0 −I2

I2 0

)
·
(

E⊥
ηH⊥

)
− α

∂2

∂t2

(
E⊥
ηH⊥

)
1Throughout this paper a dyadic notation is adopted and all dyadics are typed in roman boldface

and vectors in italic boldface. Furthermore, no distinction is made between vectors and their
representation as column vectors of cartesian coordinates in this paper.
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The z-components of (1.3) are
cα
∂2Ez

∂t2
+ η

∂Hz

∂t
= 0

cαη
∂2Hz

∂t2
− ∂Ez

∂t
= 0

The general solutions to these equations are
Ez(z, t) = A1(z) sin

t

cα
+ A2(z) cos

t

cα
+ A3(z)

Hz(z, t) = B1(z) sin
t

cα
+B2(z) cos

t

cα
+B3(z)

If all fields are assumed to vanish as t → −∞, all constants of integrations are zero
and {

Ez(z, t) = 0

Hz(z, t) = 0

and all fields, E, H , D, and B are transverse by the use of the constitutive rela-
tions (1.2).

It is appropriate to rewrite the equation of the transverse components as

∂

∂z

(
E⊥

ηJ · H⊥

)
=

1

c

∂

∂t

(
0 I2

I2 0

)
·
(

E⊥
ηJ · H⊥

)
+ α

∂2

∂t2

(
J 0
0 J

)
·
(

E⊥
ηJ · H⊥

)
To avoid cumbersome notation we define the four-dimensional vector u(z, t)

u(z, t) =

(
E⊥(z, t)

ηJ · H⊥(z, t)

)
(2.1)

and the two four-dimensional dyadics A and B

A =

(
J 0
0 J

)
, B =

(
0 I2

I2 0

)
Notice that A and B commute and

A · A = −I4, B · B = I4

where I4 denotes the four-dimensional identity dyadic.
The fundamental equation is therefore

∂

∂z
u = αA · ∂

2

∂t2
u +

1

c
B · ∂

∂t
u (2.2)

This equation shows resemblance with the ordinary parabolic equations if the time
variable t and spatial variable z are interchanged.
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2.1 Wave splitting

The Poynting vector can also expressed in terms of the vector u.

P (z, t) = E(z, t) × H(z, t) = − (E⊥ · J · H⊥) ẑ = − ẑ

2η
u · B · u

by standard dyadic operations. The vector u is decomposed as

u(z, t) =

(
u+(z, t) + u−(z, t)
u−(z, t) − u+(z, t)

)
=

(
I2 I2

−I2 I2

)
·
(

u+(z, t)
u−(z, t)

)
(2.3)

where the transverse two-dimensional vectors u+(z, t) and u−(z, t) are defined as(
u+(z, t)
u−(z, t)

)
=

1

2

(
I2 −I2

I2 I2

)
·
(

E⊥(z, t)
ηJ · H⊥(z, t)

)
=

1

2

(
I2 −I2

I2 I2

)
· u(z, t) (2.4)

The fields u+ and u− are called the split fields due to the fact that the Poynting
vector is

P (z, t) =
ẑ

η

[
|u+(z, t)|2 − |u−(z, t)|2

]
(2.5)

The two fields u+ and u− therefore give the contributions of the power sent in the
positive and negative direction, respectively. The original fields, E⊥ and H⊥, are
easily retrieved from (2.3), see also (2.1). We have(

E⊥(z, t)
H⊥(z, t)

)
=

(
I2 I2
1
η
J − 1

η
J

)
·
(

u+(z, t)
u−(z, t)

)
Continuity of the tangential fields, E⊥ and H⊥, implies that the fields

u+ + u− and (u+ − u−) /η

are continuous.
The transformation of dependent variables given by (2.4) implies that the original

PDE (2.2) is equivalent to

∂u±(z, t)

∂z
± 1

c

∂u±(z, t)

∂t
= αJ · ∂

2u±(z, t)

∂t2

and we see that the transformation in (2.4) decouples the four-dimensional system
(2.2) into a two-dimensional system. This system can be reduced further by a simple
change of the independent variables. We get

du±(z, t± z/c)

dz
= αJ · ∂

2u±(z, t± z/c)

∂t2
(2.6)
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2.2 Boundary value problem

The following boundary value problem is pertinent for the analysis in this paper:
du±(z, t± z/c)

dz
= αJ · ∂

2u±(z, t± z/c)

∂t2
, z ≥ 0

u±(0, t) = u0(t)
t ∈ R

This problem is solved in Appendix A, see (A.1).

u±(z, t) = (f(αz, ·) ∗ u0(·)) (t∓ z/c) + (g(αz, ·) ∗ u0(·)) (t∓ z/c) (2.7)

where we have introduced the following dyadic-valued functions
f(a, t) =

1√
4π|a|

cos
(
t2/4|a| − π/4

)
I2

g(a, t) = − sign a√
4π|a|

cos
(
t2/4|a| + π/4

)
J

The temporal convolution of a dyadic-valued function f1 and a vector-valued function
f 2 is defined as

(f1(z, ·) ∗ f 2(·)) (τ) =

∫ ∞

−∞
f1(z, τ − τ ′) · f 2(τ

′) dτ ′

The solution of the scattering inside the material, (2.7), is non-causal, due to the fact
that the temporal integration in the convolutions extends over the entire real axis,
and not just to the positive real axis. We illustrate this situation in the following
two sections, but first we note that the boundary conditions are met by the limits
of the dyadic-valued functions f and g. We have the limit values, see (D.3). lim

a→0
f(a, t) = I2δ(t)

lim
a→0

g(a, t) = 0

3 Scattering problem—semi-infinite slab

We illustrate the effects of the lack of causality by solving scattering by a semi-
infinite slab. The geometry is depicted in Figure 1. The left half-space, z < 0, is
assumed to be an isotropic medium with permittivity ε1 and permeability µ1, and
the right half-space, z > 0, is a bi-isotropic material modelled by Condon’s model,
(1.2), and parameterized by ε, µ, and α.

Assume there are no sources in the region z > 0. The only sources are located
in the left half-space, z < 0. The general solution to the left of the scatterer, z < 0,
is assumed to be, see (2.3) and (2.6) with α = 0

u(z, t) =

(
Ei(t− z/c1) + Er(t+ z/c1)
Er(t+ z/c1) − Ei(t− z/c1)

)
z < 0
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z = 0

ε, µ

Isotropic material 

Optical rotary
power material

z

αε1, µ1 ,

Figure 1: The geometry of the semi-infinite slab.

where c1 = 1/
√
ε1µ1. The vector fields Ei(t) and Er(t) are the incident and the

reflected fields at z = 0, respectively, transporting power to the right and to the left,
respectively.

The solution to the left of the scatterer at z = 0− is

u(0−, t) =

(
Ei(t) + Er(t)
Er(t) − Ei(t)

)
and inside the slab u−(z, t) = 0 for all z > 0, due to the fact that there are no
sources in the half-space z > 0. Therefore, the appropriate boundary conditions at
the interface z = 0 are {

u+(0+, t) = Ei(t) + Er(t)

u+(0+, t)/η = (Ei(t) − Er(t)) /η1

where η1 =
√
µ1/ε1. Elimination of the field Er(t) gives

u+(0+, t) =
2η

η + η1

Ei(t) = t+0 Ei(t)

where we have introduced the transmission coefficient for transmission to the right

t+0 =
2η

η + η1

Moreover, elimination of the field u+(0+, t) gives the reflected field Er(t)

Er(t) =
η − η1

η + η1

Ei(t) = r+
0 Ei(t) (3.1)
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Here the reflection coefficient of the slab from the left is

r+
0 =

η − η1

η + η1

and reflection occurs only at the interface. Note that this reflected field is a causal
response of the incident field and independent of the parameter α.

The pertinent problem for the semi-infinite medium is:
du+(z, t+ z/c)

dz
= αJ · ∂

2u+(z, t+ z/c)

∂t2
, z ≥ 0

u+(0, t) = t+0 Ei(t)
t ∈ R

The solution to the problem is, see (2.7)

u+(z, t) = t+0 [(f(αz, ·) ∗ Ei(·)) (t− z/c) + (g(αz, ·) ∗ Ei(·)) (t− z/c)] , z > 0

Note that the field inside the medium goes to zero as |t| → ∞, if Ei ∈ L1(R)2 as
seen from (C.2) in Appendix C. Again, notice that the transmitted field in the slab
is non-causal.

3.1 Example

We quantify the effects of the lack of causality by a specific example. Let

Ei(t) = x̂H(t) sinω0t

where H(t) is the Heaviside step function (H(t) = 1, t > 0, zero otherwise) and
ω0 > 0.

It is convenient to introduce dimensionless variables. To this end, define the two
dimensionless parameters {

τ = ω0t

ζ = zω0/c

The incident field is then

Ei(τ) = x̂H(τ) sin τ

The reflected field is, see (3.1)

Er(τ) = x̂H(τ)r+
0 sin τ

and the field inside the medium can be calculated using (C.1) in Appendix C. The
result is, ζ > 0

E(ζ, τ) = t+0 H (τ − ζ) sin (τ − ζ) (x̂ cosχ+ ŷ sinχ) + Etransient(ζ, τ) (3.2)
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E(ζ, τ) · x̂
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Figure 2: The fields E(ζ, τ) · x̂ and E(ζ, τ) · ŷ for ω0αc = .1 m−1.
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-0.5

0
0.5

1

ζ

τ

E(ζ, τ) · x̂

Figure 3: The field E(ζ, τ) · x̂ for ω0αc = 1. 10−6 m−1.

The angle of rotation of the polarization of the field as τ → ∞ is

χ = χ(ζ) = −ω2
0αz = −ω0αcζ

which agrees with the result of fixed frequency analysis.2 The transient field is
(ζ > 0)

Etransient(ζ, τ)

=
t+0
4

{
x̂ sin(τ − ζ)

{
cosχ [C(γ+) + C(γ−) + S(γ+) + S(γ−) − 2 sign (τ − ζ)]

+ sin |χ| [S(γ+) + S(γ−) − C(γ+) − C(γ−)]
}

+x̂ cos(τ − ζ)
{

[cosχ+ sin |χ|] [C(γ+) − C(γ−)]

− [cosχ− sin |χ|] [S(γ+) − S(γ−)]
}

+ŷ sin(τ − ζ)
{

sign (α) cosχ [S(γ+) + S(γ−) − C(γ+) − C(γ−)]

+ sinχ [C(γ+) + C(γ−) + S(γ+) + S(γ−) − 2 sign (τ − ζ)]
}

+ŷ sign (α) cos(τ − ζ)
{

[cosχ− sin |χ|] [C(γ+) − C(γ−)]

+ [cosχ+ sin |χ|] [S(γ+) − S(γ−)]
}}

2The relation between the notation of Ref. [8] and this paper is κ = αω0/
√

ε0µ0.
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-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1
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0.5

0.75

1
E(ζ, τ) · ŷ

E(ζ, τ) · x̂

Figure 4: The field polarization of the field at ζ = 10 for ω0αc = .1 m−1. Time τ
is the parameter along the curve.

where

γ± =

√
8 |αz|
π

(
t− z/c

4|αz| ± ω0

2

)
=

√
2 |χ|
π

(
τ − ζ

2|χ| ± 1

)
and the Fresnel integrals C(z) and S(z) are defined in Appendix C. The first term in
(3.2) is causal due to the Heaviside function, but Etransient(ζ, τ) contains non-causal
terms. The field Etransient → 0 as τ → ±∞.

The result of this example is depicted in Figures 2–4. We observe that for small
values of α, e.g., ω0αc = 1 · 10−6 m−1, the effects of the non-causality are negligible.

4 Scattering problem—finite slab

In this section we analyze the finite slab problem depicted in Figure 5. The solution
of this scattering problem relies on the solution obtained in Section 3. The left and
the right half-spaces, z < 0 and z > L, respectively, are assumed to be isotropic
materials, parameterized by the permittivity and permeability ε1, µ1, ε2, and µ2,
respectively. The slab, 0 < z < L, is a bi-isotropic material modelled by Condon’s
model, (1.2), and parameterized by ε, µ, and α.

Assume there are no sources in the region z > L. The only sources are located
in the left half-space, z < 0. The general solution to the left of the scatterer z < 0,
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z = 0

z

z = L

Isotropic material 

Optical rotary
power material

ε1, µ1
ε, µα,

ε2, µ2

Isotropic material 

Figure 5: The geometry of the finite slab.

but to the right of the sources is assumed to be, see (2.3) and (2.6) with α = 0

u(z, t) =

(
Ei(t− z/c1) + Er(t+ z/c1)
Er(t+ z/c1) − Ei(t− z/c1)

)
z < 0

where c1 = 1/
√
ε1µ1. To the right of the scatterer z > L, we have

u(z, t) =

(
Et(t− (z − L)/c2)
−Et(t− (z − L)/c2)

)
z > L

where c2 = 1/
√
ε2µ2.

The solution to the left of the scatterer at z = 0− is

u(0−, t) =

(
Ei(t) + Er(t)
Er(t) − Ei(t)

)
and to the right of the scatterer at z = L+ is

u(L+, t) =

(
Et(t)
−Et(t)

)
The tangential electric field E⊥ and the tangential magnetic field H⊥ are con-

tinuous over the boundaries z = 0, L. Apply the wave splitting of (2.3)

u(z, t) =

(
u+(z, t) + u−(z, t)
u−(z, t) − u+(z, t)

)
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and we get 

u+(0+, t) + u−(0+, t) = Ei(t) + Er(t)

1

η

(
u+(0+, t) − u−(0+, t)

)
=

1

η1

(Ei(t) − Er(t))

u+(L−, t) + u−(L−, t) = Et(t)

1

η

(
u+(L−, t) − u−(L−, t)

)
=

1

η2

Et(t)

where η1 =
√
µ1/ε1, and η2 =

√
µ2/ε2. Rearranging the terms gives

1

2

[
u+(0+, t)

(
1 +

η1

η

)
+ u−(0+, t)

(
1 − η1

η

)]
= Ei(t)

1

2

[
u+(L−, t)

(
1 − η2

η

)
+ u−(L−, t)

(
1 +

η2

η

)]
= 0

(4.1)

and 
Er(t) =

1

2

[
u+(0+, t)

(
1 − η1

η

)
+ u−(0+, t)

(
1 +

η1

η

)]
Et(t) =

1

2

[
u+(L−, t)

(
1 +

η2

η

)
+ u−(L−, t)

(
1 − η2

η

)] (4.2)

The pertinent problem for the finite slab is, see (2.6) and (4.1)
du±(z, t± z/c)

dz
= αJ · ∂

2u±(z, t± z/c)

∂t2
, 0 < z < L

u+(0+, t) − r−0 u−(0+, t) = t+0 Ei(t)

r+
Lu+(L−, t) − u−(L−, t) = 0

t ∈ R (4.3)

where

r−0 =
η1 − η

η1 + η
r+
L =

η2 − η

η2 + η
t+0 =

2η

η1 + η

The reflection coefficient r−0 is the reflection coefficient at the left edge for reflection
from the right and r+

L is the corresponding quantity at the right edge from the left.
Moreover, t+0 is the transmission coefficients at the left edge for transmission to the
right. Note that the two fields u± do not couple through the PDE, but they do
couple through the boundary conditions.

The solution to this boundary value problem is given in Appendix B, see (B.2)
(0 < z < L)(

u+(z, t)
u−(z, t)

)
= t+0

∞∑
n=0

(
r−0

)n(
r+
L

)n
[f(αz, ·) + g(αz, ·)] ∗

(
Ei(· − z/c− 2nL/c)

r+
LEi(· + z/c− 2(n+ 1)L/c)

)
(t)
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where the dyadics f(a, t) and g(a, t) are defined in Section 2.2 above. Especially, at
z = 0+ and z = L− we get(

u+(0+, t)
u−(0+, t)

)
= t+0

∞∑
n=0

(
r−0

)n(
r+
L

)n
(

Ei(t− 2nL/c)
r+
LEi(t− 2(n+ 1)L/c)

)
and(

u+(L−, t)
u−(L−, t)

)
= t+0

∞∑
n=0

(
r−0

)n(
r+
L

)n
[f(αL, ·) + g(αL, ·)] ∗

(
Ei(· − (2n+ 1)L/c)
r+
LEi(· − (2n+ 1)L/c)

)
(t)

The reflected field Er(t) and the transmitted field Et(t) can now be calculated
from (4.2). The result is

Er(t) = r+
0 Ei(t) + t−0 t

+
0

∞∑
n=1

(
r−0

)n−1(
r+
L

)n
Ei(t− 2nL/c)

Et(t) = t+0 t
+
L

∞∑
n=0

(
r−0

)n(
r+
L

)n
[f(αL, ·) + g(αL, ·)] ∗ Ei(· − (2n+ 1)L/c)(t)

(4.4)

where

r+
0 =

η − η1

η1 + η
t−0 =

2η1

η1 + η
t+L =

2η2

η2 + η

r+
0 is the reflection coefficients at the left edge for reflection from the left, t−0 is the

transmission coefficients at the left edge for transmission to the left and t+L is the
transmission coefficient at the right edge for transmission to the right. Notice that
the reflected field is independent of the parameter α. Furthermore, the reflected
field is causal. The transmitted field is not causal.

From (4.4) the reflection kernel R(t) and the transmission kernel T(t) can be
extracted. The result is {

Er(t) = (R ∗ Ei) (t)

Et(t) = (T ∗ Ei) (t)

where
R(t) = r+

0 δ(t)I2 + t−0 t
+
0

∞∑
n=1

(
r+
0

)n−1(
r+
L

)n
δ(t− 2nL/c)I2

T(t) = t+0 t
+
L

∞∑
n=0

(
r−0

)n(
r+
L

)n
[f(αL, t− (2n+ 1)L/c) + g(αL, t− (2n+ 1)L/c)]

The transmission kernel is not causal, but the reflection kernel is, due to the delta
functions that are zero for t < 0, i.e., R(t) = 0 for t < 0. The sum in the transmission
kernel T is always infinite for a fixed value of t, but it remains finite for the reflection
kernel R.
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4.1 Example

We illustrate the scattering problem in this section by a specific example. Let

Ei(t) = x̂H(t) sinω0t

From (4.4) the reflected field is

Er(t) =x̂

{
H(t)r+

0 sinω0t

+ t−0 t
+
0

∞∑
n=1

(
r−0

)n−1(
r+
L

)n
H(t− 2nL/c)r+

0 sinω0(t− 2nL/c)

}

and the transmitted field can be calculated using (C.1) in Appendix C.

Et(t) = transient + t+0 t
+
L [x̂ cosχ+ ŷ sinχ]

·
∞∑

n=0

(
r−0

)n(
r+
L

)n
H(ω0t− (2n+ 1)L/c) sin(ω0t− (2n+ 1)L/c)

The angle of rotation of the polarization of the field as t → ∞ is

χ = −ω2
0αL

which agrees with the result of fixed frequency analysis.

5 Discussion of the causality problem

In the sections above we have seen that, in contrast to the reflected field, the trans-
mitted field is non-causal. This is, of course, highly non-physical, and, therefore,
Condon’s model must be discarded as a reliable model for bianisotropic media. How-
ever, we have also seen that, provided the parameter α is small in some sense, the
violation of causality is limited. In this section we briefly discuss the range of validity
of the model and the size of the parameter α obtained from experimental data.

As seen from Figures 2 and 3, the size of ω0αc should be less than 10−2 m−1 to
ensure that the effects of the non-causality are negligible. This result is under the
assumption that the spatial variable ζ is of the order of or less than 1.

The typical size of the optical rotatory power parameter α is given in Table 1,
where the data is taken from [8]. From the table we see that the size of the constant
α is in the range 10−20–10−29 s2/m. Moreover, we see that the range of the parameter
ω0αc is too large for most materials. Condon’s model is, for these materials, not a
good model for optical activity. However, for quarts at optical frequencies Condon’s
model is appropriate, despite the fact that the model is non-causal. The model
might also be appropriate for the experiments made by Lindman early this century,
but this depends on the value of the index of refraction,

√
εµ, which is not available.
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Material κ ω0αc ω0/2π α
Quartz 3.9 · 10−5 5.49 · 1014 3.77 · 10−29

Lindman in 1914 0.05 1.2 · 109 2.12 · 10−20

Metal helices in a resin matrix 0.44 0.27 10 · 109 2.34 · 10−20

Metal helices in epoxy 1.78 0.34 15 · 109 6.3 · 10−20

Copper strings in dielectric 0.16 15 · 109 5.66 · 10−21

Ferroelectric ceramic strings 0.30 0.15 8 · 109 1.99 · 10−20

Table 1: Data of the magnetoelectric parameter κ and the corresponding values
of the parameters α and κ/

√
εµ = ω0αc for a selection of materials at the frequency

ω0. The data is taken from [8].
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Appendix A Solution to the boundary value

problem

In this appendix all vectors and dyadics are two-dimensional depending on the spa-
tial variable ζ and the time variable τ . The pertinent boundary value problem to
be solved is 

∂u(ζ, τ)

∂ζ
= αJ · ∂

2u

∂τ 2
, ζ ≥ 0

u(0, τ) = u0(τ)

τ ∈ R

where u0(τ) given initial data.
We solve this boundary value problem by a Fourier transformation in time τ .

The Fourier transform is defined as:
û(ζ, ω) =

∫ ∞

−∞
u(ζ, τ)eiωτ dτ = F(u(ζ, ·))(ω)

u(ζ, τ) =
1

2π

∫ ∞

−∞
û(ζ, ω)e−iωτ dω = F−1(û(ζ, ·))(τ)

The Fourier transform solution is

û(ζ, ω) = e−αζω2J · û0(ω) =
{
I2 cos(αζω2) − J sin(αζω2)

}
· û0(ω)

since expαJ = I2 cosα+ J sinα.
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The following inverse Fourier transforms are relevant (a ∈ R):

F−1(f̂(ω)ĝ(ω))(τ) =

∫ ∞

−∞
f(τ − τ ′)g(τ ′) dτ ′ = (f ∗ g)(τ)

F−1(cos aω2)(τ) =
1√

4π|a|
cos

(
τ 2/4|a| − π/4

)
F−1(sin aω2)(τ) =

sign a√
4π|a|

cos
(
τ 2/4|a| + π/4

)
Introduce the following dyadic-valued functions

f(a, τ) =
1√

4π|a|
cos

(
τ 2/4|a| − π/4

)
I2

g(a, τ) = − sign a√
4π|a|

cos
(
τ 2/4|a| + π/4

)
J

The final solution is then

u(ζ, τ) = (f(αζ, ·) ∗ u0(·)) (τ) + (g(αζ, ·) ∗ u0(·)) (τ) (A.1)

where the temporal convolution of a dyadic-valued function f1 and a vector-valued
function f 2 is defined as

(f(ζ, ·) ∗ g(·)) (τ) =

∫ ∞

−∞
f(ζ, τ − τ ′) · g(τ ′) dτ ′

Appendix B Solution of the slab problem

In this appendix we solve the following nonstandard boundary value problem:
du±(z, t± z/c)

dz
= αJ · ∂

2u±(z, t± z/c)

∂t2
, 0 < z < L

u+(0+, t) − r−0 u−(0+, t) = t+0 Ei(t)

r+
Lu+(L−, t) − u−(L−, t) = 0

t ∈ R (B.1)

Note that the two fields u± do not couple through the PDE, but they do couple
through the boundary conditions.

The general solution to the PDE in the Fourier domain is, see Appendix A

û±(z, ω) = e±iωz/cI2e−αzω2J · û(0+, ω)

The boundary values imply{
û+(0+, ω) − r−0 û−(0+, ω) = t+0 Êi(ω)

r+
L e

iωL/cû+(0+, ω) − e−iωL/cû−(0+, ω) = 0
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with solutions
û+(0+, ω) =

t+0
1 − r−0 r

+
L e

2iωL/c
Êi(ω) = t+0

∞∑
n=0

(
r−0

)n(
r+
L

)n
e2inωL/cÊi(ω)

û−(0+, ω) =
r+
L t

+
0 e

2iωL/c

1 − r−0 r
+
L e

2iωL/c
Êi(ω) = t+0

∞∑
n=0

(
r−0

)n(
r+
L

)n+1
e2i(n+1)ωL/cÊi(ω)

and the final solution to the finite slab problem is, see Appendix A(
u+(z, t)
u−(z, t)

)
= t+0

∞∑
n=0

(
r−0

)n(
r+
L

)n
[f(αz, ·) + g(αz, ·)] ∗

(
Ei(· − z/c− 2nL/c)

r+
LEi(· + z/c− 2(n+ 1)L/c)

)
(B.2)

Appendix C Fresnel Integrals

The Fresnel Integrals are defined as [1]:
C(z) =

∫ z

0

cos
(π

2
t2

)
dt

S(z) =

∫ z

0

sin
(π

2
t2

)
dt

or expressed in the error function erf(z) as

C(z) + iS(z) =
1 + i

2
erf

(√
π

2
(1 − i)z

)
Limiting values are 

lim
x→∞

C(x) =
1

2

lim
x→∞

S(x) =
1

2

which are easily found using the Cauchy integral on a segment (0 < arg z < π/4, 0 <
|z| < ∞) in the complex plane. Furthermore, the Fresnel integrals are odd in
reflection in the origin, {

C(−z) = −C(z)

S(−z) = −S(z)
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A useful integral is (a > 0) [1]∫
sin

(
ax2 + 2bx+ c

)
dx =

√
π

2a

{
cos

(
b2 − ac

a

)
S

[√
2

aπ
(ax+ b)

]

− sin

(
b2 − ac

a

)
C

[√
2

aπ
(ax+ b)

]}

From this integral it is easy to derive (a > 0)

1√
4πa

∫ ∞

b

cos
(
(t− t′)2/4a± π/4

)
sinω0(t

′ − b) dt′

=

√
1

8
{ − cos

(
ω0(t− b) + ω2

0a∓ π/4
)
[1/2 + S(γ+)]

+ sin
(
ω0(t− b) + ω2

0a∓ π/4
)
[1/2 + C(γ+)]

+ cos
(
ω0(t− b) − ω2

0a± π/4
)
[1/2 + S(γ−)]

+ sin
(
ω0(t− b) − ω2

0a± π/4
)
[1/2 + C(γ−)]

}
where γ± is

γ± =

√
8a

π

(
t− b

4a
± ω0

2

)
From this expression it immediately follows that

lim
t→−∞

1√
4πa

∫ ∞

b

cos
(
(t− t′)2/4a± π/4

)
sinω0(t

′ − b) dt′ = 0

We can also rewrite the expression as

1√
4πa

∫ ∞

b

cos
(
(t− t′)2/4a± π/4

)
sinω0(t

′ − b) dt′

=
1

4
{ − cos

(
ω0(t− b) + ω2

0a
)
[1/2 + S(γ+) ± 1/2 ± C(γ+)]

+ sin
(
ω0(t− b) + ω2

0a
)
[1/2 + C(γ+) ∓ 1/2 ∓ S(γ+)]

+ cos
(
ω0(t− b) − ω2

0a
)
[1/2 + S(γ−) ± 1/2 ± C(γ−)]

+ sin
(
ω0(t− b) − ω2

0a
)
[1/2 + C(γ−) ∓ 1/2 ∓ S(γ−)]

}
from which we obtain the asymptotic behavior as t → ∞

1√
4πa

∫ ∞

b

cos
(
(t− t′)2/4a± π/4

)
sinω0(t

′ − b) dt′

= sinω0(t− b)

{
sinω2

0a
cosω2

0a

}
+ f±(t)

(C.1)
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where the function f±(t) is defined as

f±(t) =
1

4
sinω0(t− b)

{[
sinω2

0a∓ cosω2
0a

]
[S(γ+) + S(γ−) − 1]

+
[
cosω2

0a± sinω2
0a

]
[C(γ+) + C(γ−) − 1]

}
+

1

4
cosω0(t− b)

{[
sinω2

0a∓ cosω2
0a

]
[C(γ+) − C(γ−)]

−
[
cosω2

0a± sinω2
0a

]
[S(γ+) − S(γ−)]

}
and which vanishes as t → ∞. The dominant asymptotic behavior is therefore

1√
4πa

∫ ∞

b

cos

(
(t− t′)2

4a
+
π

4

)
sinω0(t

′ − b) dt′ ∼ sin (ω0(t− b)) sinω2
0a

1√
4πa

∫ ∞

b

cos

(
(t− t′)2

4a
− π

4

)
sinω0(t

′ − b) dt′ ∼ sin (ω0(t− b)) cosω2
0a

as t → ∞.
The limit values as |t| → ∞ of the action of a function f ∈ L1(R) are also of

interest. The following result is now proved (a > 0):

lim
|t|→∞

1√
4πa

∫
R

cos
(
(t− t′)2/4a± π/4

)
f(t′) dt′ = 0, f ∈ L1(R) (C.2)

To see this the following limit is observed (a > 0):∫ b

a

cos
(
α(t− t′)2 ± π/4

)
dt′ =

1√
2

∫ t−a

t−b

(
cosαx2 ∓ sinαx2

)
dx → 0, as |t| → ∞

Now let φ(t) be a step function

φ(t) =
n∑

k=1

αnχIn(t)

where In is an interval on the real line and χIn(t) the characteristic function for the
interval In. The result above implies that

lim
|t|→∞

∫
R

cos
(
(t− t′)2/4a± π/4

)
φ(t′) dt′ = 0

i.e., ∣∣∣∣∫
R

cos
(
(t− t′)2/4a± π/4

)
φ(t′) dt′

∣∣∣∣ ≤ ε

2
, for |t| ≥ T (ε)

Now let f ∈ L1(R) and choose a sequence of step functions {φn(t)}∞n=1 such that [2]∫
R

|f(t) − φn(t)| dt ≤ ε

2
, for n > N
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for some N .
For all ε > 0 the following estimate holds:∣∣∣∣∫

R

cos
(
(t− t′)2/4a± π/4

)
f(t′) dt′

∣∣∣∣
≤

∫
R

|f(t′) − φn(t′)| dt′ +
∣∣∣∣∫

R

cos
(
(t− t′)2/4a± π/4

)
φn(t′) dt′

∣∣∣∣
≤ ε

2
+
ε

2
= ε, for |t| ≥ T (ε, n)

for sufficiently large n.

Appendix D Delta sequences

Introduce the following notation:
f(x) =

√
2

π
cosx2

g(x) =

√
2

π
sinx2


fα(x) =

1

α
f(x/α)

gα(x) =
1

α
g(x/α)

where α > 0. The objective of this appendix is to prove that lim
α→0+

fα(x) = δ(x)

lim
α→0+

gα(x) = δ(x)

i.e., 
lim

α→0+

∫ ∞

−∞
fα(x)φ(x) dx = φ(0)

lim
α→0+

∫ ∞

−∞
gα(x)φ(x) dx = φ(0)

for all φ ∈ C∞
0 (R)

It is easy to verify that
∫ ∞

−∞
fα(x) dx =

∫ ∞

−∞
f(x) dx = 1∫ ∞

−∞
gα(x) dx =

∫ ∞

−∞
g(x) dx = 1

for all α > 0

by using the limit values of the Fresnel Integrals limx→∞C(x) = limx→∞ S(x) = 1/2,
see also Appendix C. The following estimates are useful (R > 0):

∣∣∣∣∫ R

0

f(x) dx− 1/2

∣∣∣∣ ≤ C1/R∣∣∣∣∫ R

0

g(x) dx− 1/2

∣∣∣∣ ≤ C1/R

(D.1)
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for some fixed constant C1. These estimates are easily obtained by using the Cauchy
integral on a segment (0 < arg z < π/4, 0 < |z| < R) in the complex plane.

We first address the limit of the function fα and we define

rα(x) =

∫ x

−∞
fα(x′) dx′ =

∫ x/α

−∞
f(x′) dx′

and ‖rα‖∞ ≤ M , where M is independent of α. For each α > 0 the function rα(x)
is a continuous bounded function. Specifically, from (D.1) we have{

|rα(x)| ≤ C1/|x|, x < 0

|rα(x) − 1| ≤ C1/x, x > 0
(D.2)

This suggests that the corresponding distribution is the Heaviside function, i.e.,

lim
α→0+

∫ ∞

−∞
rα(x)φ(x) dx =

∫ ∞

0

φ(x) dx for all φ ∈ C∞
0 (R)

We now prove this statement.
Assume that suppφ ∈ [−R,R]. For each ε > 0 we have∫ ∞

−∞
rα(x)φ(x) dx =

∫ −ε

−R

rα(x)φ(x) dx+

∫ ε

−ε

rα(x)φ(x) dx

+

∫ R

ε

(rα(x) − 1)φ(x) dx+

∫ ∞

ε

φ(x) dx

The following estimates holds, (use (D.2)):
∫ −ε

−R

rα(x)φ(x) dx ≤ ‖φ‖∞C1α ln
R

ε∫ R

ε

(rα(x) − 1)φ(x) dx ≤ ‖φ‖∞C1α ln
R

ε

and ∫ ε

−ε

rα(x)φ(x) dx ≤ 2ε ‖φ‖∞ ‖rα‖∞ ≤ 2ε ‖φ‖∞M

Therefore, we have

lim
α→0+

∫ ∞

−∞
rα(x)φ(x) dx = lim

α→0+

∫ ε

−ε

rα(x)φ(x) dx+

∫ ∞

ε

φ(x) dx

and in the limit ε → 0 we have, since ‖rα‖∞ ≤ M is independent of α

lim
α→0+

∫ ∞

−∞
rα(x)φ(x) dx =

∫ ∞

0

φ(x) dx
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and we have proved that

lim
α→0+

rα(x) = H(x)

in the sense of distributions.
Furthermore, we have

r′α(x) = fα(x)

We get ∫ ∞

−∞
fα(x)φ(x) dx =

∫ ∞

−∞
r′α(x)φ(x) dx = −

∫ ∞

−∞
rα(x)φ′(x) dx

Due to the fact that the distribution limα→0+ rα = H, and φ′ is a test function, we
get

lim
α→0+

∫ ∞

−∞
rα(x)φ′(x) dx =

∫ ∞

0

φ′(x) dx = −φ(0)

and we obtain

lim
α→0+

∫ ∞

−∞
fα(x)φ(x) dx = φ(0) for all φ ∈ C∞

0 (R)

This proves that

lim
α→0+

fα(x) = δ(x)

Similar analysis gives

lim
α→0+

gα(x) = δ(x)

From the analysis above it is now easy to prove that

lim
a→0+

1√
4πa

∫ ∞

−∞
cos

(
x2/4a− π/4

)
φ(x) dx

= lim
α→0+

1√
πα2

∫ ∞

−∞
cos

(
x2/α2 − π/4

)
φ(x) dx

= lim
α→0+

1

2

∫ ∞

−∞
(fα(x) + gα(x))φ(x) dx = φ(0)

and

lim
a→0+

1√
4πa

∫ ∞

−∞
cos

(
x2/4a+ π/4

)
φ(x) dx

= lim
α→0+

1√
πα2

∫ ∞

−∞
cos

(
x2/α2 + π/4

)
φ(x) dx

= lim
α→0+

1

2

∫ ∞

−∞
(fα(x) − gα(x))φ(x) dx = 0
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for all φ ∈ C∞
0 (R).

Thus 
lim

a→0+

1√
4πa

cos
(
x2/4a− π/4

)
= δ(x)

lim
a→0+

1√
4πa

cos
(
x2/4a+ π/4

)
= 0

(D.3)

in the distributional sense.
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