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Distributed Control with Low-Rank Coordination

Daria Madjidian and Leonid Mirkin

Abstract— A common approach to distributed control design  problem formulations, see [10], [11] and the references
is to impose sparsity constraints on the controller structure. therein.
Such constraints, however, may greatly complicate the control This paper puts forward an alternative structure, composed

design procedure. This paper promotes an alternative structug, -
which is not sparse, yet might nevertheless be well suited of a block-diagonal term perturbed by a block-rank-one com-

for distributed control purposes. The structure appears as te  Ponent. Although not sparse, this structure might be féasib
optimal solution to a class of coordination problems arising in in various distributed control applications. Indeed, thmdyo
multi-agent applications. The controller comprises a diagonal non-sparse, centralized task that has to be performed by
(decentralized) part, complemented by a rank-one coordination the controller is an averaging operation. This is a reljtive

term. Although this term relies on information about all . . . . .
subsystems, its implementation only requires a simple averaging simple numerical operation, which might be robust to sensor

operation. imperfections for large groups. It can be performed either
locally, by each agent, or globally, by a coordinator.
. INTRODUCTION This type of control structure has previously been sug-

The ability to cope with complexity is one of the con-gested in [12]. There, a diagonal (decentralized) comroll
temporary challenges of control engineering. Already ais complemented by a low-rank component in order to
established research area by the late 1970s [1]-[3], dontimprove robustness with respect to a certain type of model
of complex systems reinvigorated during the last decadancertainties. The controller is obtained by an LMI-design
impelled by recent technological progress, networking angrocedure, which relies on a special parametrization to
integration trends, efficiency demands, etc. ensure that the controller is of the desired form. However, i

Complexity may be manifested through different atorder to guarantee a convex synthesis procedure, only some
tributes, one of which is the presence of a very large numbelegrees of freedom in the parametrization are exploited. Th
of sensors and actuators. In such situations, fully cémé@] remaining variables are treated as fixed parameters, ngganin
structureless, information processing becomes infeasibkhat the approach might not fully utilize the proposed oointr
This motivates the quest for distributed control methodsstructure. Also, in the design procedure it is not evident to
with various constraints on information exchange betweewhat extent the addition of the low-rank component improves
subsystems and information processing in the controllgserformance for a given plant, or for which class of plants
Such structural constraints are conventionally expressed it is most beneficial.
terms of sparsity patterns [3]-[5], with nonzero elemenis c  Here, we arrive at the diagonal plus rank-one controller
responding to permitted coordination between subsystenfsom a different direction. We identify a class of large scal
Sometimes, delay constraints on the communication betweeoordination problems that happen to admit a solution of
subsystems are considered [5]. this form. Specifically, we consider a group of autonomous

Although a sparse structure can effectively limit theagents having identical dynamics and local criteria, with
amount of information processing in the controller, it subeoordination requirements introduced through a globat con
stantially complicates the analysis and design of contraitraint. This formulation is motivated by certain contrasks
systems. Many well understood problems might turn acutelyrising in wind farms. We show that, without any structural
opaque when sparsity constraints on the controller arecaddeonstraints, the problem admits a solution of the proposed
[6]. Analysis is simplified if the plant happens to possess form. The solution has additional appealing propertieg on
compatible sparsity pattern (the quadratic invariancedcon of which is that the computational effort required to obtain
tion [5], [7]) or if additional constraints are imposed oreth the optimal control law is independent of the number of
closed-loop behavior (like positivity [8], [9]). But evehdn, agents. Another is that the structure of the controller has
the computational burden grows rapidly with the problema clear interpretation. The diagonal part merely comprises
dimension and, more importantly, structural properties ahe local, uncoordinated control laws. The rank-one part is
the resulting controller are rarely transparent. Revegadinch  then responsible for coordination via fine-tuning the local
properties proved to be a challenge even in seemingly simptentrollers on the basis of measurements of an “average”

_ agent.
This research was supported by the Swedish Research Calraigh . . T
the LCCC Linnaeus Center and by the European commission thrthey The averaging Of. measured Var'ab_les of individual sub-
project AEOLUS. systems may be viewed as a spatial counterpart of the
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With this analogy in mind, we expect the proposed controller  speed and mean power production, the WTs may be
structure to be advantageous even in problems outside the considered to have equal dynamics.
class studied in this paper. 2) Due to a large distance between individual turbines in
The paper is organized as follows. In Section Il, we  WPPs, it is common to assume [17], [18] that wind
consider a coordination problem arising in wind farms. This  speed variations experienced by them are uncorrelated.
problem serves a motivation for the theoretical develogmen \yjith these observations in mind, below we address a
in Sections Il where we study LQR-problems with hardcoordination problem with a stripped-dofvmersion of indi-
coordination constraints. This section also contains an eyijual WTs models and performance indices studied in [18].
tensive discussion on properties of the resulting corroll \we consider a WPP comprising turbines, each operating

configuration and the structure of the optimal cost. Thground a mean wind speed of 10m/s and a nominal power
developments are illustrated by numerical studies of theesa production of 2 MW. Each turbine is modeled as

wind farm coordination problem. Concluding remarks are
provided in Section IV. i; = Ax; + Byw; + Byu;, i=1,...,v

Notation: The transpose of a matrid/ is denoted \where[ 4 B, B, ] take the following numerical values:
as M’. By e; we understand théth standard basis of an

Euclidean space and bi,—the n x n identity matrix (we 0 120 —-0.92 0 0 0 0
drop the dimension subscript when the context is clear). Thg 0.0084 —0.032 0 0 0 :0.12.-0.021
Kronecker product of two matrices is defined as 0 150 —-16 O 0O 0. O
0 0 0 0 1 0 0
B .. mB ! !
au “ 0.021 0054 0 -4 —032/02 0
A® B = : ‘ ‘
apB - apmB Here the state vector spells out as
The L2 norm of a signak is denoted ag¢|». pitch angle
rotor speed
1. MOTIVATING EXAMPLE: COORDINATION IN WIND x; = | internal controller state]
FARMS nacelle fore-aft positio
wind energy is an increasingly active application area for nacelle fore-aft speed

control, see [14] and the references therein. Lately, thado and the exogenous disturbange is the deviation in wind

is shifting from control of a stand-alone wind turbine (WT) to . : . .
) speed from its nominal value, modeled as a white noise
coordinated control of networks of WTs, commonly known

. . . . rg'Jrocess with unit intensity. In the model each WT is assumed
as wind power plants (WPP) or wind farms. In this sectio . . . )
to be equipped with an internal controller that receives

we consider a coordination problem arising in Iarge-scalg ower reference and manioulates the bitch anale and
WPPs, which is used to motivate the problem studied in this P puiat pitch -ang
generator torque. The control signalis the deviation in the
paper. ! ;
power reference from its nominal value. The model neglects

A. Problem description generator dynamics, which makes equal to the actual

We consider the problem discussed in [15], [16], where H€Viation in the power production of the WT. _
WPP is required to meet a certain power demand. To achievel©llowing [18], we assume that each turbine aims at
this, the WTs need to coordinate their power productiorfichieving a trade-off between regulating the rotor speed,
Since there are multiple WTs in the farm, certain freedorffducing fatigue loads on the tower, and preventing exeessi
exists in distributing the power demand among them. Thigiich activity and power deviations. The performance of the
freedom can be used to address local objectives of individu4" turbine is quantified as the variance of the regulated
turbines, such as regulating rotor speed, reducing fatigl@ablez; = C.z; + D.,u;, where
loads, preventing exce_ssive pitch action, etc. Thus, aadste ‘ diag{\/().T, 100,0, 100’0} 0
of following a fixed portion of the power demand, a WT can [ C. Dy ] = 0 | .
be allowed to continuously adjust its power production in
response to local wind speed fluctuations. Since wind speéu other words, for each turbine we consider the state-
fluctuations are not the same across the WPP, changesféedbackH? problem for the closed-loop system fromy
power production that benefit one WT can be compensatéd z;.
for by changes at WTs with opposite needs. The combined power production of the WTs must satisfy
For control design purposes, it is common practice ta power demand to the WPP, which is assumed to be the sum
model a WT as a linear system around an operating poirdf nominal WT power productions. Sineg is the deviation
It may also be natural to make two additional simplifying
assumptions. LIn particular, we measure the input in MW, use neither a dynanudel

. . . . . . of the effective wind speed (its DC gain is absorbed into thelefjonor
1) WTs in a WPP are often identical in their deS|gn. Bydynamic weights on regulated signals (we use approximate staights

assuming that they operate around the same mean winétead).



from nominal WT power production, this requirement can 08452 o degree of sparsity n = 1
be imposed as the constraint

zyjui =0, @
=1

which introduces coordination between individual WTs.
The resulting constrained/? problem can be converted
to a standard unconstrained one by resolving (1) for any

4 degree of sparsity n =2
o degree of sparsity n = 3
non-sparse solution

0.2837

0.1869

Cost of coordination per turbine

i, say asu; = —(ug + --- + u,). This results in anH?
problem withrv subsystems and — 1 control signals. Yet T35 5 1w 15 20 25
the dynamics of subsystems and the cost function in the latte Number of turbines, v

proplem .are COUpIed' _ThIS mlght, eSpeCIQIIy if the numb.er ig. 1. Cost of coordination per turbine under differentrées of sparsity.
turbines in the WPP is very large, considerably complicate

both the solution procedure (the curse of dimensionalitg) a
the implementation of the resulting controllers. Therefar Fig. 1 shows the normalized difference between fié

scalablesolution is of interest. performances attained with and without the coordinatiam co
] straint (1) (the normalized cost of coordination) as a fiamct
B. Towards a scalable solution of v for different degrees of sparsity. We can see that as

As discussed in the Introduction, the conventional apthe sparsity restriction is relaxed, i.e., asincreases, the
proach in the field is to impose some kind of sparsityperformance improves. Besides, the performance of sparse
constraints on the controller and seek a scalable optimizaontrollers improves as increases. We can also see that the
tion procedure to solve it. By limiting the information improvement is not as fast as in the non-sparse (shown by
exchange between subsystems, a sparse structure can entigesolid line) case. This, however, was rather expected and
that the information processing at each subsystem remaiisnot the main focus of this example.
viable as the number of subsystems grows. This property Rather, we would like to emphasize difficulties encoun-
is important, so it frequently preponderates over inelitab tered in designing the sparse controllers. Although nabléas
losses of performance. The problem is that imposing syarsien the plot, these difficulties are readily appreciable. feg
constraints might significantly complicate the design. ©ncthat the problem is not convex renders the whole procedure
the constraint (1) is resolved, our problem only satisfiesensitive to the choice of initial values for the feedback
the quadratic invariance condition of [7] for a handful ofgain. We did experience convergence to local minima, so
structural constraint options (e.g., block triangularhother the solutions presented in Fig. 1 are the result of multiple
choice discussed in the Introduction, imposing positivityuns of the algorithm. And we still cannot guarantee that
constraints on the closed-loop dynamics [8], is not suitablthe results are globally optinfal Moreover, potential con-
for our problem because we work in deviations from nominagervatism might have been introduced by considering the
values. We thus may consider resorting to nonconvex opthore restrictive clas$t,_; in the second step of the design
mization procedures, relying upon a proper choice of ihitisand by fixing the feedback gain to be static (not a clear
parameter guess. choice in the of structural constraints [11]). In addition,

To provide a flavor of such an approach, we confine odh€e optimization procedure itself is quite demanding, its
attention to static state-feedback controllers= Fz, and Ccomputational complexity grows with the increase mf

add the constrainF” € H,,, where for a givem € N Finally, the results of the numerical procedure are notequit
transparent, with no indication of what effect small change
H, := {F : F;; = 0 whenever|i — j| > n } of the system parameters might have on it.

o _ _ , To conclude, from the distributed control viewpoint the
and the addition in the spatial variable is performed mOd”|°probIem appears to be a challenge. Nonetheless, in the next
v (e.g,v+1 = 1). The parametey determines the number of o qtion we show that its non-sparse version has a closed-for

“neighbors” of each subsystem and can be interpreted as g, apje solution, with additional appealing properties.
degree of sparsity. The problem is indeed not quadratically

invariant underF’ € H,,. To end up with a (potentially sub- 1. LQR wITH COORDINATION CONSTRAINTS
optimal) controller having the desired structure, we use an Motivated by the problem considered in Section II, in this
approach similar to that proposed in [16]: section we study an optimization problem for non-interagti

1) Resolve constraint (1) by the change of variahlgs=  subsystems, having identical dynamics, with coordination
@; — (41,1 + ©1;11)/2, which couples the subsystems. constraints. To simplify the presentation, we consider an

2) Apply the distributed gradient method in [19] to find aLQR version of the problem, although the extension to the
feedback lawi = 'z, with £ € Hy—1. H? formalism (external disturbances) is straightforward.

3) Transform li?a.Ck;u — u, 1o obtain . Note that, I* € 2In fact, they are not, as attested by the sub-optimality ofrg=ilting
H,)—1 Is sufficient but not necessary to ensufes H,. ot in the case of = 3 andw = 7, for instance.



A. Problem statement the cost function in (6a) is

and the constraint (6¢) reads

(W @ Ip)u— (0 @ F)xz =0,

Considerr independent systems

wherez;(t) € R can be measured,(¢) € R™, and the pair
(4, B) is stabilizable. Associate with each of these systems

the performance index The key idea behind our solution is to apply coordinate
0o transformations to the state and input signals that deeoupl
Ji = / (25(8)Qaw;(t) + ui(t)u;(t))dt (3) constraint (6c) on the one hand, while preserving the uncou-

0

pled structure of the system and cost on the other. This can
for some@, > 0 and such that the paifQ., A) has no be achieved by the coordinate transformations
unobservable modes on the-axis. Minimizing J; for ¥; - -
! ¢ = 1, = 1,
would be a set o standard uncoupled LQR problems. We Ti=UalL)e and @:=(UeIn)u ©)
couple these problems by constraining the behavior of tHer some unitary matrix U € R**”. Indeed, using the

center of mas®f ¥;, understood as the system relation (M; ® N1)(Ma ® No) = (M1Ms) ® (N1 N3), it is
. - - - - readily seen that both (7) and (8) remain the same, modulo
Y:a(t) = Az(t) + Bu(t), 2(0) = 2o @) the replacement of andw with & and, respectively, while

the coordination constraint changes and becomes
v v (M/U/®Im)’ll— (/J/U/®F).i‘ = 0

u(t) = Z“i“i(t) and z(t) := Z’“‘ixi(t)’ ®) 75 achieve decoupling, we may consider the following
=t =t requirements or/:

where the weightg,; # 0 may be thought of as the masses Up=e. (10)

of each subsystem. Coordination is understood as imposing . . )
a desired behavior on. Our formulation is as follows: Because: is assumed to be a unit vector, there is always a
satisfying (10). A possible choice is the matrix of trangpos

o . left singular vectors ofu.
minimize - J 2‘7 (6a) Thus, when expressed in terms &f and @ with U

connecting the signals

subject to ¥; ;::1 1 y (6b) satisfying (10), problem (6) still has an uncoupled cost
T function and uncoupled dynamics. But now the constraint,
u—Fz=0 (6¢)  which reads(e} ® I,)a — (¢} ® F)z = 0, is imposed only

for some “gain” F (the problem studied in Section Il UPON the first elements af andz, i.e., it reduces to

corresponds td” = 0). We implicitly restrict our attention i — Fiy =0. (11)
to stabilizing controllers only. Without loss of genenglitve

also assume that the weights are normalized g2 = 1. Hence, (6) splits intar independent problems, with théh
! problem depending only on the variablesand ;.

Fori = 2,...,v, we have identical unconstrained LQR
roblems with dynamics of the form (2) and cost functions

Remark 3.1 (minimizing weighted sum@): The
weights ; may be manipulated to assign importance t(B
[

eja?rk: (Zl;?sv{istfr&ewiesigﬁ?end zlj%]bf gt:ta)i\n;d f\éirasgiﬁ)leac ¥ the form (3). Each one of these problems is then solved
A; > 0. The addition of};, however, doés not enrich the t;y the (stabilizing) control lawsi;(t) = Fai(t), where

. . . w = —B’X, and X, > 0 is the stabilizing solution of the
design. It is only a matter of scaling eachandw; by v/)\; algebraic Riccati equation (ARE)
and then replacing:; with y;/+/A; (with the normalization
assumptiony, #Z/A; = 1). In the choice betweery' and A'Xpy+ XoA+ Qo — XoBB'X, = 0. (12)
‘)’ scalings we picked the former because it allows negativ:lehese control

: laws achieve the optimal performance
weights.

N, -
ZCZ-OXQI,L'().
For i = 1, constraint (11) completely determines,

) - ) ) rendering the optimization irrelevant. The plant dynamics
We start with rewriting (6) in an aggregate form using thghan pecome

Kronecker product notation. Introduce the unit vector

B. Problem solution

21(t) = (A+ BF)#(t), #1(0) = 1o

!
pi=[m o | and the cost function

and the aggregate state and control signals= ) .e; ® < L
z; andu == ¥, ¢; ® u;, respectively. In this notation, the /0 (1) (Qa + F'F)T (t)dt

dynamics of the aggregate systems are , . , _
(independent ofi;). The dynamics of are stable iffA+ BF

&(t) = (I, ® A)x(t) + (I, @ B)u(t), (7) is Hurwitz and in this case the value of the cost function



is finite and equalst), X 7o, Where X > 0 verifies the where X, > X, is the stabilizing solution of the ARE
Lyapunov equation - -
N SV E 4+ 7(A _ - (A+ BEF,) X5 + X5(A+ BEF))
(A+ BFY X + X(A+ BF) + Qo + F'F=0. (13) + Qo+ F{Fy) — XoB(I — EE'YB'X5 =0
The arguments above solve (6) in terms of the transform
variables in (9). What is left is to transform this solutiorcka
to x andw. This is done in the following theorem, which is
the main technical result of this section: C. Discussion
Theorem 3.11et A + BF be Hl.JrWItZ. and the pair The remainder of this section is devoted to properties
(Qa, A) have no unobservable pure imaginary modes. Ther}

the ARE (12) and the Lyapunov equation (13) are solvabigy (T 3100 IRSeree B PHE0ram S T PETEer 8
with X > X., and the unique solution of (6) is P

ability for distributed control applicationgl(I-C.1), interpret

%hd the stabilizability of the paifA + BEF,, B(I — EE"))
is required. Equation (13) is solved then Ay= Xo. v

ui(t) = Foxi(t) + pui(F — Fo)Z(t), (14) the LQR problems in terms of the transformed variables
. _ . _ (9) arising in the derivation as a technical steépll{C.2),
where I, = —B'X, is the LQR gain, associated with the quantify the effect of the coordination constraint (6c) be t

uncoordinated version of the problem, without (6¢), and  performance of each subsystefillcC.3), and explore the
the state vector of the center of masslefined by (5). The possibility of adding tracking requirements to the behavio
optimal performance attainable by this controller is of the center of mass;\I-C.4).

1) Control law: computation and structureAn important
property of the solution of Theorem 3.1 is its computational
scalability. To calculate the optimal controller, we onlged
where J; opt = 2y X oo iS the optimal uncoordinated coststo solve ARE (12), which is the Riccati equation associated
of ¥, andz is the initial condition of the center of mass. with the local, unconstrained, LQR. The computational rffo

Proof: The solvability of the Riccati equations underto obtain the solution is thus independent of the number of
the conditions of the theorem is a standard result [2Gubsystems, which is an attractive property in the context
Thm. 13.7]. The inequalityX > X,, follows by the fact that of distributed control.

Jopt =Y _ Ti.opt + T6(X — Xo) o, (15)

i=1

if u; = Fa;, thenJ; = zlgXxio > 2}y Xoxio = Tiopt fOr The low computational burden is not the only property of
any ;. Now, the developments preceding the formulatiomontroller (14) that is appealing in distributed contropbp
of the theorem imply thati = F'Z, where cations. Its structure is even more intriguing. The optimal

control law is a superposition of a local teri,z;(t), and

ni / / n X X
F=(l,—ee) @ Fy + (e1e1) @ F. a (scaled) coordination term,

Then (9) implies that. = Fx = (U’ ® 1,,) F(U ® I,,)z, SO, U 0= (F — FE(H). 18
with the help of (10), we obtain coord?) i= (£ = Fa)2(?) (18)
, _ The former is the optimal uncoordinated control law for
F=1,&Fo+ (u')® (F - Fa), (16) %, and is fully decentralized. Coordination then adds a
which yields (14). Finally, “correction” of the formy; tcoord t0 thlsllocal controller. This
term destroys the (sparse) decentralized structure asafone
Jopt = To((1, — er€}) @ Xo + (er€] ® X))o (17a) the elements of the overall feedback gain (16) is zero in
= 2 (I, ® Xo + (1) ® (X — X))o, (17b) general. Noneth_ele;s, the resulting configuration mighit su
large-scale applications well.
from which (15) follows immediately. [ ] The non-sparse coordination term, which may be thought

Remark 3.2 (constraining a part af): If F = F,, then of as a (block) rank-one correction to the (.block) diagonal
the Lyapunov equation (13) is solved by = X, and local controller, depends on]y on the' behavior of. the center
(14) reduces to the decentralized control law solving thf Mass. Thus, although this term hinges upon information
uncoordinated version of (6). In other words, the coordidPout all subsystems, the only operation required in its
nation constraint becomes void if it attempts to mimic th&onstruction is averaging. This information clusteringyroe
optimal unconstrained dynamics. Likewise, we can constraffought of as a form ospatial generalized samplinghere
only a part ofa by mimicking the optimal, with respect to the information required to form the correction component,
(3), control trajectory of the partially constrained prefl “coorss IS Obtained by aggregating distributed information
by its other part. Namely, leE be a tall matrix such that N @ weighted average. In this regard, the ideal sampling

E'E = I. It can be shown that the optimization of (6) [21], where the intersample information is ignored, would
with (6¢) replaced by the partial constraifita — 1,z = 0 correspond to the decentralized structure. The coordinati

corresponds to the original formulation with term of the control law of Theorem 3.1 could then corre-
- - spond to a generalized sampling [13], where the intersample
F=FEF — (I - EE")B'X, information is aggregated via weighted averaging.



The information aggregation viais clearly less demand- Form (20a),
ing, from both computation and communication viewpoints,
than an individual processing of eaeh Hence, the control = “Lo e y _
law (14), although centralized, may be feasible for distieil J = Z;/o (@i — 137) Qa (i — pi)

control. Measurements of the center of mass could, in + (w; — pg) (w; — pa))dt.
principle, be done either globally, by a coordinator, orreve
locally, by each subsystem. In other words,7 may be thought of as the cost of deviating

Remark 3.3 (interpretation of the coordination policy): from the normalized center of mass. The normalization
Constraint (6c) can be satisfied without informatiorbecomes particularly transparent if all systems have equal
exchange if each subsystem applies= Fz;. The term masses, i.e., ifi; = 1/,/v. In this casew;z = %Zi z; and
(F' — Fy)z; can then be interpreted as a desired violation,u = 1 3" u; are merely the average state and input signals

of this strategy in order to improve the performance wittand 7 quantifies the cumulative deviation from the average.
respect ta7;. By rewriting the coordination term (18) as  |n the same vein, (20b) leads to

Ucoord(t) = ) pi(F — Fo)xi(t), I o
; T=>_> /0 ((mjzs — piz) Qa(pyzs — piz;)
we see that the benefit of exchanging information (coor- e + (s — prig) (g — priug))dt,
dination) is that subsystems can compensate each other’s
violations. v which penalizes mutual deviations of each subsystem from

the others (the scaling factors and; just align the subsys-

; 2) I;.QR pfrot?[letms |r(1j t'ermf of; C‘?ndtui: dT?e gags- 9ems to render the comparison meaningful), thus encougagin
ormation of state and input coordinates defined by ( e achievement of an optimabnsensus

and (10) serves the purpose of decomposing the prOblemSummarizing, by solving (6) we effectively reach two

into one problem with a prespecified control law and and . . .

. . als: impose a required behavior on the center of mass and
v —1 unconstrained LQRs. These problems have meaningfal. ~."". . g
interpretations minimize discrepancy between subsystems. The optifhal

. . can then be viewed as a measure of “gregariousness” or,
First, a comparison of (11) and (6¢) suggests that perhaps, as a “herd instinct index” in the aggregate system
1=z and @, =a. (7). It follows from the proof of Theorem 3.1 (cf. (17a)) that

This is indeed true, as can be seen throiigh= (¢, ®1,)% =  Jopr = o ((1, — ere}) ® Xo)@o = 2o ((1, — pi') ® Xo) o
(T @Iz = (¢ ® I,)x = Z, for instance. Thus, the

constrained problem is concerned with the center of mass = Zjiyopt—i()Xa:fo. (21)
(4) and its solution results in the dynamics i=1
Z(t) = (A+ BF) &(t), (19) Thus, the attainable local uncoordinated cogigp: also
determine the cumulative closeness of systémso each
as expected. other. It is worth emphasizing thaf,,; does not depend on

_ The other components af and u do not possess such the constraint imposed on the behavior of the center of mass.
interpretations per se, they are not even unique. Nevesbel Thjs separation is an intriguing property of the solution of

the unconstrained LQR cost built on them, (6).
J = Z/oo(ngi(t)Qaji(t) 4 ﬂ;(t)ﬁi(t))dt 3) Cost of coordination per subsysteriihe last term in
= Jo the right-hand side of (15) quantifies the deteriorationhef t

(this is what the control law (14) actually minimizes), can@g9regate) performancg due to the coordination constraint
be interpreted. To this end, rewrite (6¢c). Below, we look into the effect of coordination on the

performance of individual subsystems.
We begin with the following result:
Proposition 3.2: The value of theith performance index

o . . J; under the control law (14) is
(the last equality is obtained by (9) and (10)) and, likewise

Y2 TiQa®i = (I, — pp') ® Qo). It can be shown, by Ji = Tiopt+ 12 50(X — X4o)To, (22)
routine regrouping, that
Y wherez, is the initial condition of the center of mass.

I, —pp' = Z(ei — i) (e — pip)’ (20a) Proof: The control law (14) is a superposition of the
= locally optimal control law and the signa] = u;(F — F,,)Z.
v=1 v It is known (see the proof of [20, Thm. 14.2]) that for any

=3 (ujei — pies)(pjei — pae;)', (20b) v,

i=1 j—it1 Ji = Tiopt + ||vi]|3-

Zﬂ;ﬁl =4 (I —ere) @ Ip)u = u' (I, — pp') @ Ly)u
i=2



As follows from (19), the last term in the right-hand sideStill, the “measure of gregariousness” interpretation b t
above equalg?z(, X, 7o, whereX, > 0 solves the Lyapunov unconstrained part of the optimization, as discussegllln
equation C.2, remains valid. Moreover, the value of the cost function
_, _ _ . = in (21) is finite and independent of so it can be used to
(A+BE)X, + Xy(A+ BE) + (F = Fo)(F — Fa) = 0. quantify group tracking properties of the system.
(22) then follows by the fact thaX,, = X — X, which can
be verified by straightforward algebra.

The second term in the right-hand side of (22) is exactlgt
the cost of coordination for théth subsystem. It is a . . . .
function of the other subsystems through the veetorThe formulations compatible with that |§1IITA, we assume that
dependence ofiy on an unspecified relation between the"® ~— Buwvi, w_here v; are mu_tual_ly |[1depende_nt random
initial states of all subsystems complicates the analygis eiarlables of unit variance. This yieldg = B,v, where

the cost of coordination. If, for instance, = 0, then Y ‘= 2_; #iv; is of unit variance as well. We then end up

. . B S - o
Ji = Jiopt and the coordination in that case comes agrthal(le? with B = By, Qo = C.C:, F =0, andu; = 1/yv
1.

no cost. But if everyz;; = p;x for some R™, then . o
Zo = y and we endyuzpo witﬁ%xz xgoXxi(:(Tehis is what By Theorem 3.1, the optimal control law is given by
we would have if the control laws; = Fx; were applied w; = Fow; — Fota,
to each subsystem, which would correspond to an attempt . ] )
to enforce (6¢) without communication between subsystem¥&Nereza 12_% >.; @i is the average state of wind turbines
To avoid the dependence ag, we assume hereafter thgg  @nd the gainF, is obtained by solving ARE (12). To
is bounded as a function of the number of subsysteris calpulgte the cost of coo_rdmauon depicted in Fig. 1 by the
this case the ternz, (X — X,)Z, is bounded as well and solid line, we use Proposition 3.2 to end up with the formula
the cost of coordipation becomes quadratically propoaiion Ji — Jiopt = LB (X = Xo)Bu,
to the corresponding “masgi;. B

Consider now what happens with the cost of coordinatiowhere X is the observability Gramian dfC., A). This cost
per subsystem when the number of subsystems co. It ~ tends to zeros ag — oo.
follows from the normalization assumptiop,_, u? = 1 With its structural properties revealed, the non-sparse
that at most a finite number subsystems may haves 0 solution to (6) compares favorably with the sparsity-based
in this case. If such subsystems do exist, they domina@e considered ir§ll-B. Our calculations are scalable, in
(5) and we then effectively have coordination between #act, they are independent of the number of turbines. The
finite number of subsystems. It is then natural that the coggsult is always globally optimal. The effect of the coordi-
of coordination for those subsystems does not vanish ashation constraint on the local performance of each turbine
grows. If, however, ally; — 0 asv — oo, the situation IS transparent and easy to calculate as well. The price we
is different. In this case the coordination constraint (8g) Pay is that the resulting controller is centralized. Thiginti
in a sense, spread among all subsystems and the costnet be feasible in some situations where communication con-
coordination per subsystem vanishes with the increase of straints are restrictive. Still, the only centralized imfation
For example, if we assign equal weights to each subsystengocessing that is required to execute the control law is the
i.e., if every u; = 1/4/v, then the coordination toll per averaging operation to calculaie,z.. This does not require
subsystem decreases inversely proportional to the numbat individual processing of the global state of the wholenfar
of subsystems. The decrease of the coordination cost ky each turbine. It thus could be feasible even for a large
intuitive, as the addition of more subsystems brings moré&rm.
opportunities for coordination.

D. Wind farm example (cont'd)

We are now in the position to return to the example
udied in Section II. To render the current LQR problem

IV. CONCLUDING REMARKS

4) Tracking: Constraint (6c) can be modified to incorpo- |n this paper we have studied a class of LQR problems,
rate tracking requirements on the center of mass (4). F@fhere autonomous agents with identical dynamics seek to
example, we may consider the constraint reduce their own costs while coordinating their center of
mass (average behavior). We have shown that the solution
to these problems has two importastalable properties.
for a reference signal. This would yield the control law  First, the problem decomposes into two independent LQR

problems: one for a single uncoordinated agent and one for

a=Fz+r

ui(t) = Fori(t) + pi(F — Fa)Z(t) + pir (1), the center of mass, whose dynamics has the same dimension
instead of (14), and the following dynamics of the center ofS those of individual agents. Hence, the computationafteff
mass: required to obtain the solution is independent of the number
z(t) = (A+ BF) Z(t) + Br(t) of agents. Second, the structure of the resulting contrile

transparent, comprising a (block) diagonal decentraljzz
(in lieu of (19)). The cost function7 in this case is and a (block) rank-one coordination term. The coordination
no longer relevant per se, it might even be unboundeterm relies on information about all subsystems, but only



requires a simple averaging operation. This renders thet]
structure well suited for implementation in distributechtrol
applications. [12]

We have also revealed several other properties of the opti-
mal solution. In particular, the cost of coordination ineat
by each subsystem has been quantified and shown to vanﬁlsﬂ
as the number of subsystems grows; the coordination prob-
lem has been interpreted in terms of a consensus-like cd&f]
function; the cost of the cumulative deviation of subsystem -
from the center of mass has shown to be independent of the
behavior of the center of mass itself.

Although we have studied only the specific LQR problemm]
the diagonal-plus-low-rank structure may show up in a
wider spectrum of applications. Relatively straightfordia
extensions include replacing the coordination constnaitit
a coordination penalty (results in a diagonal-plus-rank-o
solution), problems with- coordination constraints (would
result in a diagonal-plus-rank-configuration), and output- 18]
feedbackH? formulations (adding local estimators). Other
directions may be less trivial. For instance, it may be impor[lg]
tant to account for additional constraints on the inforoati
exchange between agents, like delays or a sampled-data
structure. Another possible direction, which would requir [20]
a substantial alternation of the solution procedure, is tg
consider coordination among heterogeneous agents. Furthe
more, it is interesting to investigate the possibility of re
ducing information processing/complexity by imposing the
diagonal-plus-low-rank structure in problems, where ieslo
not arise as an outcome of the unconstrained optimization
procedue.

Last but not least, up to this point we managed to discuss
distributed control without mentioning the word “graph.”

[17]
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