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Distributed Control with Low-Rank Coordination
Daria Madjidian and Leonid Mirkin

Abstract— A common approach to distributed control design
is to impose sparsity constraints on the controller structure.
Such constraints, however, may greatly complicate the control
design procedure. This paper promotes an alternative structure,
which is not sparse, yet might nevertheless be well suited
for distributed control purposes. The structure appears as the
optimal solution to a class of coordination problems arising in
multi-agent applications. The controller comprises a diagonal
(decentralized) part, complemented by a rank-one coordination
term. Although this term relies on information about all
subsystems, its implementation only requires a simple averaging
operation.

I. I NTRODUCTION

The ability to cope with complexity is one of the con-
temporary challenges of control engineering. Already an
established research area by the late 1970s [1]–[3], control
of complex systems reinvigorated during the last decade,
impelled by recent technological progress, networking and
integration trends, efficiency demands, etc.

Complexity may be manifested through different at-
tributes, one of which is the presence of a very large number
of sensors and actuators. In such situations, fully centralized,
structureless, information processing becomes infeasible.
This motivates the quest for distributed control methods,
with various constraints on information exchange between
subsystems and information processing in the controller.
Such structural constraints are conventionally expressedin
terms of sparsity patterns [3]–[5], with nonzero elements cor-
responding to permitted coordination between subsystems.
Sometimes, delay constraints on the communication between
subsystems are considered [5].

Although a sparse structure can effectively limit the
amount of information processing in the controller, it sub-
stantially complicates the analysis and design of control
systems. Many well understood problems might turn acutely
opaque when sparsity constraints on the controller are added
[6]. Analysis is simplified if the plant happens to possess a
compatible sparsity pattern (the quadratic invariance condi-
tion [5], [7]) or if additional constraints are imposed on the
closed-loop behavior (like positivity [8], [9]). But even then,
the computational burden grows rapidly with the problem
dimension and, more importantly, structural properties of
the resulting controller are rarely transparent. Revealing such
properties proved to be a challenge even in seemingly simple
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problem formulations, see [10], [11] and the references
therein.

This paper puts forward an alternative structure, composed
of a block-diagonal term perturbed by a block-rank-one com-
ponent. Although not sparse, this structure might be feasible
in various distributed control applications. Indeed, the only
non-sparse, centralized task that has to be performed by
the controller is an averaging operation. This is a relatively
simple numerical operation, which might be robust to sensor
imperfections for large groups. It can be performed either
locally, by each agent, or globally, by a coordinator.

This type of control structure has previously been sug-
gested in [12]. There, a diagonal (decentralized) controller
is complemented by a low-rank component in order to
improve robustness with respect to a certain type of model
uncertainties. The controller is obtained by an LMI-design
procedure, which relies on a special parametrization to
ensure that the controller is of the desired form. However, in
order to guarantee a convex synthesis procedure, only some
degrees of freedom in the parametrization are exploited. The
remaining variables are treated as fixed parameters, meaning
that the approach might not fully utilize the proposed control
structure. Also, in the design procedure it is not evident to
what extent the addition of the low-rank component improves
performance for a given plant, or for which class of plants
it is most beneficial.

Here, we arrive at the diagonal plus rank-one controller
from a different direction. We identify a class of large scale
coordination problems that happen to admit a solution of
this form. Specifically, we consider a group of autonomous
agents having identical dynamics and local criteria, with
coordination requirements introduced through a global con-
straint. This formulation is motivated by certain control tasks
arising in wind farms. We show that, without any structural
constraints, the problem admits a solution of the proposed
form. The solution has additional appealing properties, one
of which is that the computational effort required to obtain
the optimal control law is independent of the number of
agents. Another is that the structure of the controller has
a clear interpretation. The diagonal part merely comprises
the local, uncoordinated control laws. The rank-one part is
then responsible for coordination via fine-tuning the local
controllers on the basis of measurements of an “average”
agent.

The averaging of measured variables of individual sub-
systems may be viewed as a spatial counterpart of the
generalized sampling operation [13]. This is in contrast tothe
decentralized structure, which may be thought of as a form of
the ideal sampling, that ignores the intersample information.



With this analogy in mind, we expect the proposed controller
structure to be advantageous even in problems outside the
class studied in this paper.

The paper is organized as follows. In Section II, we
consider a coordination problem arising in wind farms. This
problem serves a motivation for the theoretical developments
in Sections III where we study LQR-problems with hard
coordination constraints. This section also contains an ex-
tensive discussion on properties of the resulting controller
configuration and the structure of the optimal cost. The
developments are illustrated by numerical studies of the same
wind farm coordination problem. Concluding remarks are
provided in Section IV.

Notation: The transpose of a matrixM is denoted
as M ′. By ei we understand theith standard basis of an
Euclidean space and byIn—the n × n identity matrix (we
drop the dimension subscript when the context is clear). The
Kronecker product of two matrices is defined as

A ⊗ B :=







a11B · · · a1mB
...

.. .
...

ap1B · · · apmB






.

The L2 norm of a signalξ is denoted as‖ξ‖2.

II. M OTIVATING EXAMPLE : COORDINATION IN WIND

FARMS

Wind energy is an increasingly active application area for
control, see [14] and the references therein. Lately, the focus
is shifting from control of a stand-alone wind turbine (WT) to
coordinated control of networks of WTs, commonly known
as wind power plants (WPP) or wind farms. In this section
we consider a coordination problem arising in large-scale
WPPs, which is used to motivate the problem studied in this
paper.

A. Problem description

We consider the problem discussed in [15], [16], where a
WPP is required to meet a certain power demand. To achieve
this, the WTs need to coordinate their power production.
Since there are multiple WTs in the farm, certain freedom
exists in distributing the power demand among them. This
freedom can be used to address local objectives of individual
turbines, such as regulating rotor speed, reducing fatigue
loads, preventing excessive pitch action, etc. Thus, instead
of following a fixed portion of the power demand, a WT can
be allowed to continuously adjust its power production in
response to local wind speed fluctuations. Since wind speed
fluctuations are not the same across the WPP, changes in
power production that benefit one WT can be compensated
for by changes at WTs with opposite needs.

For control design purposes, it is common practice to
model a WT as a linear system around an operating point.
It may also be natural to make two additional simplifying
assumptions.

1) WTs in a WPP are often identical in their design. By
assuming that they operate around the same mean wind

speed and mean power production, the WTs may be
considered to have equal dynamics.

2) Due to a large distance between individual turbines in
WPPs, it is common to assume [17], [18] that wind
speed variations experienced by them are uncorrelated.

With these observations in mind, below we address a
coordination problem with a stripped-down1 version of indi-
vidual WTs models and performance indices studied in [18].
We consider a WPP comprisingν turbines, each operating
around a mean wind speed of 10 m/s and a nominal power
production of 2 MW. Each turbine is modeled as

ẋi = Axi + Bwwi + Buui, i = 1, . . . , ν

where
[

A Bw Bu

]

take the following numerical values:












0 120 −0.92 0 0 0 0
0.0084 −0.032 0 0 0 0.12 −0.021

0 150 −1.6 0 0 0 0
0 0 0 0 1 0 0

0.021 0.054 0 −4 −0.32 0.2 0













.

Here the state vector spells out as

xi =













pitch angle
rotor speed

internal controller state
nacelle fore-aft position
nacelle fore-aft speed













and the exogenous disturbancewi is the deviation in wind
speed from its nominal value, modeled as a white noise
process with unit intensity. In the model each WT is assumed
to be equipped with an internal controller that receives
a power reference and manipulates the pitch angle and
generator torque. The control signalui is the deviation in the
power reference from its nominal value. The model neglects
generator dynamics, which makesui equal to the actual
deviation in the power production of the WT.

Following [18], we assume that each turbine aims at
achieving a trade-off between regulating the rotor speed,
reducing fatigue loads on the tower, and preventing excessive
pitch activity and power deviations. The performance of the
ith turbine is quantified as the variance of the regulated
variablezi = Czxi + Dzuui, where

[

Cz Dzu

]

=

[

diag
{√

0.1, 100, 0, 100, 0
}

0
0 1

]

.

In other words, for each turbine we consider the state-
feedbackH2 problem for the closed-loop system fromwi

to zi.
The combined power production of the WTs must satisfy

a power demand to the WPP, which is assumed to be the sum
of nominal WT power productions. Sinceui is the deviation

1In particular, we measure the input in MW, use neither a dynamicmodel
of the effective wind speed (its DC gain is absorbed into the model) nor
dynamic weights on regulated signals (we use approximate static weights
instead).



from nominal WT power production, this requirement can
be imposed as the constraint

ν
∑

i=1

ui = 0, (1)

which introduces coordination between individual WTs.
The resulting constrainedH2 problem can be converted

to a standard unconstrained one by resolving (1) for any
i, say asu1 = −(u2 + · · · + uν). This results in anH2

problem withν subsystems andν − 1 control signals. Yet
the dynamics of subsystems and the cost function in the latter
problem are coupled. This might, especially if the number of
turbines in the WPP is very large, considerably complicate
both the solution procedure (the curse of dimensionality) and
the implementation of the resulting controllers. Therefore a
scalablesolution is of interest.

B. Towards a scalable solution

As discussed in the Introduction, the conventional ap-
proach in the field is to impose some kind of sparsity
constraints on the controller and seek a scalable optimiza-
tion procedure to solve it. By limiting the information
exchange between subsystems, a sparse structure can ensure
that the information processing at each subsystem remains
viable as the number of subsystems grows. This property
is important, so it frequently preponderates over inevitable
losses of performance. The problem is that imposing sparsity
constraints might significantly complicate the design. Once
the constraint (1) is resolved, our problem only satisfies
the quadratic invariance condition of [7] for a handful of
structural constraint options (e.g., block triangular). Another
choice discussed in the Introduction, imposing positivity
constraints on the closed-loop dynamics [8], is not suitable
for our problem because we work in deviations from nominal
values. We thus may consider resorting to nonconvex opti-
mization procedures, relying upon a proper choice of initial
parameter guess.

To provide a flavor of such an approach, we confine our
attention to static state-feedback controllers,u = Fx, and
add the constraintF ∈ Hη, where for a givenη ∈ N

Hη :=
{

F : Fij = 0 whenever|i − j| > η
}

and the addition in the spatial variable is performed modulo-
ν (e.g.,ν+1 = 1). The parameterη determines the number of
“neighbors” of each subsystem and can be interpreted as the
degree of sparsity. The problem is indeed not quadratically
invariant underF ∈ Hη. To end up with a (potentially sub-
optimal) controller having the desired structure, we use an
approach similar to that proposed in [16]:

1) Resolve constraint (1) by the change of variablesui =
ûi − (ûi−1 + ûi+1)/2, which couples the subsystems.

2) Apply the distributed gradient method in [19] to find a
feedback law,̂u = F̂ x, with F̂ ∈ Hη−1.

3) Transform back,̂u → u, to obtainF . Note that,F̂ ∈
Hη−1 is sufficient but not necessary to ensureF ∈ Hη.
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Fig. 1. Cost of coordination per turbine under different degrees of sparsity.

Fig. 1 shows the normalized difference between theH2

performances attained with and without the coordination con-
straint (1) (the normalized cost of coordination) as a function
of ν for different degrees of sparsityη. We can see that as
the sparsity restriction is relaxed, i.e., asη increases, the
performance improves. Besides, the performance of sparse
controllers improves asν increases. We can also see that the
improvement is not as fast as in the non-sparse (shown by
the solid line) case. This, however, was rather expected and
is not the main focus of this example.

Rather, we would like to emphasize difficulties encoun-
tered in designing the sparse controllers. Although not visible
on the plot, these difficulties are readily appreciable. Thefact
that the problem is not convex renders the whole procedure
sensitive to the choice of initial values for the feedback
gain. We did experience convergence to local minima, so
the solutions presented in Fig. 1 are the result of multiple
runs of the algorithm. And we still cannot guarantee that
the results are globally optimal2. Moreover, potential con-
servatism might have been introduced by considering the
more restrictive classHν−1 in the second step of the design
and by fixing the feedback gain to be static (not a clear
choice in the of structural constraints [11]). In addition,
the optimization procedure itself is quite demanding, its
computational complexity grows with the increase ofν.
Finally, the results of the numerical procedure are not quite
transparent, with no indication of what effect small changes
of the system parameters might have on it.

To conclude, from the distributed control viewpoint the
problem appears to be a challenge. Nonetheless, in the next
section we show that its non-sparse version has a closed-form
scalable solution, with additional appealing properties.

III. LQR WITH COORDINATION CONSTRAINTS

Motivated by the problem considered in Section II, in this
section we study an optimization problem for non-interacting
subsystems, having identical dynamics, with coordination
constraints. To simplify the presentation, we consider an
LQR version of the problem, although the extension to the
H2 formalism (external disturbances) is straightforward.

2In fact, they are not, as attested by the sub-optimality of theresulting
cost in the case ofη = 3 andν = 7, for instance.



A. Problem statement

Considerν independent systems

Σi : ẋi(t) = Axi(t) + Bui(t), xi(0) = xi0 (2)

wherexi(t) ∈ R
n can be measured,ui(t) ∈ R

m, and the pair
(A,B) is stabilizable. Associate with each of these systems
the performance index

Ji =

∫

∞

0

(

x′

i(t)Qαxi(t) + u′

i(t)ui(t)
)

dt (3)

for someQα ≥ 0 and such that the pair(Qα, A) has no
unobservable modes on thejω-axis. Minimizing Ji for Σi

would be a set ofν standard uncoupled LQR problems. We
couple these problems by constraining the behavior of the
center of massof Σi, understood as the system

Σ̄ : ˙̄x(t) = Ax̄(t) + Bū(t), x̄(0) = x̄0 (4)

connecting the signals

ū(t) :=

ν
∑

i=1

µiui(t) and x̄(t) :=

ν
∑

i=1

µixi(t), (5)

where the weightsµi 6= 0 may be thought of as the masses
of each subsystem. Coordination is understood as imposing
a desired behavior on̄u. Our formulation is as follows:

minimize J :=

ν
∑

i=1

Ji (6a)

subject to Σi, i = 1, . . . , ν (6b)

ū − F̄ x̄ = 0 (6c)

for some “gain” F̄ (the problem studied in Section II
corresponds tōF = 0). We implicitly restrict our attention
to stabilizing controllers only. Without loss of generality, we
also assume that the weights are normalized as

∑

i µ2
i = 1.

Remark 3.1 (minimizing weighted sum ofJi): The
weights µi may be manipulated to assign importance to
each subsystem. This can also be attained via replacing
J in (6a) with the weighted sumJ =

∑

i λiJi for some
λi > 0. The addition ofλi, however, does not enrich the
design. It is only a matter of scaling eachxi andui by

√
λi

and then replacingµi with µi/
√

λi (with the normalization
assumption

∑

i µ2
i /λi = 1). In the choice between ‘µ’ and

‘λ’ scalings we picked the former because it allows negative
weights. ▽

B. Problem solution

We start with rewriting (6) in an aggregate form using the
Kronecker product notation. Introduce the unit vector

µ :=
[

µ1 · · · µν

]

′

and the aggregate state and control signalsx :=
∑

i ei ⊗
xi and u :=

∑

i ei ⊗ ui, respectively. In this notation, the
dynamics of the aggregate systems are

ẋ(t) = (Iν ⊗ A)x(t) + (Iν ⊗ B)u(t), (7)

the cost function in (6a) is

J =

∫

∞

0

(

x′(t)(Iν ⊗ Qα)x(t) + u′(t)u(t)
)

dt, (8)

and the constraint (6c) reads

(µ′ ⊗ Im)u − (µ′ ⊗ F̄ )x = 0,

The key idea behind our solution is to apply coordinate
transformations to the state and input signals that decouple
constraint (6c) on the one hand, while preserving the uncou-
pled structure of the system and cost on the other. This can
be achieved by the coordinate transformations

x̃ := (U ⊗ In)x and ũ := (U ⊗ Im)u (9)

for some unitary matrix U ∈ R
ν×ν . Indeed, using the

relation (M1 ⊗ N1)(M2 ⊗ N2) = (M1M2) ⊗ (N1N2), it is
readily seen that both (7) and (8) remain the same, modulo
the replacement ofx andu with x̃ andũ, respectively, while
the coordination constraint changes and becomes

(µ′U ′ ⊗ Im)ũ − (µ′U ′ ⊗ F̄ )x̃ = 0.

To achieve decoupling, we may consider the following
requirements onU :

Uµ = e1. (10)

Becauseµ is assumed to be a unit vector, there is always aU
satisfying (10). A possible choice is the matrix of transpose
left singular vectors ofµ.

Thus, when expressed in terms ofx̃ and ũ with U
satisfying (10), problem (6) still has an uncoupled cost
function and uncoupled dynamics. But now the constraint,
which reads(e′1 ⊗ Im)ũ − (e′1 ⊗ F̄ )x̃ = 0, is imposed only
upon the first elements of̃u and x̃, i.e., it reduces to

ũ1 − F̄ x̃1 = 0. (11)

Hence, (6) splits intoν independent problems, with theith
problem depending only on the variablesx̃i and ũi.

For i = 2, . . . , ν, we have identical unconstrained LQR
problems with dynamics of the form (2) and cost functions
of the form (3). Each one of these problems is then solved
by the (stabilizing) control laws̃ui(t) = Fαx̃i(t), where
Fα := −B′Xα andXα ≥ 0 is the stabilizing solution of the
algebraic Riccati equation (ARE)

A′Xα + XαA + Qα − XαBB′Xα = 0. (12)

These control laws achieve the optimal performance
x̃′

i0Xαx̃i0.
For i = 1, constraint (11) completely determines̃u1,

rendering the optimization irrelevant. The plant dynamics
then become

˙̃x1(t) = (A + BF̄ )x̃1(t), x̃1(0) = x̃10

and the cost function
∫

∞

0

x̃′

1(t)(Qα + F̄ ′F̄ )x̃1(t)dt

(independent of̃u1). The dynamics of̃x are stable iffA+BF̄
is Hurwitz and in this case the value of the cost function



is finite and equals̃x′

10X̄x̃10, where X̄ ≥ 0 verifies the
Lyapunov equation

(A + BF̄ )′X̄ + X̄(A + BF̄ ) + Qα + F̄ ′F̄ = 0. (13)

The arguments above solve (6) in terms of the transformed
variables in (9). What is left is to transform this solution back
to x andu. This is done in the following theorem, which is
the main technical result of this section:

Theorem 3.1:Let A + BF̄ be Hurwitz and the pair
(Qα, A) have no unobservable pure imaginary modes. Then
the ARE (12) and the Lyapunov equation (13) are solvable,
with X̄ ≥ Xα, and the unique solution of (6) is

ui(t) = Fαxi(t) + µi(F̄ − Fα)x̄(t), (14)

whereFα = −B′Xα is the LQR gain, associated with the
uncoordinated version of the problem, without (6c), andx̄ is
the state vector of the center of massΣ̄ defined by (5). The
optimal performance attainable by this controller is

Jopt =

ν
∑

i=1

Ji,opt + x̄′

0(X̄ − Xα)x̄0, (15)

whereJi,opt = x′

i0Xαxi0 is the optimal uncoordinated costs
of Σi and x̄0 is the initial condition of the center of mass.

Proof: The solvability of the Riccati equations under
the conditions of the theorem is a standard result [20,
Thm. 13.7]. The inequalitȳX ≥ Xα follows by the fact that
if ui = F̄ xi, thenJi = x′

i0X̄xi0 ≥ x′

i0Xαxi0 = Ji,opt for
any xi0. Now, the developments preceding the formulation
of the theorem imply that̃u = F̃ x̃, where

F̃ = (Iν − e1e
′

1) ⊗ Fα + (e1e
′

1) ⊗ F̄ .

Then (9) implies thatu = Fx = (U ′ ⊗ Im)F̃ (U ⊗ In)x, so,
with the help of (10), we obtain

F = Iν ⊗ Fα + (µµ′) ⊗ (F̄ − Fα), (16)

which yields (14). Finally,

Jopt = x̃′

0((Iν − e1e
′

1) ⊗ Xα + (e1e
′

1 ⊗ X̄))x̃0 (17a)

= x′

0(Iν ⊗ Xα + (µµ′) ⊗ (X̄ − Xα))x0, (17b)

from which (15) follows immediately.

Remark 3.2 (constraining a part of̄u): If F̄ = Fα, then
the Lyapunov equation (13) is solved bȳX = Xα and
(14) reduces to the decentralized control law solving the
uncoordinated version of (6). In other words, the coordi-
nation constraint becomes void if it attempts to mimic the
optimal unconstrained dynamics. Likewise, we can constrain
only a part ofū by mimicking the optimal, with respect to
(3), control trajectory of the partially constrained problem
by its other part. Namely, letE be a tall matrix such that
E′E = I. It can be shown that the optimization of (6),
with (6c) replaced by the partial constraintE′ū − F̄1x̄ = 0,
corresponds to the original formulation with

F̄ = EF̄1 − (I − EE′)B′X2

whereX2 ≥ Xα is the stabilizing solution of the ARE

(A + BEF̄1)
′X2 + X2(A + BEF̄1)

+ (Qα + F̄ ′

1F̄1) − X2B(I − EE′)B′X2 = 0

and the stabilizability of the pair(A + BEF̄1, B(I −EE′))
is required. Equation (13) is solved then bȳX = X2. ▽

C. Discussion

The remainder of this section is devoted to properties
of the solution presented in Theorem 3.1. In particular, we
discuss the structure of the optimal controller and its suit-
ability for distributed control applications (§III-C.1), interpret
the LQR problems in terms of the transformed variables
(9) arising in the derivation as a technical step (§III-C.2),
quantify the effect of the coordination constraint (6c) on the
performance of each subsystem (§III-C.3), and explore the
possibility of adding tracking requirements to the behavior
of the center of mass (§III-C.4).

1) Control law: computation and structure:An important
property of the solution of Theorem 3.1 is its computational
scalability. To calculate the optimal controller, we only need
to solve ARE (12), which is the Riccati equation associated
with the local, unconstrained, LQR. The computational effort
to obtain the solution is thus independent of the number of
subsystemsν, which is an attractive property in the context
of distributed control.

The low computational burden is not the only property of
controller (14) that is appealing in distributed control appli-
cations. Its structure is even more intriguing. The optimal
control law is a superposition of a local term,Fαxi(t), and
a (scaled) coordination term,

ucoord(t) := (F̄ − Fα)x̄(t). (18)

The former is the optimal uncoordinated control law for
Σi and is fully decentralized. Coordination then adds a
“correction” of the formµiucoord to this local controller. This
term destroys the (sparse) decentralized structure as noneof
the elements of the overall feedback gain (16) is zero in
general. Nonetheless, the resulting configuration might suit
large-scale applications well.

The non-sparse coordination term, which may be thought
of as a (block) rank-one correction to the (block) diagonal
local controller, depends only on the behavior of the center
of mass. Thus, although this term hinges upon information
about all subsystems, the only operation required in its
construction is averaging. This information clustering may be
thought of as a form ofspatial generalized samplingwhere
the information required to form the correction component,
ucoord, is obtained by aggregating distributed information
in a weighted average. In this regard, the ideal sampling
[21], where the intersample information is ignored, would
correspond to the decentralized structure. The coordination
term of the control law of Theorem 3.1 could then corre-
spond to a generalized sampling [13], where the intersample
information is aggregated via weighted averaging.



The information aggregation viāx is clearly less demand-
ing, from both computation and communication viewpoints,
than an individual processing of eachxi. Hence, the control
law (14), although centralized, may be feasible for distributed
control. Measurements of the center of mass could, in
principle, be done either globally, by a coordinator, or even
locally, by each subsystem.

Remark 3.3 (interpretation of the coordination policy):
Constraint (6c) can be satisfied without information
exchange if each subsystem appliesui = F̄ xi. The term
(F̄ − Fα)xi can then be interpreted as a desired violation
of this strategy in order to improve the performance with
respect toJi. By rewriting the coordination term (18) as

ucoord(t) =
ν

∑

i=1

µi(F̄ − Fα)xi(t),

we see that the benefit of exchanging information (coor-
dination) is that subsystems can compensate each other’s
violations. ▽

2) LQR problems in terms of̃xi and ũi: The trans-
formation of state and input coordinates defined by (9)
and (10) serves the purpose of decomposing the problem
into one problem with a prespecified control law and and
ν−1 unconstrained LQRs. These problems have meaningful
interpretations.

First, a comparison of (11) and (6c) suggests that

x̃1 = x̄ and ũ1 = ū.

This is indeed true, as can be seen throughx̃1 = (e′1⊗In)x̃ =
((e′1T

−′) ⊗ In)x = (µ′ ⊗ In)x = x̄, for instance. Thus, the
constrained problem is concerned with the center of mass
(4) and its solution results in the dynamics

˙̄x(t) = (A + BF̄ ) x̄(t), (19)

as expected.
The other components of̃x and ũ do not possess such

interpretations per se, they are not even unique. Nevertheless,
the unconstrained LQR cost built on them,

J̃ :=

ν
∑

i=2

∫

∞

0

(

x̃′

i(t)Qαx̃i(t) + ũ′

i(t)ũi(t)
)

dt

(this is what the control law (14) actually minimizes), can
be interpreted. To this end, rewrite

ν
∑

i=2

ũ′

iũi = ũ′((I − e1e
′

1) ⊗ Im)ũ = u′((Iν − µµ′) ⊗ Im)u

(the last equality is obtained by (9) and (10)) and, likewise,
∑ν

i=2
x̃′

iQαx̃i = x′((Iν −µµ′)⊗Qα)x. It can be shown, by
routine regrouping, that

Iν − µµ′ =

ν
∑

i=1

(ei − µiµ)(ei − µiµ)′ (20a)

=
ν−1
∑

i=1

ν
∑

j=i+1

(µjei − µiej)(µjei − µiej)
′, (20b)

Form (20a),

J̃ =

ν
∑

i=1

∫

∞

0

(

(xi − µix̄)′Qα(xi − µix̄)

+ (ui − µiū)′(ui − µiū)
)

dt.

In other words,J̃ may be thought of as the cost of deviating
from the normalized center of mass. The normalization
becomes particularly transparent if all systems have equal
masses, i.e., ifµi = 1/

√
ν. In this caseµix̄ = 1

ν

∑

i xi and
µiū = 1

ν

∑

i ui are merely the average state and input signals
andJ̃ quantifies the cumulative deviation from the average.
In the same vein, (20b) leads to

J̃ =

ν−1
∑

i=1

ν
∑

j=i+1

∫

∞

0

(

(µjxi − µixj)
′Qα(µjxi − µixj)

+ (µjui − µiuj)
′(µjui − µiuj)

)

dt,

which penalizes mutual deviations of each subsystem from
the others (the scaling factorsµi andµj just align the subsys-
tems to render the comparison meaningful), thus encouraging
the achievement of an optimalconsensus.

Summarizing, by solving (6) we effectively reach two
goals: impose a required behavior on the center of mass and
minimize discrepancy between subsystems. The optimalJ̃
can then be viewed as a measure of “gregariousness” or,
perhaps, as a “herd instinct index” in the aggregate system
(7). It follows from the proof of Theorem 3.1 (cf. (17a)) that

J̃opt = x̃′

0

(

(Iν − e1e
′

1) ⊗ Xα

)

x̃0 = x′

0

(

(Iν − µµ′) ⊗ Xα

)

x0

=

ν
∑

i=1

Ji,opt − x̄′

0Xαx̄0. (21)

Thus, the attainable local uncoordinated costsJi,opt also
determine the cumulative closeness of systemsΣi to each
other. It is worth emphasizing that̃Jopt does not depend on
the constraint imposed on the behavior of the center of mass.
This separation is an intriguing property of the solution of
(6).

3) Cost of coordination per subsystem:The last term in
the right-hand side of (15) quantifies the deterioration of the
(aggregate) performanceJ due to the coordination constraint
(6c). Below, we look into the effect of coordination on the
performance of individual subsystems.

We begin with the following result:
Proposition 3.2:The value of theith performance index

Ji under the control law (14) is

Ji = Ji,opt + µ2
i x̄′

0(X̄ − Xα)x̄0, (22)

wherex̄0 is the initial condition of the center of mass.
Proof: The control law (14) is a superposition of the

locally optimal control law and the signalvi = µi(F̄ −Fα)x̄.
It is known (see the proof of [20, Thm. 14.2]) that for any
vi,

Ji = Ji,opt + ‖vi‖2
2.



As follows from (19), the last term in the right-hand side
above equalsµ2

i x̄
′

0Xvx̄0, whereXv ≥ 0 solves the Lyapunov
equation

(A + BF̄ )′Xv + Xv(A + BF̄ ) + (F̄ − Fα)′(F̄ − Fα) = 0.

(22) then follows by the fact thatXv = X̄ −Xα, which can
be verified by straightforward algebra.

The second term in the right-hand side of (22) is exactly
the cost of coordination for theith subsystem. It is a
function of the other subsystems through the vectorx̄0. The
dependence of̄x0 on an unspecified relation between the
initial states of all subsystems complicates the analysis of
the cost of coordination. If, for instance,̄x0 = 0, then
Ji = Ji,opt and the coordination in that case comes at
no cost. But if everyxi0 = µiχ for someχ ∈ R

n, then
x̄0 = χ and we end up withJi = x′

i0X̄xi0. This is what
we would have if the control lawsui = F̄ xi were applied
to each subsystem, which would correspond to an attempt
to enforce (6c) without communication between subsystems.
To avoid the dependence on̄x0, we assume hereafter thatx̄0

is bounded as a function of the number of subsystemsν. In
this case the term̄x′

0(X̄ − Xα)x̄0 is bounded as well and
the cost of coordination becomes quadratically proportional
to the corresponding “mass”µi.

Consider now what happens with the cost of coordination
per subsystem when the number of subsystemsν → ∞. It
follows from the normalization assumption

∑ν

i=1
µ2

i = 1
that at most a finite number subsystems may haveµi 6→ 0
in this case. If such subsystems do exist, they dominate
(5) and we then effectively have coordination between a
finite number of subsystems. It is then natural that the cost
of coordination for those subsystems does not vanish asν
grows. If, however, allµi → 0 as ν → ∞, the situation
is different. In this case the coordination constraint (6c)is,
in a sense, spread among all subsystems and the cost of
coordination per subsystem vanishes with the increase ofν.
For example, if we assign equal weights to each subsystems,
i.e., if every µi = 1/

√
ν, then the coordination toll per

subsystem decreases inversely proportional to the number
of subsystems. The decrease of the coordination cost is
intuitive, as the addition of more subsystems brings more
opportunities for coordination.

4) Tracking: Constraint (6c) can be modified to incorpo-
rate tracking requirements on the center of mass (4). For
example, we may consider the constraint

ū = F̄ x̄ + r

for a reference signalr. This would yield the control law

ui(t) = Fαxi(t) + µi(F̄ − Fα)x̄(t) + µir(t),

instead of (14), and the following dynamics of the center of
mass:

˙̄x(t) = (A + BF̄ ) x̄(t) + Br(t)

(in lieu of (19)). The cost functionJ in this case is
no longer relevant per se, it might even be unbounded.

Still, the “measure of gregariousness” interpretation of the
unconstrained part of the optimization, as discussed in§III-
C.2, remains valid. Moreover, the value of the cost function
in (21) is finite and independent ofr, so it can be used to
quantify group tracking properties of the system.

D. Wind farm example (cont’d)

We are now in the position to return to the example
studied in Section II. To render the current LQR problem
formulations compatible with that in§II-A, we assume that
xi0 = Bwvi, where vi are mutually independent random
variables of unit variance. This yields̄x0 = Bwv̄, where
v̄ :=

∑

i µivi is of unit variance as well. We then end up
with (6) with B = Bu, Qα = C ′

zCz, F̄ = 0, andµi = 1/
√

ν
for all i.

By Theorem 3.1, the optimal control law is given by

ui = Fαxi − Fαxa,

wherexa := 1

ν

∑

i xi is the average state of wind turbines
and the gainFα is obtained by solving ARE (12). To
calculate the cost of coordination depicted in Fig. 1 by the
solid line, we use Proposition 3.2 to end up with the formula

Ji − Ji,opt =
1

ν
B′

w(X̄ − Xα)Bw,

whereX̄ is the observability Gramian of(Cz, A). This cost
tends to zeros asν → ∞.

With its structural properties revealed, the non-sparse
solution to (6) compares favorably with the sparsity-based
one considered in§II-B. Our calculations are scalable, in
fact, they are independent of the number of turbines. The
result is always globally optimal. The effect of the coordi-
nation constraint on the local performance of each turbine
is transparent and easy to calculate as well. The price we
pay is that the resulting controller is centralized. This might
not be feasible in some situations where communication con-
straints are restrictive. Still, the only centralized information
processing that is required to execute the control law is the
averaging operation to calculateFαxa. This does not require
an individual processing of the global state of the whole farm
by each turbine. It thus could be feasible even for a large
farm.

IV. CONCLUDING REMARKS

In this paper we have studied a class of LQR problems,
where autonomous agents with identical dynamics seek to
reduce their own costs while coordinating their center of
mass (average behavior). We have shown that the solution
to these problems has two importantscalable properties.
First, the problem decomposes into two independent LQR
problems: one for a single uncoordinated agent and one for
the center of mass, whose dynamics has the same dimension
as those of individual agents. Hence, the computational effort
required to obtain the solution is independent of the number
of agents. Second, the structure of the resulting controller is
transparent, comprising a (block) diagonal decentralizedpart
and a (block) rank-one coordination term. The coordination
term relies on information about all subsystems, but only



requires a simple averaging operation. This renders the
structure well suited for implementation in distributed control
applications.

We have also revealed several other properties of the opti-
mal solution. In particular, the cost of coordination incurred
by each subsystem has been quantified and shown to vanish
as the number of subsystems grows; the coordination prob-
lem has been interpreted in terms of a consensus-like cost
function; the cost of the cumulative deviation of subsystems
from the center of mass has shown to be independent of the
behavior of the center of mass itself.

Although we have studied only the specific LQR problem,
the diagonal-plus-low-rank structure may show up in a
wider spectrum of applications. Relatively straightforward
extensions include replacing the coordination constraintwith
a coordination penalty (results in a diagonal-plus-rank-one
solution), problems withr coordination constraints (would
result in a diagonal-plus-rank-r configuration), and output-
feedbackH2 formulations (adding local estimators). Other
directions may be less trivial. For instance, it may be impor-
tant to account for additional constraints on the information
exchange between agents, like delays or a sampled-data
structure. Another possible direction, which would require
a substantial alternation of the solution procedure, is to
consider coordination among heterogeneous agents. Further-
more, it is interesting to investigate the possibility of re-
ducing information processing / complexity by imposing the
diagonal-plus-low-rank structure in problems, where it does
not arise as an outcome of the unconstrained optimization
procedue.

Last but not least, up to this point we managed to discuss
distributed control without mentioning the word “graph.”
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E. Gómez Ĺazaro, “Spectral coherence model for power fluctuations
in a wind farm,” J. Wind Eng. Ind. Aerodyn., vol. 102, pp. 14–21,
2012.

[18] M. Kristalny, D. Madjidian, and T. Knudsen, “On using wind speed
preview to reduce wind turbine tower oscillations,”IEEE Trans.
Control Syst. Technol., vol. 21, no. 4, pp. 1191–1198, 2013.
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