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Abstract
The bulk properties of composites are known to depend strongly on the mi-
crostructure. This dependence can be quanti�ed in terms of a representation
introduced by D. Bergman, which factorizes the geometry dependence from
the contrast. Based on this analytic representation of the e�ective permittiv-
ity, we present a general scheme to estimate the micro structural parameters,
such as the volume fraction and the anisotropy of two-component compos-
ites. The estimates are given as bounds, that is, the largest parameter region
which is compatible with the available information. Thus, more information
produces better estimates on the micro structural parameters. The method,
that uses complex-valued measurements of bulk properties of the composite,
is illustrated by numerical examples.

1 Introduction
In many cases of interest when considering the interaction of electromagnetic waves
with composites the wavelength is much longer than the characteristic length of the
microstructure. The composite then reacts to the slowly varying �eld in much the
same way as a homogeneous material, with some e�ective material parameters.

The determination of the e�ective properties of composite materials, with known
periodic geometry or from simulations of random materials, constitutes a classical
problem in physics. In the case of a two component mixture, a representation
formula that separate the dependence on the phases and the dependence on the
microstructure was developed by Bergman [6], and Golden and Papanicolaou [20].

The structural information is associated with a spectral measure and much e�ort
has been focussed on the reconstruction of this measure from a known geometry [17,
22, 27]. When the measure is calculated, a single integral gives the e�ective property
for any value of the phases. One drawback is that a complete knowledge of the
geometry rarely is available.

A direct approach to characterize the microstructure is in terms of an in�nite
set of correlation functions [4, 35]. Except for some special cases, the in�nite set of
correlation functions are not known and hence an exact solution is not possible. Us-
ing images of cross sections, some correlation functions can be estimated. When the
material is �nely scaled, the computation of the volume fraction is a large compu-
tational problem and calculations of higher order correlation functions is in general
very demanding.

Instead of using correlation functions, information from measurements of one
e�ective property can be used to improve bounds on a related property. Prager [33]
used measurements of the e�ective magnetic permeability to improve the bounds on
the thermal conductivity. These bounds are called cross-property bounds or coupled
bounds. The pioneering work of Prager was followed by papers of Bergman [5, 6]
and Milton [31], among others. The problem of bounding the structural parameters
that characterize the microstructure from known values of an e�ective property is
by some authors called inverse homogenization and the bounds are called inverse
bounds.
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Inverse bounds for the volume fraction were �rst derived in [29]. In recent years
the representation formula introduced by Bergman [6] has been used to study the
inverse problem. Explicit formulas for bounds on the volume fraction can in the case
of measurements of lossy materials be found in reference [12]. If the measurements
are on a real-valued e�ective property, the formulas for the volume fraction in ref-
erence [12] cannot be used. In the case of real valued measurements the author in
reference [19] provide a schedule to derive inverse bounds and give explicit formulas
for bounds on the three lowest moments of the measure, where the �rst moment
corresponds to the volume fraction.

Various inverse algorithms for recovering the structural parameters (the spectral
measure) of composites from experimental data have been developed [11, 13, 15]. In
reference [16] the algorithm developed in [15] was successfully used to recovering the
measure from 4000 re�ectance data points.

The numerical algorithms are useful but one disadvantage with this approach
is that we lose the concept of bounds. If we have limited information from mea-
surements (few or inaccurate measurements), the numerical methods cannot recover
the measure. Using the numerical approximations of the measure can then result in
bounds on an e�ective property that are not valid.

In this paper inverse bounds using information from measurements of lossy mate-
rials are derived. These bounds are used to derive cross-property bounds, which are
exempli�ed by a frequency dependent permittivity. We use and improve the geom-
etry independent bounds on the structural parameters that were derived in [19]. In
other words, restrictions on the moments of the measure are derived.

The asymptotic behaviour of the formulas in this paper are superior to the
formulas in [19], but the formulas presented here cannot be used if the e�ective
property is real-valued. The two papers complement each other and the formulas in
the two papers can be combined.

2 Bounds on the e�ective permittivity
Assume that inside the composite the electric �eld E and the electric �ux density
D satisfy the constitutive relation

D(x) = ε(x)E(x). (2.1)

The permittivity matrix ε is the description of the material on the �ne scale, where
ε and thereby the �elds oscillate rapidly. On a much larger scale the averaged
�elds have no oscillations on the length scale of the microstructure, since they are
smoothed out, but they retain slow macroscopic variations.

We seek an e�ective permittivity matrix εeff which relates the average of the
electric displacement �eld 〈D〉 to the average of the electric �eld 〈E〉. The average
is over a volume having size large compared with the microstructure.

In general the D-�eld satis�es ∇·D = ρ, where ρ is the charge density. Using for
example a two-scale expansion [2, p. 138] of Maxwell's equations, we have∇×E = 0.
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From the constitutive relation (2.1) follows that, for a charge-free region, the
E-�eld satisfy

∇×E = 0, ∇ · (εE) = 0. (2.2)
This system represents, besides dielectrics, several other physical phenomena, as
electrical and thermal conductivity, magnetism, di�usion and �ow in porous media.

Let 〈Ψ〉 denote the average of the vector �eld Ψ over the unit cell U = [0, 1[d

in d dimensions. If the E-�eld is Lebesque integrable and the equations (2.2) are
satis�ed in a weak sense, the homogenization rule

〈εE〉 = εeff〈E〉, (2.3)

can be proven [23, p. 15].
The materials in this paper are assumed to be d-dimensional and to consist of

two homogeneous, isotropic phases. The two-component material is locally modelled
by the scalar relative permittivity

ε(ε1, ε2) = ε1χ1(x) + ε2χ2(x), (2.4)

where the components are isotropic with constant permittivity ε1 and ε2. We use
complex valued permittivities and assume that the imaginary parts are greater or
equal to zero.

The volume fraction of phase χi is denoted fi and the characteristic function χi

is de�ned as
χi(x) =

{
1, x in phase i

0, otherwise
and f1 + f2 = 1. When the composite is periodic and the characteristic function
χ1 is known, we can calculate εeff from (2.2), (2.3) using a standard �nite-element
program, but in many cases the geometry is unknown. Another drawback with this
approach is that the problem (2.2), (2.3) depends not only on the microstructure but
also on the contrast. If we change the contrast all calculations need to be repeated.

2.1 Analytic representation of the e�ective matrix
Due to the homogeneity property εeff(cε1, cε2) = cεeff(ε1, ε2), the e�ective permittiv-
ity depends on the ratio ε1/ε2. The main property of the solution to the problem in
(2.2) and (2.3) is that the function

εeff(ε1, ε2)

ε2

= εeff(
ε1

ε2

, 1) (2.5)

is analytic in ε1/ε2 ∈ C\]−∞, 0] and that it maps the upper half-plane to the upper
half-plane i.e., the function εeff/ε2 is a Herglotz function [1]. The function εeff/ε2

has the Stieltjes-integral representation

εeff(ε1, ε2) = ε2I− ε2G(s), (2.6)
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where
G(s) =

∫ 1

0

dm(y)

s− y
, s =

ε2

ε2 − ε1

. (2.7)

The matrix valued measure m on [0, 1] is derived from the spectral measure of the
operator Γ = Pχ1, where P = ∇(−∆)−1(∇·). The operator Γ is bounded ||Γ|| ≤ 1
and self-adjoint in L2(U)d equipped with the scalar product (Ψ1,Ψ2) = 〈χ1Ψ1 ·Ψ2〉
[20]. The representation formula (2.6), valid for s 6∈ [0, 1], was introduced in the
periodic case by Bergman [6] and generalized by Golden and Papanicolaou [20].

The measure m is a purely geometric quantity. It depends on the microstructure
but not on the value of the two phases. If the microstructure is the same, the
single integral (2.7) gives the e�ective permittivity, independent of the value of the
phases. This is particularly useful when the permittivity is frequency or temperature
dependent.

2.2 Bounds on εeff using Padé approximations
If the microstructure is only partly known, we can get bounds on the e�ective
permittivities. When the permittivities of the two materials, together with the
volume fraction f1, are known, the e�ective permittivity is bounded by the harmonic
and arithmetic means. If more structural information is known, we get tighter
bounds as the Hashin-Shtrikman bounds and the Beran bounds.

We focus on the diagonal elements in the e�ective permittivity matrix and use
the power series expansion

εeff = ε2F(z), F(z) =
∞∑

n=0

cnz
n (2.8)

where z = −1/s = (ε1 − ε2)/ε2 is the contrast. The series (2.8) is convergent in
|z| < 1.

The integral (2.7) vanishes in the limit s → ∞, implying c0 = I. This is a
consequence of (2.8), because z = 0 when ε1 = ε2, which means that we only have
one material.

For |s| > 1 the function (s − y)−1 has a power expansion in y/s. The integral
G(s) then has the power expansion

G(s) =
∞∑

n=0

1

sn+1

∫ 1

0

yn dm(y). (2.9)

The integral in this expression is, for n = 0, 1, . . . , the (Hausdor�) moments of the
measure m. The coe�cients cn in the power series expansion (2.8) and the measure
m are connected by the moments

cn+1 = (−1)n

∫ 1

0

yn dm(y). (2.10)

Since the measure m is de�ned on the compact set [0, 1] it follows that m is bounded
and uniquely determined by the moments [1]. If all the moments are known, the
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e�ective matrix is obtained from the series (2.8). Thus, the local information about
ε1 = ε2 gives the e�ective permittivity independent of the contrast.

The volume fraction f1 is given by the total weight [6, 20]

c1 =

∫ 1

0

dm(y) = f1I. (2.11)

Higher-order moments depend on the geometrical structure. Bergman [6] derived
the general constraint Tr c2 = −c1(1 − c1) and that, in the case of a statistically
isotropic composite, the second moment is

c2 = −
∫ 1

0

y dm(y) = −c1(1− c1)

d
I. (2.12)

Higher-order moments can be calculated exactly in a few special cases; see for
instance [14] or [17].

The power series (2.8) with coe�cients given by the moments (2.10) de�nes a
series of Stieltjes. Series of Stieltjes have known upper and lower bounds in the form
of continued fractions or Padé approximations [1]. We use Padé approximations of
the power series (2.8).

Let εeff be one of the diagonal elements in the matrix εeff = ε2F(z). The εp,q

Padé approximant to εeff is de�ned by the equation

εeff(z)Q(z)− P (z) = O(zp+q+1) (2.13)

where P and Q are polynomials of degree at most p and q, respectively [1]. This
equation gives us an approximation of the e�ective permittivity by the rational
function

εp,q =
P (z)

Q(z)
=

a0 + ... + apz
p

1 + b1z + ...bqzq
. (2.14)

When ε2 > ε1 and N ≥ 1, the N -point upper bounds εU
N are obtained by forming

the approximations

εU
2M+1 = ε2εM+1,M(F), εU

2M = ε2εM,M(F). (2.15)

The inverse of the matrix εeff(ε1/ε2, 1) is analytic in ε1/ε2 ∈ C\] −∞, 0]. The
analyticity implies that it has a power series expansion in z. Lower bounds on εeff

are given from Padé approximations of the series
(εeff

ε1

)−1

= F̃(z), where F̃(z) =
∞∑

n=0

c̃nz
n. (2.16)

The coe�cients cn and c̃n in the two series are related according to

c̃0 = I, c̃1 = (1− c1)I, c̃n = −
n−1∑

k=0

c̃kcn−k. (2.17)
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The coe�cient c1 is the volume fraction of phase one (2.11) and c̃1 is the volume
fraction of phase two. The N -point lower bounds εL

N , when ε2 > ε1 and N ≥ 1, are
obtained from

εL
2M+1 = ε1[εM+1,M(F̃)]−1, εL

2M = ε1[εM,M(F̃)]−1. (2.18)

For example the ε1,0 Padé approximant of the expansion (2.16) is the harmonic
mean

εL
1 =

ε1

1 + c̃1z
I =

(f1

ε1

+
f2

ε2

)−1

I (2.19)

and the ε1,0 Padé approximant of (2.8) gives the arithmetic mean

εU
1 = (ε2 + c1ε2z)I = (f1ε1 + f2ε2)I. (2.20)

Wiener [39] �rst derived these bounds on an e�ective material parameter. In the
same way the ε1,1 Padé approximant of the expansion (2.16) is the lower bound

εL
2 = ε1[c̃1I− c̃2z][c̃1I− c̃2z + c̃2

1zI]
−1 (2.21)

where c̃2 = −c2 − c1c̃1I. The ε1,1 Padé approximant of (2.8) gives the upper bound

εU
2 = ε2[c1I− c2z + c2

1zI][c1I− c2z]−1. (2.22)

These bounds were �rst derived in [31]; see also [26, 37].
In the isotropic case, c2 = −(c1c̃1/d)I, the two-point bounds (2.21) and (2.22)

are equivalent to the Hashin-Shtrikman bounds [21] and the bounds εL
3 , εU

3 reduce to
the Beran bounds [3, 36]. The Padé approximations give a hierarchy of bounds that
become progressively narrower as more structural information is used [1, 9, 32, 38].
The bounds (2.21) and (2.22) are optimal, since they are attained for a variety
of geometries [7, 30]. In general, the bounds on the e�ective permittivity (2.15)
and (2.18) can be improved by incorporating the phase exchange relation [24, 34];
see [31, 32].

2.3 Complex bounds on the permittivity
Let cn be one of the diagonal elements in cn. In the general case when the values
of the phases are complex, the real segment l = {cn; cmin

n ≤ cn ≤ cmax
n } is for �xed

values on c1, c2, . . . , cn−1 mapped by εL
n(cn) and εU

n (cn) on a circle or a line segment.
The minimum cmin

n and the maximum cmax
n are functions of the lower order pa-

rameters c1, c2, . . . , cn−1. The extreme values can be determined by varying the cn

parameter in the n-point bounds and using that the n-point bounds are forbidden
to violate the (n− 1)-point bounds. This procedure was used in reference [19].

For example, we get complex bounds from the lens-shaped region bounded by

εL
2 (c̃2; ε1, ε2, c̃1), εU

2 (c2; ε1, ε2, c1) (2.23)

with the structural parameter c̃2 and c2 varying between

cmin
2 = −c1(1− c1), cmax

2 = 0. (2.24)



7

Alternatively, we can describe the bounds εL
n(cn) and εU

n (cn) in terms of the points
through which the circle passes [8, 31]. Let Arc(z0, z1, z2) denote the arc of a circle
joining the points z0 and z1 that when extended passes through z2. For example,
the e�ective permittivity εeff is in the complex case bounded by the intersection of
the circles

Arc(ε1, ε
L
1 , εU

1 ), Arc(ε2, ε
L
1 , εU

1 ). (2.25)
We have εL

2 → ε1 and εU
2 → ε2 when c2 → −∞. It follows that in terms of the

structural parameters c2, the circles are described by

Arc(εL
2 (−∞), εL

2 (cmin
2 ), εL

2 (cmax
2 )), Arc(εU

2 (−∞), εU
2 (cmin

2 ), εU
2 (cmax

2 )). (2.26)

The arcs (2.25) or (2.26), de�ning the points through which the circles pass,
provide a geometrical characterization of the bounds. The alternative representation
of the arcs (2.23) gives, in terms of c2, directly a parameterization of the lens-shaped
boundary.

3 Inverse bounds and bulk properties
The task in inverse homogenization is in to calculate the structural parameters cn,
or equally, the measure m given information from experiments.

When only measured values of the e�ective permittivity are known, the moments
cannot be determined. Given a �nite number of measurements, there exist in general
several geometries that give the same εeff . Moreover, any measurement contains
noise, which limits the accuracy.

The measurements can be on one e�ective property of the material at di�erent
temperatures, or in a range of frequencies. It is also possible to get information from
measurements of several related parameters, such as the permittivity, the permeabil-
ity, and the thermal conductivity. The important thing is that the microstructure
is the same.

Bounds on the volume fraction c1, using information from measurements, were
derived in [12, 19, 29]. In [12], the authors derived bounds on the volume fraction
that are valid in the general anisotropic case and tighter bounds on the volume
fraction when the material is statistically isotropic.

We focus on the diagonal elements in cn and provide a method to derive bounds
on any diagonal element cn. Moreover, we give examples where c1, c2 and c3 are
bounded, using information from measurements. We assume that the measurements
are on the e�ective permittivity εeff at di�erent frequencies ω0, ω1, . . . , ωn, although
the measurements could very well pertain to several other physical parameters as-
sociated with the same micro-structure [32].

The bounds on the structural parameters cn give geometrical information of the
composite, but in many cases the composites e�ective bulk properties as a function
of frequency or temperature is what is desired. The bounds on the structural para-
meters imply cross-property bounds on the e�ective properties, which gives bounds
on the e�ective permittivity at all frequencies where the homogenization theory is
valid.
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εeff

ε

ε

1

2 c1

c1

c1

c1

ε

max

min

U

L

eff

Figure 1: Left: The e�ective permittivity εeff is bounded by εL
1 (c1) and εU

1 (c1).
Right: For some value c1 = cL

1 , the e�ective permittivity εeff is on the boundary of
εL
2 (c2; c

L
1 , ω0), εU

2 (c2; c
L
1 , ω0) and for some value c1 = cU

1 , the e�ective permittivity is
on the boundary of εL

2 (c2; c
U
1 , ω0), εU

2 (c2; c
U
1 , ω0).

3.1 Geometry independent inverse bounds
The volume fraction f1 = c1 is bounded between zero and one. The higher-order
parameters depend on the geometry, and bounds on cn are not known a priori. In
the general anisotropic case, the parameter c2 is bounded by

−c1c̃1 ≤ c2 ≤ 0, (3.1)

where c̃1 = 1− c1. This geometry independent bound on c2 was proven in reference
[10]. The author uses properties of the scalar measure m(y) to derive the moment
constraint

0 ≤
∫ 1

0

y dm(y) ≤ f1f2, (3.2)

which is equivalent to (3.1), see also [6, 19, 25, 35].
In [19] the author provides a general scheme to derive bounds on the struc-

tural parameter cn, using lower-order parameters, see Section 2.3 for the connection
to complex bounds. The bounds on the cn-parameters depend on the lower-order
parameters c1, . . . , cn−1.

Here, we use that c3 is bounded by cmin
3 ≤ c3 ≤ cmax

3 with [19]

cmin
3 =

c2
2

c1

, cmax
3 = −c2

(
1 +

c2

c̃1

)
(3.3)

and that the structural parameter c4 is bounded by cmin
4 ≤ c4 ≤ cmax

4 where [19]

cmin
4 =

c3
2 + c̃1c

2
2 + c2c3(c̃1 − c1) + c3(c3 − c1c̃1)

c2 + c1c̃1

, cmax
4 ≤ c2

3

c2

. (3.4)
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3.2 Bounds using one measurement
Assume that the complex value of one e�ective parameter εeff(ω0) is measured for
some frequency ω0. We derive bounds on c1 together with bounds on the e�ective
parameter εeff(ω1), when ε1(ω0), ε2(ω0), ε1(ω1) and ε2(ω1) are known constants. If
the volume fraction c1 is known, the parameter c2 is bounded and so on.

We assume that at least one of the phases has a positive imaginary part. That
is, we assume that there are losses somewhere in the composite material. In the case
of real values of both the phases, the method developed in reference [19] can be used
to obtain bounds on c1 and on εeff . In the lossless case, a direct calculation of the
inverse of εL

1 (c1) and εU
1 (c1) is possible. When the measurements are complex-valued,

a di�erent approach is needed.
The measured value εeff(ω0) is inside the lens-shaped region bounded by

εL
1 (c1; ω0) =

1

1 + c̃1z(ω0)
, εU

1 (c1; ω0) = ε1(ω0) + c1ε2(ω0)z(ω0), (3.5)

with z(ω0) = (ε1(ω0) − ε2(ω0))/ε2(ω0), c̃1 = 1 − c1, and 0 ≤ c̃1 ≤ 1. The boundary
of the region is depicted in Figure 1.

For some values of c1 and c2, the e�ective parameter εeff(ω0) is on the curve
εU
2 (c2, c1; ω0), see Figure 1. The parameters c1 and c2 then solve the equation

εeff(ω0) = ε2(ω0)
c1 − c2z(ω0) + c2

1z(ω0)

c1 − c2z(ω0)
, (3.6)

with 0 ≤ c1 ≤ 1 and −c1c̃1 ≤ c2 ≤ 0.
At the minimum volume fraction c1 = 0 and at the maximum volume fraction

c1 = 1, the εU
2 -bound reduces to

εU
2 (0, c2) = εU

2 (0, 0) = εU
1 (0) = ε2, εU

2 (1, c2) = εU
2 (1, 0) = εU

1 (1) = ε1, (3.7)

which implies that the equation (3.6) has the solutions

ε2 = εU
2 (0, 0) = εeff , ε1 = εU

2 (1, 0) = εeff . (3.8)

By multiplying (3.6) with the denominator in εU
2 we obtain

(c1 − c2z)εeff = ε2(c1 − c2z + c2
1z

2). (3.9)

We assume that εeff 6= ε1 and look for solutions to the equation (3.9) when 0 ≤
c1 ≤ 1 and −c1c̃1 ≤ c2 ≤ 0. Taking the real and imaginary part of (3.9), which
is quadratic in c1 and linear in c2, gives one solution (c1, c2) except for the trivial
solution (c1, c2) = (0, 0).

The calculated value on c1 is a lower bound cL
1 (ω0) on the volume fraction c1.

Explicitly, the volume fraction is bounded from below by

cL
1 = Im(z)

(Im(εeff)− Im(ε2))
2 + (Re(εeff)− Re(ε2))

2

|z|2(Im(εeff) Re(ε2)− Re(εeff) Im(ε2))
. (3.10)
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In the same way, for some values of c̃1 and c̃2, the e�ective parameter εeff(ω0) is
on the curve εL

2 (c̃2, c̃1; ω0). That is, we solve the equation

εeff(ω0) = ε1(ω0)
c̃1 − c̃2z(ω0)

c̃1 − c̃2z(ω0) + c̃2
1z(ω0)

, (3.11)

when 0 ≤ c̃1 ≤ 1 and −c̃1(1− c̃1) ≤ c̃2 ≤ 0.
At the end-points (c1, c2) = (0, 0) and (c1, c2) = (1, 0) the equation (3.11) has

the solutions
ε1 = εL

2 (0, 0) = εeff , ε2 = εL
2 (1, 0) = εeff . (3.12)

Assume that εeff 6= ε2 and multiply (3.11) with the denominator in εL
2 . The

resulting equation has one solution except for the trivial solution (c̃1, c̃2) = (0, 0).
The solution to the equation εeff(ω0) = εL

2 (c̃1, c̃2) and the relation c1 = 1− c̃1 gives
an upper bound cU

1 (ω0) on the volume fraction c1. Explicitly, the volume fraction is
bounded from above by

cU
1 = 1− Im(z)

(Im(εeff)− Im(ε1))
2 + (Re(εeff)− Re(ε1))

2

|z|2(Re(εeff) Im(ε1)− Im(εeff) Re(ε1))
. (3.13)

The derived bounds (3.10) and (3.13), on the volume fraction are equivalent to
the bounds in reference [12]. Here we use a di�erent method, which seems to be
easier to generalize.

If c1 = cL
1 , the measured value εeff(ω0) is equal to εU

2 for some value of c2. If
c1 = cU

1 the e�ective permittivity εeff(ω0) is equal to εL
2 for some value on c2. The

e�ective permittivity is bounded by the one-point bounds εL
1 (c1) and εU

1 (c1). From
the calculations above and Figure 1, it follows that the e�ective permittivity also is
bounded by the two-point bounds

εL
2 (c2, c

L
1 ), with − cL

1 (1− cL
1 ) ≤ c2 ≤ 0 (3.14)

and
εU
2 (c2, c

U
1 ), with − cU

1 (1− cU
1 ) ≤ c2 ≤ 0. (3.15)

These, bounds can for example be used to check the volume fraction in experi-
ments when it is di�cult to determine the volume fraction from direct measurements.
If we measure the lossy permittivity for more than one frequency, the minimum of
the calculated bounds on c1 is the optimal.

3.2.1 Asymptotic behaviour
Write c2 on the form c2 = −αc1c̃1, 0 ≤ α ≤ 1 and let ε1 = 1 and ε2 = 1 + δw, where
w is a complex number with non-zero imaginary part and modulus one. Using the
expansion (2.8), the asymptotic behaviour when δ → 0 is

cU
1 − cL

1 = c1ĉ1α(1− α)δ2 +O(δ3). (3.16)

For a �xed δ, the di�erence is smal when the c2 parameter is close to the end points
(3.1), and when the volume fraction c1 = f1 is close to its end points.
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ε1

ε1

ε2

ε2

Figure 2: Left: The checkerboard structure, a two-dimensional and periodic prob-
lem. Right: The Hashin structure. Coated spheres, that are composed of a spherical
core of permittivity ε2 surrounded by a concentric shell of permittivity ε1.

In the case of real valued phases, the parameter c1 is bounded by [19]

cL
1 =

1/εeff − 1/ε2

1/ε1 − 1/ε2

, cU
1 =

ε2 − εeff

ε2 − ε1

. (3.17)

To procead, let ε1 = 1 and ε2 = 1 + δ. Using the expansion (2.8), the asymptotic
behavior when δ → 0 is in the lossless case given by

cU
1 − cL

1 = c1ĉ1δ +O(δ2). (3.18)

The convergence is faster in the complex-valued case, which in many cases of interest
implies much tighter bounds on the volume fraction. One interpretation of the result
is that a measurement of a complex value contains more information compared to a
measurement of a real value.

3.2.2 Examples
As a �rst illustration of the theory presented above, assume that one of the phases
is a frequency independent material ε1(ω) = 3, in the chosen range of frequencies.
Moreover, phase two is lossy and measured at the frequencies ω0, ω1 and ω2. We
use the checkerboard structure and the Hashin structure, see Figure 2, to exemplify
the method.

Phase two has the value ε2(ω0) = 4.1 + 4.5i at frequency ω0. The checkerboard
structure has the exact e�ective permittivity [32]

εeff
C (ω) =

√
ε1(ω)ε2(ω). (3.19)

It is interesting to notice that the checkerboard structure corresponds exactly to
Bruggemans formula [32] at the percolation threshold c1 = 0.5.

As described above, the solutions of the equations εeff
C = εL

2 and εeff
C = εU

2 bounds
the volume fraction c1. Figure 3 shows the bounds on εeff

C (ω1), when ε2(ω1) =
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Figure 3: The star to the left is the e�ective permittivity in the checkerboard case
and the star to the right corresponds to εeff for the Hashin structure. In both �gures,
the dashed lines εL

1 (c1) and εU
1 (c1) bounds εeff(ω1) and the solid lines are the tighter

bound εL
2 (c2; c

L
1 ) and εU

2 (c2; c
U
1 ).

4.6 + 0.06i is known and the bounds on c1 are calculated to cL
1 (ω0) = 0.46 and

cU
1 (ω0) = 0.54. The exact value on the volume fraction is c1 = 0.5.

The Hashin structure [32], see Figure 2, in d-dimensions has the e�ective per-
mittivty

εeff
H (ω) = ε1(ω)

(d− 1)c1(ε1(ω)− ε2(ω)) + dε2(ω)

dε1(ω) + c1(ε2(ω)− ε1(ω))
. (3.20)

We consider the three-dimensional case, d = 3, with the volume fraction c1 = 0.5.
Using the value of ε1, ε2 and εeff

H at ω = ω0 the bounds on c1 are calculated to
cL
1 (ω0) = 0.42 and cU

1 (ω0) = 0.50. Figure 3 shows the bounds on εeff
H (ω1) when ε2(ω1)

is known.

3.2.3 Bounds when the volume fraction is known
If the volume fraction c1 is known, we obtain in the same way, bounds on c2.
The measured value εeff(ω0) is bounded by the lens-shaped region εL

2 (c2; ω0) and
εU
2 (c2; ω0), with −c1c̃1 ≤ c2 ≤ 0.

For some values of c2 and c3, the e�ective parameter εeff(ω0) is on the boundary
of εU

3 (c2, c3; ω0), which is given by the Padé approximation ε1,1 of the series (2.8).
On the curve, the parameters c2 and c3 satisfy the equation

εeff(ω0) = ε2
c2 + c1c2z + c2

2z
2 − c3z(1 + c1z)

c2 − c3z
, (3.21)

with −c1c̃1 ≤ c2 ≤ 0 and c2
2/c1 ≤ c3 ≤ −c2(1 + c2/c̃1).

At the minimum, c2 = −c1c̃1, the equation (3.21) has the solution

εL
1 (c1) = εU

2 (cmin
2 ) = εU

3 (cmin
2 , c1(1− c1)

2) = εeff (3.22)
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and at the maximum c2 = 0 the solution to the equation is

εU
1 (c1) = εU

2 (cmax
2 ) = εU

3 (cmax
2 , 0) = εeff . (3.23)

By multipling (3.21) with the denominator in εU
3 an equation quadratic in c2 and

linear in c3 is obtained. Assume that εeff 6= εL
1 (c1). Taking the real and imaginary

part gives one solution (c2, c3) except for the trivial solution when (c2, c3) = (0, 0)
The calculated value on c2 is an upper bound cU

2 (ω0) on the structural parameter
c2.

Analogously, for some values of c̃2 and c̃3, the e�ective parameter εeff(ω0) is
located on the boundary of εL

3 (c̃2, c̃3; ω0), which is given by the Padé approximation
ε1,1 of the series (2.16). That is, the equation

εeff(ω0) = ε1
c̃2 − c̃3z

c̃2 + c̃1c̃2z + c̃2
2z

2 − c̃3z(1 + c̃1z)
, (3.24)

is solved with respect to c̃2 and c̃3. Using that the coe�cients cn and c̃n are related
by (2.17), and solving the equation εeff(ω0) = εL

3 (c2, c3) gives a lower bound cL
2 (ω0)

on the structural parameter c2. As before, the equation has one solution, except for
the cases when εeff = εL

1 (c1) and when εeff = εU
1 (c1).

It is possible to derive explicit formulas for cL
2 and cU

2 but they contain many
terms and will for this reason not be presented.

The e�ective permittivity is bounded by the two-point bounds εL
2 (c2) and εU

1 (c2).
We have shown that the e�ective permittivity also is bounded by the three-point
bounds

εL
3 (c3, c

U
2 ), with

cU
2

c1

≤ c3 ≤ −cU
2

(
1 +

cU
2

1− c1

)
(3.25)

and
εU
3 (c3, c

L
2 ), with

cL
2

c1

≤ c3 ≤ −cL
2

(
1 +

cL
2

1− c1

)
, (3.26)

where cU
2 is calculated from (3.21) and cL

2 is the solution to equation (3.24). The
bounds on c3 are given by (3.3).

In many cases of interest, the composite is known to be isotropic, c2 = −c1ĉ1/d.
The bounds on c2 can then be used to check experimental data. If the volume
fraction c1 is known and −c1ĉ1/d does not belong to the interval [cL

2 , cU
2 ], the exper-

imental value on εeff is incousistent with the bounds.

3.2.4 Examples
The checkerboard structure and the Hashin structure, with the same values on the
phases as before, are used to illustrate the method.

The checkerboard has volume fraction c1 = 0.5, which is assumed to be known.
Figure 4 shows bounds on εeff(ω1), when the bounds on c2 are calculated to cL

2 (ω0) =
−0.135 and cU

2 (ω0) = −0.115. The checkerboard problem is two-dimensional and
isotropic. The second moment, (2.12), with c1 = 0.5 is then exactly c2 = −1/8 =
−0.125.
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Figure 4: The star to the left is the e�ective permittivity in the checkerboard case
and the star to the right corresponds to εeff for the Hashin structure. In both �gures,
the dashed lines εL

2 (c2) and εU
2 (c2) bounds εeff(ω1) and the solid lines are the tighter

bounds εL
3 (c3; c

U
2 ) and εU

2 (c3; c
L
2 ).

The Hashin structure is three-dimensional and isotropic. Using c1 = 0.5, the
second moment is c2 = −1/12 ≈ −0.0833. In this case the solution of the equations
(3.21) and (3.24), when c1 = 0.5 is known, determines c2 numerically. The lower
bound and the upper bound on c2 have �fteen digits in common, when the equations
are solved with Mathematica (www.wolfram.com). In the following section, we use
the approximative value c2 = cU

2 (ω0) = cL
2 (ω0) = −0.0833. Figure 4 shows bounds

on εeff(ω1) when ε2(ω1) = 4.6 + 0.06i is known.

3.2.5 Bounds on isotropic materials
If the volume fraction c1 together with the c2 parameter are known, (for example if
the material is isotropic, c2 = −(c1c̃1/d)I), the equations

εeff(ω0) = εU
4 (c3, c4; ω0), εeff(ω0) = εL

4 (c̃3, c̃4; ω0) (3.27)

give us bounds on c3. In general, if the structural parameters c1, c2, . . . , cn are known,
we obtain bounds on cn+1 from the equations

εeff(ω0) = εU
n+1(cn+1, cn+2; ω0), εeff(ω0) = εL

n+1(c̃n+1, c̃n+2; ω0). (3.28)

We can also get bounds on one structural parameter cn if c1, c2, . . . , cn−1 and cn+1

are known. For example, if the material is known to be isotropic c2 = −c1(1−c1)/d,
the Hashin-Shtrikman bounds give us tighter bounds on the volume fraction than
the solution to (3.6).

3.2.6 Examples
The bounds on c1(ω0), for the checkerboard structure above were calculated to
cL
1 (ω0) = 0.46 and cU

1 (ω0) = 0.54. We now use that c2 = −0.125 and solve εeff(ω0) =
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Figure 5: The star is the e�ective permittivity εeff(ω1) in the checkerboard case.
The dashed lines εL

3 (c3) and εU
3 (c3) bounds εeff(ω1) and the solid lines are the tighter

bounds εL
4 (c4; c

L
3 ) and εU

4 (c4; c
U
3 ).

εL
3 and εeff(ω0) = εU

3 with respect to c1 and c3. The result is three solutions at the
end-points cmin

3 , cmax
3 , one solution when c3 < cmin

3 and the bounds

cL
1 (ω0) = 0.492, cU

1 (ω0) = 0.508 (3.29)

When the composite is known to be isotropic and the volume fraction is known,
the e�ective permittivity is bounded by the three-point bounds εL

3 (c3) and εU
3 (c3).

The e�ective value is also bounded by the four-point bounds

εL
4 (c4, c

L
3 ), with cmin

4 (cL
3 ) ≤ c4 ≤ cmax

4 (cL
3 ) (3.30)

and
εU
4 (c4, c

U
3 ), with cmin

4 (cU
3 ) ≤ c4 ≤ cmax

4 (cU
3 ), (3.31)

where the bounds on c4 are given by (3.4). We use that the checkerboard is isotropic
and that the volume fraction is c1 = 0.5. Using the same values on the phases as
above, the bounds on c3 are calculated to cL

3 (ω0) = 0.0601 and cU
3 (ω0) = 0.0649,

respectively. The geometry independent bounds (3.3) are in this case cmin
3 = 0.0315

and cmax
3 = 0.09375.

The exact value on c3 can be identi�ed from a Taylor expansion of εeff =
√

ε1ε2,
when ε1 = 1 and ε2 = 1 + η, η < 1. The e�ective permittivity εeff is then

εeff(1, 1 + η) = 1 +
1

2
η − 1

8
η2 +

1

16
η3 − 5

128
η4 + . . . (3.32)

The bounds on c3 are tight, and the arithmetic mean (cL
3 (ω0)+cU

3 (ω0))/2 provides
an accurate approximation of c3 = 1/16 = 0.0625. Figure 5 shows the bounds on
εeff(ω1), when the volume fraction is c1 = 0.5 and the composite is known to be
isotropic, c2 = −0.125.

The Hashin structure is three-dimensional and isotropic. Using the same val-
ues as above, the solution of εU

4 = εL
H gives the lower bound cL

3 = cmax
3 . This
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Figure 6: Left: The union of the regions εL
2 (c2; c

L
1 ), εU

2 (c2; c
L
1 ) and εL

2 (c2; c
U
1 ),

εU
2 (c2; c

U
1 ) bounds εeff(ω1). Right: For some values on c2 = c2(c1), the e�ective

permittivity εeff(ω1) is on the boundary of εL
3 (c3; c2(c1), c1, ω1), εU

2 (c3; c2(c1), c1, ω1).
The two lens-shaped regions correspond to two di�erent values on the volume frac-
tion c1.

solution determines c3 numerically. The lower bound cL
3 and the maximum cmax

3

have sixteen digits in common, when the equations are solved with Mathematica
(www.wolfram.com).

The properties εU
3 (cmax

3 ) = εL
2 (c2, c1) and εL

3 (cmax
3 ) = εL

2 (c2, c1) implies εeff =
εL
2 (c2, c1).

When the composite is isotropic, the lower bound εL
2 is equivalent with the

Maxwell-Garnett formula [28, 32]. This formula, commonly used by experimentalists
is a good approximation formula if c3 is close to cmax

3 .

3.3 Bounds using two measurements
We cannot determine bounds on more than one structural parameter with informa-
tion from one measurement. If we have two measurements, which give us di�erent
bounds on c1, it is also possible to get bounds on c2 without any assumptions on
the microstructure. Geometrically, we fail to get bounds c2 from one measurement,
because the e�ective permittivity is (by construction) on the boundary of the εL

2/εU
2 -

bounds, when c1 = cL
1 or c1 = cU

1 .
Assume that the measurement of εeff(ω0) give us tighter bounds cL

1 (ω0) ≤ c1 ≤
cU
1 (ω0) than the measurement of εeff(ω1). If we use the tighter bounds cL

1 (ω0) ≤ c1 ≤
cU
1 (ω0) together with the measurement εeff(ω1), we avoid the boundary and we can
continue to bound c2. This simple observation is the key to the construction of the
bounds on any structural parameter.

To bound the c1-dependent parameter c2 with a �xed value on c1 the equations

εeff(ω1) = εU
3 (c3, c2; c1(ω0)), εeff(ω1) = εL

3 (c3, c2; c1(ω0)) (3.33)
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are solved in the range cL
1 (ω0) ≤ c1 ≤ cU

1 (ω0). By construction, the two lens-
shaped regions εL

2 (c2; c
L
1 , ω0), εU

2 (c2; c
L
1 , ω0) and εL

2 (c2; c
U
1 , ω0), εU

2 (c2; c
U
1 , ω0) intersect,

see Figure 6. From the bound εU
3 , we get an upper bound cU

2 (c1) on c2 and the lower
bound εL

3 provide a lower bound cU
2 (c1) on c2.

We can now construct three-point bounds on εeff by forming

εL
3 (c3, c

U
2 (c1), c1), εU

3 (c3, c
L
2 (c1), c1) (3.34)

with c1 ∈ [cL
1 (ω0), c

U
1 (ω0)] and c3 ∈ [cmin

3 , cmax
3 ]. The c1-dependent maximum cmax

3

and the minimum cmax
3 are taken from the expression (3.3).

The upper bound cU
2 (c1) and the lower bound cL

2 (c1) are both second-degree poly-
nomials in c1, which are easily maximized and minimized. Global, c1-independent,
bounds on c2 are de�ned as

cL
2 (ω1) = min

c1∈[cL1 ,cU1 ]
{cL

2 (c1)}, cU
2 (ω1) = max

c1∈[cL1 ,cU1 ]
{cU

2 (c1)}. (3.35)

If some of the structural parameters are known, for example, if the volume frac-
tion is known and the material is isotropic, the two measurements give bounds on
the higher order moments c3 and c4.

From the derivation of the maximum cmax
3 and the minimum cmin

3 in [19] we have
the equalities εL

3 = εL
2 when c3 = cmax

3 and εL
3 = εU

2 when c3 = cmin
3 . In the same way

the upper bound εU
3 can be used to limit the c3-parameter. We obtain the equalities

εU
3 = εL

2 when c3 = cmax
3 , and εU

3 = εU
2 when c3 = cmin

3 . Using these properties, the
bounding region in (3.34), that depends on two variables c1 and c3 can be expressed
as a set of bounds, depending on one single variable. The new bounds are

εU
3 (c3; c

L
2 (cU

1 ), cU
1 ), εU

3 (c3; c
L
2 (cL

1 ), cL
1 ), εU

2 (c1, c
L
2 (c1)), εL

2 (c1, c
L
2 (c1)) (3.36)

and

εL
3 (c3; c

U
2 (cU

1 ), cU
1 ), εL

3 (c3; c
U
2 (cL

1 ), cL
1 ), εU

2 (c1, c
U
2 (c1)), εL

2 (c1, c
U
2 (c1)), (3.37)

where the two-point bounds depend on c1 ∈ [cL
1 (ω0), c

U
1 (ω0)] and the three-point

bounds depend on c3 ∈ [cmin
3 , cmax

3 ].

3.4 The checkerboard
We give an example of the method when no structural information is known using
the checkerboard structure. Assume, as before, that ε2(ω0) = 4.1+4.5i and ε2(ω1) =
4.6 + 0.06i are known and that ε1 = 3 independent of the frequency ω. Moreover,
we assume that εeff(ω0) and εeff(ω1) is measured and seek bounds on εeff(ω2) when
ε2(ω2) = 3.7 + 0.04i is known.

The second measurement on frequency ω1 gives the tightest bounds on c1 = 0.5,

cL
1 (ω1) = 0.494, cU

1 (ω1) = 0.506. (3.38)
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Figure 7: The star to the left is the location of the e�ective permittivity in the
checkerboard case, and the star to the right corresponds to εeff for the rods. In both
�gures, the dash-dotted lines εL

2 (c2; c
L
1 ) and εU

2 (c2; c
U
1 ) bounds εeff(ω1) and the solid

lines gives the tighter bounds (3.36) and (3.37).

We use the measurement of the e�ective permittivity on the frequency ω0 to bound
c2. The solution to the equations εeff(ω0) = εL

3 and εeff(ω0) = εU
3 , when c1 ∈

[cL
1 (ω1), c

U
1 (ω1)] is

cL
2 (c1) = 1.09296− 6.0343c1 + 7.15922c2

1 (3.39)

and
cU
2 (c1) = −2.21787 + 7.28412c1 − 6.15921c2

1. (3.40)
These functions have no stationary point when c1 ∈ [0.494, 0.506]. The endpoints
give the global bounds on c2 = −0.125,

cL
2 (ω0) = −0.141, cU

2 (ω0) = −0.108 (3.41)

The bounds (3.36) and (3.37) that bounds εeff(ω1) are depicted in Figure 7.

3.5 An anisotropic example
Using the same material parameters as above, we also give an example in the
anisotropic and periodic case, see Figure 8.

We use FEMLAB (www.comsol.com) to numerically calculate the solution to the
local problem (2.2), (2.3). At the frequencies ω0 and ω1, the results are

εeff(ω0) = 3.9426 + 0.9852i, εeff(ω1) = 3.5147 + 0.001554i. (3.42)

The second measurement at the frequency ω1 gives the tightest bounds on c1,

cL
1 (ω1) = 0.5941, cU

1 (ω1) = 0.6007 (3.43)
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ε1ε2 ε2

Figure 8: The geometry used to generate the result shown in Figure 7 and in
Figure 9. Two rods with length 0.8 and width 0.25 are located, a distant 0.3 apart,
in a unit square. The volume fraction is then c1 = 0.6. The applied �eld is oriented
perpendiculary to the rods.

We use the measurement of the e�ective permittivity on frequency ω0 to bound
c2. The solution to the equations εeff(ω0) = εL

3 and εeff(ω0) = εU
3 , when c1 ∈

[cL
1 (ω1), c

U
1 (ω1)] are

cL
2 (c1) = 7.07395− 26.20256c1 + 23.50343c2

1 (3.44)

and
cU
2 (c1) = −2.46585 + 6.37039c1 − 4.27488c2

1. (3.45)
These functions have no stationary point when c1 ∈ [0.5941, 0.6007]. The endpoints
give the global bounds

cL
2 (ω0) = −0.1974, cU

2 (ω0) = −0.1817 (3.46)

The bounds on εeff(ω2) when ε2(ω2) = 3.7+0.04i are known are depicted in Figure 7.
The e�ective permittivity is numerically calculated to εeff(ω2) = 3.253 + 0.01306i.

In practice, the e�ective permittivity (3.42) is the results of measurements and
cannot in general be given with this accuracy. A computer program that takes in
to account that measurements has errors have been written. If we assume that the
error in the measurements of εeff(ω) is 1%, the bounds on the volume fraction are
numerically computed to

0.57 ≤ c1 ≤ 0.62 (3.47)
In a separate paper [18], the method derived here will be used to analyze data from
real measurements.

3.5.1 Bounds when the volume fraction is known
Assume that we have one measurement at ω0 and one measurement at ω2 (that here
is numerically calculated in FEMLAB (www.comsol.com)). The e�ective permittiv-
ity at ω2 is

εeff(ω2) = 3.253 + 0.01306i. (3.48)
The measurement at frequency ω2 gives the tightest bounds on c1,

cL
1 (ω2) = 0.5984, cU

1 (ω2) = 0.6002. (3.49)
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Figure 9: The star is the e�ective permittivity εeff(ω3) bounded by the dashed
lines εL

3 (c3; c
U
2 ) and εU

3 (c3; c
L
2 ). The solid lines are the tighter bounds εL

4 (c4, c
L
3 (c2))

and εU
4 (c4, c

L
3 (c2)).

The bounds on c1 are in this case very tight. The arithmetic mean of cL
1 (ω2) and

cU
1 (ω2) is then approximately capp

1 (ω2) = 0.6, which is the exact value on the volume
fraction.

If c1 = 0.6, is used the same schedule as above can be used to bound the para-
meters c2 and c3. The solution to the equations εeff(ω2) = εL

3 and εeff(ω2) = εU
3 , with

c1 = 0.6 gives the tightest bounds on c2,

cL
2 (ω2) = −0.18413, cU

1 (ω2) = −0.18403. (3.50)

The solution to the equations εeff(ω0) = εL
4 and εeff(ω0) = εU

4 , with c2 ∈ [cL
2 (ω1), c

U
2 (ω1)]

is
cL
3 (c2) = 1.37544 + 12.75996c2 + 31.54795c2

2 (3.51)
and

cU
3 (c2) = −7.60752− 84.64558c2 − 232.47525c2

2 (3.52)
These functions have no stationary point when c2 ∈ [cL

2 (ω1), c
U
2 (ω1)]. The endpoints

give the global bounds

cL
3 (ω0) = 0.0955, cU

2 (ω0) = 0.0966 (3.53)

The bounds on εeff(ω2) were tight when the volume fraction was unknown, and
they are now even tighter. We use a composite with larger contrast to illustrate
the bounds. Assume that ε1(ω3) = 3 + 0.1i and ε2(ω3) = 2 + 20i are known.
The bounds εL

4 (c4, c
L
3 (c2)) and εU

4 (c4, c
L
3 (c2)) on the e�ective permittivity εeff(ω3)

are depicted in Figure 9. The e�ective permittivity is numerically calculated to
εeff(ω3) = 5.409 + 1.038i.

The geometry and the values on the phases were previously used in [19], where
the value on the volume fraction c1 and the anisotropy c2 were assumed to be
known. Here we obtain almost as tight bounds as in [19] by using the values of two
measurements of a bulk property.
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The bounds on c2 from the measurement on ω2 are close. If we use the arithmetic
mean of cL

2 (ω2) and cU
2 (ω2) as an approximation, the same schedule can be used to

bound the parameters c3 and c4.

4 Discussion and conclusions
We have developed a method to calculate inverse bounds on the structural parame-
ters from measurements of lossy two-component composites. For example, measure-
ments can be used to determine the frequency dependent e�ective permittivity.

If no structural information is known, data from two measurements determine
bounds on the volume fraction and on the isotropy parameter. The bounds on the
structural parameters are used to bound the permittivity at some frequency of in-
terest or a related e�ective property, such as the electrical and thermal conductivity,
magnetism, di�usion and �ow in porous media.

In the case when some of the structural parameters are known, for example
if the composite is known to be isotropic and the volume fraction is known, the
same schedule can be used to bound higher order moments. The method can be
extended to bound higher order moments, provided that we have information from
more measurements of the bulk parameters.

Numerical experiments, with reasonable values for the permittivity, were used
to illustrate the method.
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