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Abstract

Decomposition of the electromagnetic energy into its stored and radiated parts

is instrumental in the evaluation of antenna Q and the corresponding funda-

mental limitations on antennas. This decomposition is not unique and there

are several proposals in the literature. Here, it is shown that stored energy

de�ned from the di�erence between the energy density and the far �eld energy

equals the new energy expressions proposed by Vandenbosch for many cases.

This also explains the observed cases with negative stored energy and sug-

gests a possible remedy to them. The results are compared with the classical

explicit expressions for spherical regions where the results only di�er by ka

that is interpreted as the far-�eld energy in the interior of the sphere. Nu-

merical results of the Q-factors for dipole, loop, and inverted L-antennas are

also compared with estimates from circuit models and di�erentiation of the

impedance. The results indicate that the stored energy in the �eld agrees with

the stored energy in the Brune synthesized circuit models whereas the di�eren-

tiated impedance gives a lower value for some cases. The corresponding results

for the bandwidth suggest that the inverse proportionality between bandwidth

and Q depends on the relative bandwidth or equivalent the threshold of the

re�ection coe�cient. The Q from the di�erentiated impedance and stored

energy are most useful for relative narrow and wide bandwidths, respectively.

1 Introduction

Electrostatic energy in free space can be written as an integral of the energy density,
ε0|E|2/4, or equivalently as an integral of the electric potential, φ, times the charge
density, ρ, [13, 25, 27, 35]. A similar expression holds for the magnetostatic energy.
The electrodynamic case is more involved. In [6], Carpenter suggests a generalization
in the time domain based on φρ+ A · J , i.e., the sum of the scalar potential times
the charge density and the vector potential, A, times the electric current density,
J , see also [11, 34]. Geyi uses a similar expression to analyze small antennas in [15].
Vandenbosch presents general integral expressions in the electric current density for
the stored electric and magnetic energies in the frequency domain [36] and time
domain [38, 39]. These expressions are similar to the expressions by Carpenter but
include some correction terms.

Stored electromagnetic energy is instrumental in determination of lower bounds
on the Q-factor for antennas, see [40] for an overview. The classical results by Chu [7]
and Collin & Rothschild [10] are based on subtraction of the power �ow and explicit
calculations using mode expansions of the stored energy outside a sphere. This
gives simple expressions for the minimum Q of small spherical antennas [7, 10]. The
major shortcoming is that the results are restricted to spherical regions although
some generalizations to spheroidal regions are suggested in [14, 30]. The results
have also been generalized to the case with electric current sheets by Thal [33] and
Hansen and Collin [21] by adding the stored energy in the interior of the sphere.
Yaghjian and Best [42] analyze stored energy for general media and its relation to the
input impedance. The new energy expressions by Vandenbosch [36] are very useful
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as they express the stored energy in the current density on the antenna structure.
This is very fruitful in the analysis of small antennas [3, 17, 18, 37] and for antenna
optimization [8, 17]. The expressions have been veri�ed for wire antennas in [24].
One minor problem with the proposed expressions is that they can produce negative
values of stored energy for electrically large structures [18]. A similar relation with
the di�erentiated antenna input impedance [19, 42] is derived in [4].

In this paper, we investigate stored electric and magnetic energy expressions
based on subtraction of the far-�eld energy density. The expressions are suitable
for antenna Q and bandwidth calculations and they are closely related to the clas-
sical methods in [10, 42], see also [40], for antenna Q calculations. They are not
restricted to spherical geometries and, furthermore, resembles the recently proposed
expressions by Vandenbosch [36]. The results provide a new interpretation of Van-
denbosch's expressions [36] and explain the observed cases with negative stored
energy [18]. They also suggest a possible remedy to the negative energy and that
the computed Q has an uncertainty of the order ka, where a is the radius of the
smallest circumscribing sphere and k the wavenumber. This is consistent with the
use of Q for small (sub wavelength) antennas, where ka is small and Q is large [7, 10].
Analytic results for spherical structures show that the expressions in [36] for Q di�er
with ka from the results in [21], that is here interpreted as the far-�eld energy in the
interior of the sphere. The results for Q are also compared with estimated values
from circuit models and di�erentiation of the impedance [19, 42] for dipole, loop,
and inverted L antennas.

We use Brune synthesis [41] to construct equivalent lumped circuit models from
the input impedance. The numerical results indicate that the stored energy in the
circuit elements agree very well with the stored energy in the �elds. The results
also show that the Q-factor from di�erentiation of the input impedance, QZ′ , agree
with the Q from the stored energy, QB, if Q is large and dominated by a single reso-
nance. The values start to di�er for lower values of Q where multiple resonances are
common [19, 31]. We also compare the corresponding bandwidth with and without
matching networks. The results indicate that the inverse proportionality between
the fractional bandwidth B ∼ 1/Q is most accurate using Q = QZ′ for relative nar-
row bandwidths B < 2/Q whereas Q = QB is better for wider bandwidths. This is
consistent with QZ′ being a local function of the input impedance and QB depend-
ing on the global behavior of the input impedance. The bandwidth for a simple
shunt and series resonance circuit [19] is also analyzed using matching networks and
Fano matching bounds [12] to illustrate a case with QZ′ = 0, where the inverse
proportionality of the bandwidth to Q fails for QZ′ .

The paper is organized as follows. In Sec. 2, the stored electric and magnetic
energies de�ned by subtraction of far-�eld from the energy density are analyzed. The
coordinate dependence is analyzed in Sec. 3. Stored energies from small structures
are derived in Sec. 4. Stored energy from the input impedance are discussed in
Sec. 5. Analytic results for spherical geometries and resonance circuits and numerical
results for dipole, loop, and inverted L antennas are presented in Sec. 6. The paper is
concluded in Sec. 7. There are four appendices discussing Green's function identities
App. A, spherical geometries App. B, Brune synthesis App. C, and Bode-Fano
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Figure 1: Illustration of the object geometry V with surface ∂V , outward normal
unit vector n̂, and current density J(r). The object is circumscribed by a sphere
with radius a.

matching App. D.

2 Stored electromagnetic energy

We consider time-harmonic electric and magnetic �elds, E(r) and H(r), respec-
tively, with a suppressed e−iωt dependence, where ω denotes the angular frequency.
The Maxwell equations in free space are [25]{

∇×E = iωµ0H = iη0kH

∇×H = −iωε0E + J = − ik
η0
E + J ,

(2.1)

where J denotes the current density, while ε0, µ0, and η0 =
√
µ0/ε0 are the free

space permittivity, permeability, and impedance, respectively. For simplicity, we
interchange between the angular frequency and the free space wavenumber k = ω/c0,
where the speed of light c0 = 1/

√
µ0ε0. We also recall the continuity equation,

∇ · J = iωρ, relating the current density J with the charge density ρ.
The time-harmonic electric and magnetic energy densities [25, 27, 35] are ε0|E|2/4

and µ0|H|2/4, respectively. The energy densities are not observable [6] and there are
a few alternative suggestions in the literature [13]. The electric and magnetic ener-
gies comprise both radiated and stored energies; however, for antenna Q calculations
one must extract the stored energy.

The Maxwell's equations (2.1) show that the sources and �elds obey the conser-
vation of energy equation in di�erential form,

i2ω
(ε0

4
|E|2 − µ0

4
|H|2

)
+

1

2
E · J∗ = −1

2
∇ · (E ×H∗), (2.2)

where the superscript ∗ denotes complex conjugate. We consider current distribu-
tions J whose support is in a volume V bounded by the surface ∂V , see Fig. 1.
Integrating (2.2) over this volume gives the real part result

Re

∫
∂V

E(r)×H∗(r) · n̂(r)

2
dS = −Re

∫
V

E(r) · J∗(r)

2
dV, (2.3)
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where n̂ denotes the outward-normal unit vector of the surface ∂V . The �rst term in
the real part expression (2.3) is readily identi�ed in view of the Poynting vector [25,
35] as the time-average radiated power �ow through the surface ∂V , so that (2.3)
equates the radiated power exiting ∂V to the time average of the power generated
by J , as expected from energy conservation. Furthermore, integrating (2.2) over
all space shows that the radiated power exiting the surface ∂V can be expressed in
terms of the far �eld as

Pr = Re

∫
∂V

E(r)×H∗(r) · n̂(r)

2
dS =

∫
Ω

|F (r̂)|2

2η0

dΩ, (2.4)

where Ω denotes the surface of the unit sphere and the far �eld behaves like E(r) ∼
eikrF (r̂)/r as r → ∞, where r = rr̂ and r = |r|. Similarly, by integrating (2.2)
over all space one obtains the imaginary part result∫

R3

µ0

4
|H(r)|2 − ε0

4
|E(r)|2 dV = Im

∫
V

E(r) · J∗(r)

4ω
dV, (2.5)

where we used the fact that the integral of the imaginary part of the divergence
term in (2.2) vanishes as the integration volume approaches R3. The imaginary part
result (2.5) relates the well-de�ned di�erence between the time-average electric and
magnetic energies with the net reactive power delivered by J .

As is well known [7, 10], the total energy, de�ned as the integral of the energy
density integrated over all space, is unbounded due to the 1/r2 decay of the energy
density in the far radiation zone. This is resolved by decomposition of the total
energy into radiated and stored energy. The stored energy is, however, di�cult to
de�ne and interpret. The classical approach used by Chu [7] and Collin & Roth-
schild [10], and subsequently by others, is based on mode expansions, and therefore
restricted to canonical geometries. Spherical regions are most commonly considered
but there are also some results for cylindrical [10] and spheroidal [14, 30] structures.
The stored energy density is customarily de�ned as the di�erence between the total
energy density and the radiated power �ow in the radial direction [9, 10, 28], thus
the stored electric energy becomes

W
(E)
P =

ε0
4

∫
R3
r

|E(r)|2 − η0 Re{E(r)×H∗(r)} · r̂ dV, (2.6)

where R3
r = {r : limr0→∞ |r| ≤ r0} is used to indicate that the integration is over

an in�nite spherical volume. The classical results by Chu [7] are for spheres with
vanishing interior �eld [10], so that the stored energy is due to the exterior �eld
only (i.e., for the region where r > a where a is the radius of the smallest sphere
circumscribing the sources). The Thal bound [33] generalizes the results to �elds
generated by electric surface currents, see also [21]. Here it is observed that there
is a stored energy but no radiated energy �ux in the interior of the sphere. The
de�nition (2.6) is useful for spherical geometries and can be generalized to cylindrical
geometries [9, 10, 28]. This de�nition is di�cult to generalize to arbitrary geometries
due to its coordinate dependence that originates from the scalar multiplication with
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r̂. The subtraction of the radiated energy �ow is equivalent to subtraction of the
energy of the far �eld outside a circumscribing sphere, cf., (2.4). This suggests an
alternative stored electric energy de�ned by subtraction of the far-�eld energy, i.e.,

W
(E)
F =

ε0
4

∫
R3
r

|E(r)|2 − |F (r̂)|2

r2
dV, (2.7)

where the integration is over the in�nite sphere R3
r . The subtracted far-�eld in

the integrand can alternatively be written as a subtraction of the radius times the
radiated power [42].

We note that the de�nitions with the power �ow (2.6) and far �eld (2.7) di�er
only in the interior of the smallest circumscribing sphere associated with the source
support. In the interior of the smallest circumscribing sphere, which we assume next
to be of radius a, this subtracted far-�eld energy is then

ε0
4

∫ a

0

∫
Ω

|F (r̂)|2 dΩ dr =
a

2c0

Pr. (2.8)

Assuming that the contribution to the true stored electric energy, say W (E), due to
the exterior �eld outside the smallest circumscribing sphere, is equal to that ofW

(E)
P

and W
(E)
F in (2.6) and (2.7), and that it subtracts some non-negative value less than

ε0|F |2/(4r2) inside the sphere, then we obtain the bound

W
(E)
F ≤ W (E) ≤ W

(E)
F +

a

2c0

Pr. (2.9)

This means that the stored electric energy can be bounded from below and above
by (2.7). The stored magnetic energy, W

(M)
F , is de�ned analogously. The stored

energy is commonly normalized with the radiated power to de�ne Q-factors. The
Q-factor is Q = max{Q(E), Q(M)}, where

Q(E) =
2ωW (E)

Pr

and Q(M) =
2ωW (M)

Pr

(2.10)

and we have included a factor of 2 in the de�nitions of Q(E) and Q(M) to simplify
the comparison with antenna Q. This translates the bound (2.9) into

max{0, QF} ≤ Q ≤ QF + ka, (2.11)

where we have added that Q is non-negative.
We show that the stored energy with the subtracted far �eld (2.7) is similar to the

energy de�ned by Vandenbosch in [36] for the vacuum case. For simplicity we express
the energy using the scalar potential φ and the vector potential A in the Lorentz
gauge [25, 27, 35], so that (∇2 + k2)φ(r) = −ρ(r)/ε0 and (∇2 + k2)A(r) = −µ0J(r)
and therefore

φ(r) = ε−1
0 (G ∗ ρ)(r) =

1

ε0

∫
V

G(r − r′)ρ(r′) dV′ (2.12)
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and

A(r) = µ0(G ∗ J)(r) = µ0

∫
V

G(r − r′)J(r′) dV′, (2.13)

where ∗ denotes convolution and G is the outgoing Green's function i.e., G(r) =
eikr/(4πr) and r = |r|. The vector and scalar potentials are related by∇·A = ikφ/c0

and the electric and magnetic �elds are given by [25]

E = iωA−∇φ and H = µ−1
0 ∇×A. (2.14)

We also use the corresponding far-�eld potentials de�ned by

φ∞(r̂) =
1

4πε0

∫
V

ρ(r′)e−ikr̂·r′
dV′ (2.15)

and

A∞(r̂) =
µ0

4π

∫
V

J(r′)e−ikr̂·r′
dV′ (2.16)

giving the electric far-�eld

F (r̂) = iωA∞(r̂)− r̂ikφ∞(r̂). (2.17)

Using that the far-�eld is orthogonal to r̂, i.e., r̂ · F = 0, the far-�eld radiation
pattern obeys

|F (r̂)|2 = ω2|A∞(r̂)|2 − k2|φ∞(r̂)|2. (2.18)

The electric energy density is proportional to

|E|2 = ω2|A|2 − 2 Re{iωA · ∇φ∗}+ |∇φ|2

= ω2|A|2 − 2k2|φ|2 + |∇φ|2 − 2 Re{iω∇ · (φ∗A)}, (2.19)

where we used ∇ · (φ∗A) = φ∗∇ ·A + A · ∇φ∗ = ik|φ|2/c0 + A · ∇φ∗. We integrate
this result over a large sphere to get the far-�eld type stored electric energy (2.7)
expressed in the potentials

4W
(E)
F

ε0
=

∫
R3
r

|E(r)|2 − |F (r̂)|2

r2
dV

=

∫
R3
r

|∇φ|2 − k2|φ|2 + ω2

(
|A|2 − |A∞|

2

r2

)
− k2

(
|φ|2 − |φ∞|

2

r2

)
dV, (2.20)

where we applied the divergence theorem to the integration of the last term in (2.19),
obtaining via the discussion in (2.17) and (2.18) that

∫
Ω

Im{φ∗(rr̂)Ar(rr̂)}r2 dΩ→ 0
as the radius r →∞ in R3

r , see (2.17).
Use the energy identity for the Helmholtz equation, |∇φ|2−k2|φ|2 = ε−1

0 Re{φρ∗}+
∇ · (Re{φ∗∇φ}), and that φ∗∇φ → ikr̂|φ|2 for large enough r, to rewrite the �rst
two terms in (2.20) as∫

R3
r

|∇φ(r)|2 − k2|φ(r)|2 dV = ε−1
0 Re

∫
V

φ(r)ρ∗(r) dV

=

∫
V

∫
V

ρ(r1)
cos(k|r1 − r2|)
4πε20|r1 − r2|

ρ∗(r2) dV1 dV2, (2.21)
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where we also used that the surface term vanishes. The Green's function identity,
see App. A∫

R3
r

G(r− r1)G∗(r− r2)− e−ik(r1−r2)·r̂

16π2r2
dV = −sin(kr12)

8πk
+ i

r2
1 − r2

2

8πr12

j1(kr12), (2.22)

where j1(z) = (sin(z) − z cos(z))/z2 is a spherical Bessel function [35], is used to
rewrite the two remaining terms in (2.20) as∫

R3
r

|G∗J |2−
|
∫
V

e−ikr′·r̂J(r′) dV′ |2

16π2r2
dV = −

∫
V

∫
V

J(r1)·sin(k|r1 − r2|)
8πk

J∗(r2) dV1 dV2

+ i

∫
V

∫
V

J(r1) · r
2
1 − r2

2

8πr12

j1(kr12)J∗(r2) dV1 dV2 (2.23)

and∫
R3
r

|G∗ρ|2−
|
∫
V

e−ikr′·r̂ρ(r′) dV′ |2

16π2r2
dV = −

∫
V

∫
V

ρ(r1)
sin(k|r1 − r2|)

8πk
ρ∗(r2) dV1 dV2

+ i

∫
V

∫
V

ρ(r1)
r2

1 − r2
2

8πr12

j1(kr12)ρ∗(r2) dV1 dV2 . (2.24)

We note that the �rst terms in the right-hand side of (2.23) and (2.24) only depend
on the distance r12 = |r1 − r2| and are hence coordinate independent, whereas the
last terms depend on the coordinate system due to the factor r2

1 − r2
2 = (r1 + r2) ·

(r1 − r2). The coordinate dependence originates in the explicit evaluation of the
integral in (2.22) over large spherical volumes R3

r that is necessary due to the slow
convergence of the integral in (2.22), see also App. A.

Collecting the terms in (2.21), (2.23), and (2.24), we get a quadratic form in the
current density J for the far-�eld type stored electric energy (2.20) as

W
(E)
F = W

(E)
F0

+WF1 +WF2 , (2.25)

where W
(E)
F0

+WF1 is the coordinate independent part

W
(E)
F0

+WF1 =
µ0

4

∫
V

∫
V

∇1 · J(r1)∇2 · J∗(r2)
cos(kr12)

4πk2r12

−
(
k2J(r1) · J(r2)∗ −∇1 · J(r1)∇2 · J∗(r2)

)sin(kr12)

8πk
dV1 dV2 (2.26)

and W
(E)
F0

and WF1 contains the cos and sin parts, respectively. The coordinate
dependent part is

WF2 =
µ0

4

∫
V

∫
V

Im
{
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

}r2
1 − r2

2

8πr12

j1(kr12) dV1 dV2, (2.27)

where Jn = J(rn), n = 1, 2. The coordinate independent part W
(E)
F0

+ WF1 is
identical to the energy by Vandenbosch in [36] for vacuum and hence presents a
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clear interpretation of the energy [36] in terms of (2.7). We also see that the de�ni-
tion (2.7) explains the peculiar e�ects of negative stored energies [18] and suggests
a remedy to it in (2.11). The coordinate dependent part WF2 is more involved. A
similar coordinate dependent term is observed in [42]. Obviously the actual stored
energy, as any physical quantity, should be independent of the coordinate system.
First, we observe that WF2 = 0 for any current density that has a constant phase.
This includes the �elds originating from single spherical modes on spherical surfaces
and hence most cases in [7, 10, 21, 33]. It also includes currents in the form of single
characteristic modes [3]. We also get the coordinate independent part by taking the
average of the stored energy from J and J∗. The term WF2 is further analyzed in
Secs 3 and 4.

For the stored magnetic energy we can use |B|2 = |∇×A|2 or simpler the energy
identity (2.5), to directly get the di�erence∫

R3
r

µ0|H(r)|2 − ε0|E(r)|2 dV = Re

∫
V

A(r) · J∗(r)− φ(r)ρ∗(r) dV, (2.28)

where we used
E · J∗ = iωA · J∗ −∇ · (φJ∗)− iωφρ∗. (2.29)

This gives the far-�eld type stored magnetic energy W
(M)
F = W

(M)
F0

+WF1 +WF2 ,
where the coordinate independent part

W
(M)
F0

+WF1 =
µ0

4

∫
V

∫
V

J(r1) · J∗(r2)
cos(kr12)

4πr12

−
(
k2J(r1) · J(r2)∗ −∇1 · J(r1)∇2 · J∗(r2)

)sin(kr12)

8πk
dV1 dV2 (2.30)

is expressed as a quadratic form in J , see also [36]. We also have the radiated power

Pr =
η0

2k

∫
V

∫
V

(
k2J(r1) · J∗(r2)−∇1 · J(r1)∇2 · J∗(r2)

)sin(kr12)

4πr12

dV1 dV2 . (2.31)

It is illustrative to rewrite the coordinate independent far-�eld stored energy in
the potentials:

W
(E)
F0

=
1

4
Re

∫
V

ρ∗φ dV, W
(M)
F0

=
1

4
Re

∫
V

J∗ ·A dV . (2.32)

We note that the sum of the �rst terms, W
(E)
F0

+W
(M)
F0

, corresponds to a frequency-
domain version of the energy expression by Carpenter [6], see also [11, 34]. Moreover,
they reduce to well-known electrostatic and magnetostatic expressions in the low-
frequency limit [25].

We follow standard notation in the method of moments (MoM) and introduce the
operators Le and Lm such that L = Le−Lm is the integral operator associated with
the electric �eld integral equation (EFIE) [26]. Here, the operators are generalized
to volumes and de�ned from

〈J ,Le J〉 =
−1

ik

∫
V

∫
V

∇1 · J(r1)∇2 · J∗(r2)G(r1 − r2) dV1 dV2, (2.33)
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〈J ,Lm J〉 = ik

∫
V

∫
V

J(r1) · J∗(r2)G(r1 − r2) dV1 dV2, (2.34)

and

〈J ,Lem J〉 =
ik

2

∫
V

∫
V

(1

k
∇1 · J(r1)∇2 · J∗(r2)

− kJ(r1) · J∗(r2)
)∂G(r1 − r2)

∂k
dV1 dV2 . (2.35)

They are de�ned such that the stored electric and magnetic energies and radiated
power are

W
(E)
F0

=
η0

4ω
Im〈J ,Le J〉 (2.36)

W
(M)
F0

=
η0

4ω
Im〈J ,Lm J〉 (2.37)

WF1 =
η0

4ω
Im〈J ,Lem J〉 (2.38)

Pr =
η0

2
Re〈J , (Le−Lm)J〉. (2.39)

E�cient evaluation of the L operator is instrumental in MoM implementations where
the discretized versions are often referred to as impedance matrices. The relations
above show that the corresponding matrices for the coordinate independent stored
and radiated energies are available by evaluating the real and imaginary parts of the
MoM impedance matrices with the addition of the mixed part (2.35). The stored
energy is hence computed with negligible additional computational cost in MoM
implementations. Moreover, (2.39) shows that ReL is positive semide�nite.

3 Coordinate dependent term

The stored electric (2.25) and magnetic energies contain the potentially coordinate
dependent part WF2 de�ned in (2.27). Assume that WF2 = WF2,0 for one coordinate
system. Consider a shift of the coordinate system r → d+r and use that r2

1− r2
2 →

r2
1 − r2

2 + 2d · (r1 − r2). This gives the coordinate dependent term

WF2,d = WF2,0 + kd ·W , (3.1)

where W = Wρ + WJ and

Wρ =
i

2ε0

∫
V

∫
V

ρ(r1)∇1
sin(kr12)

8πkr12

ρ∗(r2) dV1 dV2

=
kε0
4

∫
Ω

r̂
∣∣∣ ∫

V

ρ(r)e−ikr̂·r

4πε0
dV
∣∣∣2 dΩ =

kε0
4

∫
Ω

|φ∞(r̂)|2r̂ dΩ (3.2)

and we used (A.5), the identity

∇1
sin(kr12)

4πkr12

= −ik lim
r→∞

∫
|r|=r

r̂G(r − r1)G∗(r − r2) dS =
−ik

16π2

∫
Ω

r̂e−ikr̂·(r1−r2) dΩ,

(3.3)
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and the far-�eld potential (2.15). Similarly, the current part is

WJ = − iµ0

2

∫
V

∫
V

J(r1) · J∗(r2)∇1
sin(kr12)

8πkr12

dV1 dV2 = − k

4µ0

∫
Ω

|A∞(r̂)|2r̂ dΩ.

(3.4)
Using the far-�eld identity (2.18) gives W as

W = − ε0
4k

∫
Ω

|F (r̂)|2r̂ dΩ. (3.5)

The corresponding Q factor is hence shifted as

∆QF2 =
−kd ·

∫
Ω
r̂|F (r̂)|2 dΩ

2
∫

Ω
|F (r̂)|2 dΩ

, (3.6)

where we see that |∆QF2| ≤ ka for all coordinate shifts within the smallest cir-
cumscribing sphere, see Fig. 1. We note that this term is similar to the coordinate
dependence observed in [42].

Consider a spherical current sheet to illustrate the coordinate dependence. Let
the far �eld be F ∼ α1 Y1e01 +α2 Y2o11, i.e., a combination of a ẑ directed magnetic
dipole and a ŷ directed electric dipole, see App. B.4. This gives the shift ∆QF2 =
−kx/4. We also have QF2,0 = 0 for the case of a coordinate system centered in the
sphere as r1 = r2 gives QF2,d = −kx/4, where x = d · x̂ and d is the vector to the
center of the sphere.

4 Small structures

Evaluation of the stored energy for antenna Q is most interesting for small structures,
where Q is large, e.g., Q ≥ 10, and can be used to quantify the bandwidth of
antennas [7, 18, 19, 37, 42]. The low-frequency expansion of the stored energy are
presented in [15, 18, 36, 37]. Here, we base it on the low-frequency expansion J =
J (0) +kJ (1) +O(k2) as k → 0, where ∇·J (0) = 0 and the static terms J (0) and ρ0 =
−i∇ · J (1)/c0 have a constant phase. For the corresponding asymptotic expansions
of the Q-factor components in (2.25), we note that the coordinate dependent part
vanishes if J and ρ(r) have constant phase. This gives

Im{ρ(r1)ρ∗(r2)} = Im{(ρ0(r1) + kρ1(r1))(ρ∗0(r2) + kρ∗1(r2))}+O(k2)

= k Im{ρ0(r1)ρ∗1(r2) + ρ1(r1)ρ∗0(r2)}+O(k2) (4.1)

as k → 0 and similarly for J . The di�erent parts of the stored energy (2.25)
contribute to the Q-factor asymptotically

Q
(E,M)
F0

∼ 1

(ka)3
, QF1 ∼

1

ka
, QF2 ∼ ka (4.2)

as ka→ 0, where a is the radius of smallest circumscribing sphere and the coordinate
system is centered inside the sphere.
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We can compare the expansion (4.2) with the Chu bound [7]

QChu =
1

(ka)3
+

1

ka
, (4.3)

where it is seen that QChu has components that are of the same order as Q
(E,M)
F0

and
QF1 and hence that these terms are essential to produce reliable results. This is also
the conclusion from Sec. B in (6.3), where it is shown that the Q-factors di�er by
ka.

The coordinate dependent part QF2 is negligible for small structures and is of
the same order as the di�erence between the far-�eld (2.7) and power (2.6) type as
seen by the bound (2.11). We also note that the importance of Q diminishes as Q
approaches unity. This also restricts the interest of the results to small antennas.

5 Stored energy from the input impedance

The bandwidth of an antenna is often determined from the antenna input impedance.
The fractional bandwidth is related to the Q-value for simple lumped resonance
circuits [42]

B ≈ 2Γ0

Q
√

1− Γ 2
0

, (5.1)

where Γ0 is the threshold of the re�ection coe�cient. The Fano limit [12, 19] for a
resonant circuit, B ≤ 27.29/(Q|Γ0, dB|), can be used for the bandwidth after match-
ing, where Γ0, dB = 20 log10 Γ0. For more general circuits we consider the Q values
determined from the di�erentiated input impedance and from the stored energy in
equivalent circuit models.

The Q factors from the di�erentiated impedance at the resonance angular fre-
quency ω0 is [19, 42]

QZ′(ω0) =
ω0|Z ′m|ω=ω0

2R(ω0)
= ω0|Γ ′|ω=ω0 , (5.2)

where ′ denotes di�erentiation with respect to ω and Zm is the input impedance
Z = R + jX, with j = −i, tuned to resonance with a lumped series (or analogous
for lumped elements in parallel) inductor or capacitor

Zm(ω) = Z(ω)−

{
jX(ω0)ω/ω0 if X(ω0) < 0

jX(ω0)ω0/ω if X(ω0) > 0.
(5.3)

In addition to the Q factor in (5.2), we determine the stored energy in the lumped
element normalized with the radiated power as

∆QZ′(ω0) =
|X(ω0)|
R(ω0)

(5.4)
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giving the electric and magnetic Q factors

Q
(E)
Z′ =

{
QZ′ if X(ω0) < 0

QZ′ −∆QZ′ if X(ω0) > 0
(5.5)

and

Q
(M)
Z′ =

{
QZ′ if X(ω0) > 0

QZ′ −∆QZ′ if X(ω0) < 0,
(5.6)

respectively.
The Q factor can alternatively be determined from the stored and dissipated en-

ergy in an equivalent circuit model for the input impedance. The input impedance
of small antennas can often be approximated with simple resonance circuits. More
accurate circuit models can be synthesized using e.g., Brune, Bott and Du�n, Miy-
ata, or Darlington synthesis [2, 41]. The synthesis methods can produce di�erent
circuit topologies so the circuits are not unique. It is also possible to synthesize
lumped circuits with an internal stored energy that is non-observable from the in-
put impedance.

Here, we consider a rational approximation of the input impedance for the an-
tenna. In the range ω1 ≤ ω ≤ ω2 we use a rational function of order (m1,m2), with
|m1 −m2| ≤ 1, that is �tted to the input impedance using the MATLAB function
invfreqs. The order is chosen as low as possible such that the relative error is
below some threshold level, here 10−3, and that the rational function is a positive
real (PR) function [41]. We use Brune synthesis [2, 41] to construct an equivalent
circuit model and determine the stored and dissipated energy, i.e.,

Q
(E)
B =

∑
n |In|2/Cn

ω
∑

nRn|In|2
and Q

(M)
B =

ω
∑

n Ln|In|2∑
nRn|In|2

, (5.7)

where Cn, Ln, Rn, and In are the capacitance, inductance, resistance and current in
branch n, see also App. C.

6 Examples

To interpret the di�erent proposals for stored electromagnetic energy, we consider
analytic and numerical examples. The �rst analytic example illustrates the relation
between the stored energy de�ned by subtraction of the power �ow (2.6), used in [7,
10, 28], and the far-�eld power (2.7) similar to [36] for spherical modes and shows
that their Q factors di�er by ka. The second example compares the Q factors and the
associated bandwidths de�ned from the input impedance using Brune synthesis [2]
and di�erentiation for a lumped circuit network. Finally, we consider dipole, loop,
and inverted-L antennas to compare the Q factors from the input impedance using
Brune synthesis [2] and di�erentiation [42] with the stored energy determined from
the current density (2.26) [36]. We illustrate both the Q factors and the resulting
bandwidth after matching.
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Figure 2: Electric and magnetic Q factors for electrical surface currents J(r) =
J0 Yτσml(r̂)δ(r − a) for l = 1, 2. Power (solid curves) and far-�eld (dashed curves)
stored energies. They di�er by ka (6.3). a) TE (τ = 1) modes. b) TM (τ = 2)
modes.

6.1 Numerical example for spherical shells

The two formulations (2.6) and (2.7) for the stored energy can be compared for
electric surface currents on spherical shells. This is the case analyzed by Thal [33]
and Hansen & Collin [21], see also [22] for the case with electric and magnetic surface
currents. We expand the surface current on a sphere with radius a in vector spherical
harmonics Y, see App. B.4. The electric and magnetic Q factors are

Q
(E)
τl,F(κ) = −

(
κR

(1)
τl (κ) R

(2)
τl (κ)

)′
2(R

(1)
τl (κ))2

(6.1)

and

Q
(M)
τl,F = Q

(E)
τl,F(κ)− R

(2)
τl (κ)

R
(1)
τl (κ)

, (6.2)

respectively. We note that the expressions for the TE and TM are written in identical
forms by using the radial functions [20], see also (B.2).

The corresponding power �ow stored energy is

Q
(E,M)
τ l,P (κ) =

2ωW
(E,M)
P (κ)

Pr(κ)
= κ+Q

(E,M)
τ l,F (κ), (6.3)

where Q
(E,M)
τ l,F denotes the electric and magnetic far-�eld type Q factors in (6.1)

and (6.2). The di�erence κ = ka is consistent with the interpretation of a standing
wave in the interior of the sphere, cf., (2.11). Moreover, the expressions (6.1)
and (6.2) uni�es the TE and TM cases and o�er an alternative to the expressions
in [21], here we also note a misprint in (6) in [21].

The electric and magnetic Q-factors are depicted in Fig. 2 for l = 1, 2. The
relative di�erences are negligible for small ka where Q is large. For larger ka, where
Q can be small, the relative di�erence is signi�cant although the absolute di�erence
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Figure 3: Illustration of the stored electric (E) and magnetic (M) energy densities
for the TE (τ = 1) mode generated by currents on a spherical shell with radius
ka = 1. Power (solid curves-P) and far-�eld (dashed curves-F) stored energies.
The energy densities are normalized with the radiated power and integrated over
spherical shells to emphasize the radial dependence. The angular distribution is also
depicted.

is exactly ka. We also note that the Q factors oscillate and can be signi�cant even
for large ka. This is mainly due to small values of R

(1)
τl (ka) that can be interpreted

as a negligible radiated power. Moreover, the Q-factors related to the far-�eld
type stored energy (2.7) is negative in some frequency bands. The corresponding
Q-factors related to (2.6) are always non-negative. Moreover, it is observed that

Q
(M)
1l,P ≥ Q

(E)
1l,P for low ka but has regions with Q

(M)
1l,P < Q

(E)
1l,P for larger ka.

To further analyze the negative values of (2.7), we depict the stored electric
and magnetic energy density over spherical shells related to (2.7) in Fig. 3 for a TE
spherical current sheet with radius ka = 1 and a coordinate system with origin at the
center of the sphere. The results con�rm that the far-�eld (2.7) and power �ow (2.6)
stored energy densities are identical outside the sphere. We also see that the far-�eld
stored energy density is negative in parts of the interior region of the sphere, r < a,
whereas the power �ow stored energy density is non-negative. Moreover, the stored
energy density is discontinues at r = a except for the far-�eld type stored electric
energy. The continuity of the far-�eld type stored electric energy is consistent with
the boundary condition that states that tangential components of the electric �eld
are continuous.

6.2 Resonance circuit

We consider �rst a simple resonance circuit composed of cascaded shunt LC and
series LC networks, see Fig. 4. The elements are chosen to have the same resonance
frequency, ω0, and the element values are expressed in the series and parallel Q
factors, Qs and Qp, respectively. The Q from the stored energy, QB, in the circuit
elements and di�erentiation of the input impedance, QZ′ , are [19].

QB = Qs +Qp and QZ′ = |Qs −Qp|, (6.4)
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Figure 4: Illustration of the Q factor fractional bandwidth product for a cascaded
shunt LC and series LC network. The Q factors are determined from the stored
energies in the circuit elements and from di�erentiation of the impedance (5.2). The
maximal re�ection coe�cient is determined over the fractional bandwidths B =
{2, 4}/QB with and without matching networks for the case Qs = 10 and 1 ≤ Qp ≤
100. The matching network is determined using genetic algorithms with four ideal
lumped elements. a) B = 2/QB and b) B = 4/QB.

respectively. Here, we note that QB ≥ QZ′ and that QZ′ = 0 for the case of a �at
match Qs = Qp.

The bandwidth and the threshold of the re�ection coe�cient are related as seen
for the simple RCL resonance circuit in (5.1). We illustrate the relation between
Q and fractional bandwidth B, by plotting BQ

√
1− Γ 2

0 /(2Γ0) for Q = {QB, QZ′},
i.e., Q given by the stored energy in the circuit elements and by di�erentiation of
the impedance in (6.4), see Fig. 4. The used scaling removes the ambiguity between
B and Γ for a resonance circuit. Moreover, results close to unity means that the
relation (5.1) holds approximately for the used Q.

We can determine that bandwidth for a given threshold, Γ0 or vice versa. Here,
we consider the resulting threshold for the fractional bandwidths B = 2/QB and
B = 4/QB to illustrate the dependence on QB and QZ′ . This corresponds to well
matched but narrow bandwidth and less well matched and wider bandwidth cases.
The series Q value is �xed Qs = 10 whereas the parallel Q is 1 ≤ Qp ≤ 100. The
curves labeled (R) show the bandwidth Q factor product (5.1) for the fractional
bandwidths B = 2/QB and B = 4/QB using the characteristic impedance R without
additional matching networks.

The product is close to unity at the end points Qp = {1, 100}, where the input
impedance resembles a series and parallel RCL circuit. In the region Qp ≈ Qs

the curves deviates from unity as the input impedance do not resemble an RCL
resonance circuit. We also note that the approximation with QZ′ = |Qs −Qp| gives
vanishing small values showing that the QZ′ approximation fails for this case [19].
The use of the Q from the stored energy gives better results. In particular for the
wider bandwidth case B = 4/QB.

We also consider the case with matching circuits. The Bode-Fano matching
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Figure 5: Illustration of the Q factor for a center feed strip dipole with length ` and
width `/100. The Q factors are determined from the stored energies (2.26) and (2.30)
and from di�erentiation of the impedance (5.5) and (5.6). a) electric and magnetic
Q-factors from (2.26), (2.30), the circuit model (dashed curves), and di�erentiation
of the impedance QZ′ . b) di�erence between the computed Q-factors QF − QZ′ ,
where QZ′ is computed from a di�erence scheme and analytic di�erentiation of a
high order rational approximation in 1 and 2, respectively.

limits [12, 19] are depicted by the curves labeled (F) for the cases for B = 2/QB and
B = 4/QB, see App. D. We note that the Bode-Fano limit mainly depends on the
maximal Q value that also can be interpreted as the mean 〈Q〉 = (QB + QZ′)/2 =
max{Qp, Qs}. We use optimization to synthesize lossless matching networks. The
curves labeled (M) in Fig. 4 show the resulting bandwidth Q factor product (5.1)
after matching. The �rst case, B = 2/QB, gives a matching threshold Γ0 in the range
−15 dB to −20 dB whereas the second case, B = 4/QB. gives Γ0 in the range −3 dB
to −6 dB. We consider up to two capacitors and two inductors in the matching
network and use a genetic algorithm [29] to determine the parameter values.

The results show that the inverse proportionality between B and Q in (5.1) is
valid for the resonance circuit case far away from Qs = Qp. Closer to Qs = Qp, the
results are better for the stored energy, QB = Qs + Qp, than for the di�erentiated
impedance QZ′ = |Qs − Qp|. The addition of a matching network increases the
bandwidth. Also for this case, the stored energy results are better although they
underestimate the bandwidth with up to approximately a factor of two. It should
also be noted that the addition of the matching network increases the stored energy
and hence the QB, so the QB after matching can underestimate the bandwidth even
more.

6.3 Strip dipole

Consider a center fed strip dipole with length ` and width `/100 modeled as perfectly
electric conducting (PEC). The Q-factors (2.10) determined from the integral ex-

pressions Q
(E)
F in (2.26) and Q

(M)
F in (2.30), the simple resonance circuit model [16],

and di�erentiation of the impedance [19, 42] are compared in Fig. 5a. The circuit
model is based on the circuit representations of the lowest order spherical modes [32]
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Figure 6: Illustration of the Q factor for a center feed strip dipole with length
` and width `/100. The Q factors are determined from the stored energies (2.26)
and (2.30), from di�erentiation of the input impedance (5.5) and (5.6), and from
Brune Synsesis (5.7). a) electric and magnetic Q-factors from the subtracted far
�eld QF, the Brune synthesized circuit model QB (dotted), and di�erentiation of
the impedance QZ′ (dashed dotted). b) di�erence between the computed Q-factors
QF −QZ′ and QF −QB.

with the lumped elements determined with the approach in [16]. The Q-factors from
the simple resonance circuit model approximates the integral expression very well
for ` < 0.3λ but starts to di�er for shorter wavelengths where the circuit model is
less accurate, see Fig. 5a. The di�erence QF − QZ′ is also depicted in Fig. 5b. We
see that the di�erence is negligible for the considered wavelengths. Curve (1) shows
QZ′ computed with a �nite di�erence scheme. The curve is sensitive to noise and the
used discretization. The noise is suppressed by approximating the impedance with a
high order polynomial and performing analytic di�erentiation as seen by curve (2).

Simple circuits models are accurate to model the input impedance over relatively
narrow frequency bands. The accuracy is in general not su�cient over a wider fre-
quency bands, see Fig. 5. We use Brune synthesis [2] to construct more accurate
wide band circuit models from the input impedance for the strip dipole. The re-
sulting Q factor QB from the stored energy in the lumped elements (5.7) is depicted
in Fig. 6a. It is seen that QF ≈ QB ≈ QZ′ for the considered range `/λ < 1.5 or
equivalently ka < 4.7. The di�erences QF − QB and QF − QZ′ are also depicted in
Fig. 6b. Here, we note that the di�erences are much less than ka in contrast to the
spherical mode case (6.3), see also (2.11).

6.4 Loop antenna

The computed stored electric and magnetic energies for a loop antenna are depicted
in Fig. 7. The loop antenna is rectangular with height `, width `/2, vanishing
thickness, and is modeled as perfectly electric conducting (PEC). We see that the
magnetic energy dominates for low frequencies and changes to dominantly electric
energy at approximately ` ≈ λ/6 or equivalently C ≈ λ/2, where C = 3` denotes the
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Figure 7: Q factors for a rectangular loop antenna and an inverted L antenna
with height ` and width `/2. The Q factors are determined from the stored en-
ergies (2.26) and (2.30), di�erentiation of the impedance (5.5) and (5.6), and the
Brune synthesized lumped circuit (5.7).

circumference of the loop.
In Fig. 7, we see that the Q-factors determined from the stored energies (2.26)

and (2.30) and from the Brune synthesized lumped circuit (5.7) agree very well.
The Q factors also agree with the di�erentiation of the impedance for Q ≥ 10. The
di�erence increases between QZ′ and QF ≈ QB for lower Q values. This is consistent
with the increasing di�culties to approximate the impedance with a single resonance
model [19]. Here, it is also important to realize that the concept and usefulness of the
Q-factor is increasingly questionable as Q decreases towards unity, see also Sec. 6.2.

6.5 Inverted L antenna

An inverted L antenna on a �nite ground plane is considered to illustrate the use-
fulness of the stored energies for terminal antennas. The antenna has total length `
and width `/2, see Fig. 7. The electric and magnetic Q factors are depicted in Fig. 7.
Here, we see that QF, QB, and QZ′ agree well for Q ≥ 10, that is for approximately
` ≤ λ/3 or below 1 GHz for 10 cm chassis. The results for QZ′ start to di�er for

larger structures, where e.g., Q(E)
F ≈ 5 and Q

(E)
Z′ ≈ 2 at `/λ = 0.4 or ka ≈ 1.4.

For this levels of QZ′ , the underlying single resonance model [19] is problematic and
hence QZ′ reduces in accuracy. At the same time Q is low enough to be considered
less useful as a quantity to estimate the bandwidth, e.g., Q ≈ 2 corresponds to a
half-power bandwidth of 100%.

We use the fractional bandwidth for the antenna tuned to resonance with an
inductor or capacitor to analyze the di�erence between the Q from the stored energy
and di�erentiated impedance. The fractional bandwidth Q factor product, BQ, is
given by (5.1) for simple RCL resonance circuits. The corresponding BQ product for
the inverted L antenna is depicted in Fig. 8 for the re�ection coe�cient thresholds
Γ0 = −{1, 3, 10, 20} dB. It is seen that BQ is close to the value given by (5.1), BQ ≈
{3.9, 2.0, 0.67, 0.20} as indicated by the rhombi, for `/λ ≤ 0.25, where also QF ≈
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Figure 8: Illustration of the Q factor fractional bandwidth product for the inverted
L antenna using the Q from the far-�eld stored energy QF, energy in the Brune
synthesized lumped circuit model QB, and di�erentiation of the input impedance
QZ′ . (left) The bandwidth is determined for the thresholds Γ0 = −{1, 3, 10, 20} dB
corresponding to the fractional bandwidths B ≈ {48, 32, 14, 4.6}% at `/λ = 0.4.
(right) The real frequency technique [5] is used to determine the matching threshold
Γ0 over the fractional bandwidths B = {2, 4}/〈Q〉, where 〈Q〉 denotes the mean
〈Q〉 = (QF+QZ′)/2. The resulting Γ0 are approximately Γ0 ≈ −12 dB for B = 2/〈Q〉
and Γ0 ≈ −6 dB to −4 dB for B = 2/〈Q〉 as indicated in the graph.

QB ≈ QZ′ . The BQ product starts to deviates from (5.1) for shorter wavelengths
except for the low re�ection coe�cient Γ0 = −20 dB and QZ′ case. This is consistent
with QZ′ being a local approximation of the Q-factor around the tuned resonance
frequency and hence more accurate for relatively narrow fractional bandwidths B �
1/Q or equivalently Γ0 � 1. The Q from QF and QB underestimate the fractional
bandwidths for this case. The accuracy of QZ′ deteriorates as the threshold Γ0

is relaxed and the relative bandwidth increases leading to increasingly di�culties
to approximate the impedance with a resonance circuit. The results for the Q
determined from the stored energy QF ≈ QB are on the contrary improving as the
requirements on the matching are relaxed. This is consistent with QB being a global
quantity determined from the input impedance over a large bandwidth.

7 Conclusions

The analyzed expression (2.7) for the stored energy de�ned by subtraction of the far-
�eld energy density from the energy density is mainly motivated by the formulation
of Collin & Rothschild [10], McLean [28], Yaghjian & Best [42] and the expressions
by Vandenbosch in [36]. We show that the stored energy (2.7) is identical to the
energy in [36] for many currents. However, some current densities have an additional
coordinate dependent term. This term is very small for small antennas but it can
contribute for larger structures, see also [42]. Here, it is also important to realize
that the classical de�nition [10] with the subtracted power �ow (2.6) is inherently
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coordinate dependent. The identi�cation of the energy expressions in [36] with (2.7)
o�ers a simple interpretation of the observed cases with a negative stored energy [18].
The analysis also suggests that the resulting Q factor has an uncertainty of the
order ka. This is consistent with the use of the results for small (sub wavelength)
antennas [17, 18], where ka is small and Q large.

The energy expressions proposed by Vandenbosch in [36] are very well suited for
optimization formulations as they are simple quadratic forms of the current density.
The quadratic form is very practical as it allows for various optimization formulations
such as Lagrangian [18] and convex optimization [17] and has already led to many
new antenna results. Their resemblance of the electric �eld integral equation (EFIE)
makes the numerical implementation very simple. Analytic solutions for spherical
structures show that the Q in [36] and [21] di�er by ka and this is interpreted as
the far-�eld in the interior of the sphere as seen from (2.7) and (2.6). The new
formulation also produce simpli�ed expressions (6.3) the uni�es the TE and TM
cases for the Q factor of current densities on spherical shells [21].

Numerical results for dipole, loop, and inverted L antennas are used to illustrate
the accuracy of the energy expressions. The Q factors from the stored energy in
the �elds, QF, from the stored energy in Brune synthesized circuit models, QB, and
from di�erentiation of the input impedance, QZ′ are compared. It is observed that
QF ≈ QB for the considered cases. The good agreement is based on Brune circuits
synthesized from the input impedance over a wide frequency range and it is observed
that QB can be lower if a narrow range of frequencies is used. We also observe that
QF ≈ QB ≈ QZ′ in the regions where Q is QF ≥ 10 and that QZ′ ≤ QF ≈ QB

otherwise. This is consistent with the shunt and series resonance circuit that can
have QZ′ = 0, see (6.4) and [19].

The results for the spherical modes and the antennas are very interesting for the
interpretation of the Q factor, QF, de�ned by subtraction of the far �eld (2.7). The
analytic results for the spherical modes show that the subtracted far-�eld inside the
sphere de�nes a stored energy that can be negative, see also [18], and a QF that di�er
from the classical de�nition (2.6) by ka, i.e., QP = QF + ka, where QP denotes the
Q de�ned using (2.6). Contrary, the numerical results for the simulated antennas
show that QF agree with the Q from the stored energy in the equivalent circuit
synthesized from the input impedance using Brune synthesis, i.e., QF ≈ QB. This
suggests that the Q from the subtracted far-�eld is correct for the tested antennas
but not for the spherical modes. This is consistent with the interpretation (2.11)
that shows that QF has an uncertainty of the order ka.
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Appendix A Green's function identities

Multiply the Helmholtz Green's function for G1: (∇2 +k2)G1 = −δ(r−r1) with G∗2,
and similarly for G∗2. Adding the results together with a standard vector calculus
identity gives 2(∇G1 · ∇G∗2 − k2G1G

∗
2) = G1δ2 + G∗2δ1 + ∇2(G1G

∗
2), where δn =

δ(r − rn) with n = 1, 2 denotes the Dirac delta distribution. Integration yields the
identity [36]∫

R3
r

∇G(r−r1) ·∇G∗(r−r2)−k2G(r−r1)G∗(r−r2) dV =
cos(k|r1 − r2|)

4π|r1 − r2|
, (A.1)

where we used Gauss's theorem together with the observation that

∇(G1G
∗
2)→ −r̂eikr̂·(r2−r1)

8π2r3
(A.2)

for large enough radius.
The k-derivative of the Helmholtz Green's equation for G1 is (∇2 + k2)∂kG1 +

2kG1 = 0. Similarly to the derivation of (A.1) we multiply with G∗2, and repeat
the procedure with the k-derivative of G∗2. Adding the result and applying vector
calculus identities to move ∇2 away from the k-derivative results in the identity

4kG1G
∗
2 = δ2∂kG1 + δ1∂kG

∗
2 −∇ · q, (A.3)

where

r̂ · q = r̂ ·
(
G1∇∂kG2 − (∂kG

∗
2)∇G1 +G∗2∇∂kG1 − (∂kG1)∇G∗2

)
→ −k

8π2r

[
2 +

1

r

(
r̂ · (r1 + r2) + i(|r̂ × r1|2 − |r̂ × r2|2)

)
+O(

1

r2
)
]
e−ikr̂·(r1−r2)

(A.4)

for large enough radius. Collecting term of decay rate r−1 on the left-hand side
and the remaining terms on the right-hand side. Integration over a large sphere,
together with Gauss's theorem and elementary integrals results in∫

R3
r

G(r − r1)G∗(r − r2)− e−ik(r1−r2)·r̂

16π2r2
dV

= −sin(kr12)

8πk
+ i

r2
1 − r2

2

8πk2r3
12

(sin(kr12)− kr12 cos(kr12))

= −sin(kr12)

8πk
+ i

(r1 + r2) · (r1 − r2)

8πr12

j1(kr12)

= −sin(kr12)

8πk
− i

(r1 + r2)

k
· ∇1

sin(kr12)

8πkr12

. (A.5)

Here j1(z) = (sin(z)− z cos(z))/z2 and r12 = |r1 − r2|. Note that (A.5) generalizes
the result in [36] to the case r1 + r2 6= 0 and shows that the integral depends of
the coordinate system. The result also shows that it is necessary to specify how the
integration over R3 is performed, i.e., here as the limit R3

r = {r : limr0→∞ |r| < r0}.
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Appendix B Electric surface currents on a sphere

The two formulations (2.6) and (2.7) for the stored energy can be compared for
electric surface currents on spherical shells. This is the case analyzed by Thal [33]
and Hansen & Collin [21], see also [22] for the case with electric and magnetic
surface currents. We expand the surface current on a sphere with radius a in vector
spherical harmonics Y, see App. B.4. For simplicity, consider the surface current
J(r) = J0 Yτσml(r̂)δ(r − a) that induces the electric and magnetic �elds

E(r) = iη0J̃0

u(p)
τσml(kr)

R
(p)
τl (ka)

and H(r) = J̃0

u(p)
τ̄σml(kr)

R
(p)
τl (ka)

, (B.1)

where p = 1 for r < a and p = 3 for r > a, u
(p)
τσml is the spherical vector waves, and

R
(p)
τl the radial functions in Hansen [20], de�ned as

R
(p)
τl (κ) =

z
(p)
l (κ) τ = 1

1

κ

∂(κz
(p)
l (κ))

∂κ
τ = 2,

(B.2)

where z
(1)
l = jl are Bessel functions, z

(2)
l = nl Neumann functions, z

(3)
l = h

(1)
l Hankel

functions [20], and κ = ka. We note that the derivatives of R
(p)
τl (κ) are easily

expressed in z(p), see App. B.4. Here, τ = 1 is transverse electric (TE) and τ = 2
transverse magnetic (TM) waves. Moreover, the dual index τ̄ is τ̄ = 2 if τ = 1

and τ̄ = 1 if τ = 2. The current in (B.1) is rescaled as J̃0 = J0 R
(1)
τl (ka) R

(3)
τl (ka)

and below we let J0 be real valued to simplify the notation. We also note that the
coordinate dependent term (2.27) vanishes for single spherical modes.

B.1 Far-�eld type stored energy for the TE case WF

We start with the transverse electric (TE) case τ = 1, i.e., J(r) = Y1σml(r̂)δ(r−a)
that is divergence free, ∇ · J = 0. The integrals in (2.25) are evaluated analytical
by expanding the Green's functions in (2.33), (2.34), and (2.35) in spherical modes,
see App. B.4. Using ∇ ·Y1σml = 0, we get 〈J ,Le J〉 = 0 for (2.33) and hence the

�rst part of the stored electric energy W
(E)
F0

= 0. The expansion of the full Green's
dyadic, G = GI, (B.25) gives

1

ikJ2
0

〈J ,Lm J〉 =

∫
V

∫
V
Y1σml(r̂1)δ(r1−a) ·G(r1−r2) ·Y1σml(r̂2)δ(r2−a) dV1 dV2

= a4

∫
Ω

∫
Ω
Y1σml(r̂1) ·G(r1 − r2) ·Y1σml(r̂2) dΩ1 dΩ2 = ia4kR

(3)
1l (κ) R

(1)
1l (κ) (B.3)

for the terms in (2.34) to get the �rst part of the stored magnetic energy from (2.37)

as 4ωη−1
0 W

(M)
F0

= −a2κ2J2
0 R

(2)
1l R

(1)
1l . The radiated power follow from (2.39) 2η−1

0 Pr =

−Re〈J ,Lm J〉 = a2κ2J2
0 (R

(1)
1l )2. The corresponding expansion of the frequency
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derivative of the Green's function (B.25) is used for the terms related to (2.35)

−2

ik2a4J2
0

〈J ,Lem J〉 =

∫
Ω

∫
Ω
Y1σml(r̂1) · ∂G(r1 − r2)

∂k
·Y1σml(r̂2) dΩ1 dΩ2

= i
∂

∂κ

(
κR

(3)
1l (κ) R

(1)
1l (κ)

)
= i
(
κR

(3)
1l (κ) R

(1)
1l (κ)

)′
= i(R

(3)
1l R

(1)
1l +κR

(3)
1l
′
R

(1)
1l +κR

(3)
1l R

(1)
1l
′), (B.4)

where ′ denotes di�erentiation with respect to κ, giving 4ωη−1
0 WF1 = −a2κ2

2
J2

0 (κR
(2)
1l R

(1)
1l )′.

Collecting the terms gives the electric and magnetic Q-factors as

Q
(E)
1l,F(κ) =

2ωW
(E)
F (κ)

Pr(κ)
= −

(
κR

(1)
1l (κ) R

(2)
1l (κ)

)′
2(R

(1)
1l (κ))2

(B.5)

and

Q
(M)
1l,F(κ) =

2ωW
(M)
F (κ)

Pr(κ)
= Q

(E)
1l,F(κ)− R

(2)
1l (κ)

R
(1)
1l (κ)

, (B.6)

respectively. We note that R
(1)
1l = jl and R

(2)
1l = nl can be used to rewrite the Q-

factors, however the form with the radial functions simpli�es the comparison with
the TM case below. The di�erentiated terms are also easily evaluated using (B.4)
and (B.23).

B.2 Far-�eld type stored energy for the TM case WF

The transverse magnetic (TM) case is given by τ = 2 and generated by the cur-
rent density J(r) = J0 Y2σml(r̂)δ(r − a) that has the divergence ∇ · Y2σml =
−
√
l(l + 1) Yσml /r. With the expansion of the Green's function (B.24) we get the

part related to the charge density (2.33)

−ik

a4J2
0

〈J ,Le J〉 =

∫
Ω

∫
Ω

∇1 ·Y2σml(r̂1)G(r1 − r2)∇2 ·Y2σml(r̂2) dΩ1 dΩ2

=
ikl(l + 1)

a2
jl(κ) h

(1)
l (κ) (B.7)

and the full Green's Dyadic expansion (B.25) gives

1

ika4J2
0

〈J ,Lm J〉 =

∫
Ω

∫
Ω
Y2σml(r̂1) ·G(r1 − r2) ·Y2σml(r̂2) dΩ1 dΩ2

= ik

(
R

(1)
2l (κ) R

(3)
2l (κ) + l(l + 1)

h
(1)
l (κ) jl(κ)

κ2

)
(B.8)
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for the part related to the current density (2.34). The expansions of the frequency
derivatives of the Green's function (B.24) and Green's Dyadic (B.25) give

Re

∫
Ω

∫
Ω
Y2σml(r̂1) · ∂G(r1 − r2)

∂k
·Y2σml(r̂2)

−∇1 ·Y2σml(r̂1)
∂G(r1 − r2)

k2∂k
∇2 ·Y2σml(r̂2) dΩ1 dΩ2

= 2l(l + 1) nl(κ) j1(κ)− κ2(κR
(1)
2l (κ) R

(2)
2l (κ))′ (B.9)

for the part related to (2.35).
Collecting the terms gives that the normalized radiated power is

2η−1
0 Pr/J

2
0 = Re〈J , (Le−Lm)J〉/J2

0 = a3κ(R
(1)
2l )2. The electric and magnetic Q

factors are �nally determined to

Q
(E)
2l,F(κ) = −

(
κR

(1)
2l (κ) R

(2)
2l (κ)

)′
2(R

(1)
2l (κ))2

(B.10)

and

Q
(M)
2l,F = Q

(E)
2l,F(κ)− R

(2)
2l (κ)

R
(1)
2l (κ)

, (B.11)

respectively. We note that the expressions for the TE case in (B.5) and (B.6) and
TM case in (B.10) and (B.11) are written in identical forms by using the radial
functions (B.2).

B.3 Power �ow stored energy WP

The stored electric energy with the subtracted power �ow (2.6) is analyzed by
Hansen & Collin [21], see also Thal [33]. The integral (2.6) is decomposed into inte-

gration of the exterior and interior regions where we have outgoing waves, u
(3)
τσml, and

regular waves, u
(1)
τσml, respectively in (B.1). The exterior part was already analyzed

by Collin & Rothschild [10]. The subtracted power �ow in (2.6) of the �elds (B.1)
has the radial dependence

Pr =
1

2
Re

∫
Ω

E(r)×H∗(r) · r̂r2 dΩ =
J̃2

0η0

2|R(3)
τl (κ)|2

(B.12)

in the exterior region r ≥ a and vanishes in the interior region r < a. As the
spherical vector waves are orthogonal over the unit sphere they can be analyzed
separately. Their integrals are divided into its angular and radial parts. To simplify
the notation, we introduce the normalized energies w

(e)
τl and w

(i)
τl outside and inside

the sphere, respectively. They are given by, see App. B.5 for details

w
(e)
1l =

∫ ∞
κ

∫
Ω

|u(3)
1σml(kr)|2k2r2 dΩ− 1 dkr

= κ− κ3

2
(| h(1)

l (κ)|2 − Re{h(1)
l+1(κ) h

(2)
l−1(κ)}) (B.13)
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for τ = 1 and for the τ = 2 modes

w
(e)
2l =

∫ ∞
κ

∫
Ω

|u(3)
2σml(kr)|2k2r2 dΩ− 1 dkr = −Re{κ h

(2)
l (κ)(κ h

(1)
l (κ))′}+ w

(e)
1l .

(B.14)
The corresponding normalized energy in the interior of the sphere is given by

the integrals

w
(i)
1l =

∫ κ

0

∫
Ω

|u(1)
1σml(kr)|2k2r2 dΩ dkr =

∫ κ

0

x2| jl(x)|2 dx

=
κ3

2

(
j2l (κ)− jl−1(κ) jl+1(κ)

)
(B.15)

and

w
(i)
2l =

∫ κ

0

∫
Ω

|u(1)
2σml(kr)|2k2r2 dΩ dkr = −Re{κ jl(κ)(κ jl(κ))′}+ w

(i)
1l . (B.16)

We have the electric and magnetic Q factors

Q
(E)
τl,P = |R(3)

τl (κ)|2
(

w
(e)
τl (κ)

|R(3)
τl (κ)|2

+
w

(i)
τl (κ)

|R(1)
τl (κ)|2

)
(B.17)

and

Q
(M)
τl,P = |R(3)

τl (κ)|2
(

w
(e)
τ̄ l (κ)

|R(3)
τl (κ)|2

+
w

(i)
τ̄ l (κ)

|R(1)
τl (κ)|2

)
. (B.18)

After extensive simpli�cations we can rewrite them as

Q
(E,M)
τ,P (κ) =

2ωW
(E,M)
P (κ)

Pr(κ)
= κ+Q

(E,M)
τ,F (κ), (B.19)

where Q
(E,M)
τ,F denotes the electric and magnetic far-�eld type Q factors in (B.5),

(B.6), (B.10), and (B.11). Note that the subscript EM is used to denote E and M
in (B.19). The di�erence κ = ka is consistent with the interpretation of a standing
wave in the interior of the sphere, cf., (2.11). Moreover, the expressions (B.10)
and (B.11) uni�es the TE and TM cases and o�er an alternative to the expressions
in [21], here we also note a misprint in (6) in [21].

B.4 Spherical waves

The radiated electromagnetic �eld is expanded in spherical vector waves or modes [20]:
u(p)

1σml(kr) = R
(p)
1l (kr)Y1σml(r̂)

u(p)
2σml(kr) = R

(p)
21 (kr)Y2σml(r̂) + R̃(kr) Yσml(r̂)r̂

u(p)
3σml(kr) = z

(p)′
l (kr) Yσml(r̂)r̂ + R̃(kr)Y2σml(r̂)

(B.20)
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where r is the spatial coordinate, r̂ = r/r, r = |r|, k the wavenumber,

R̃(κ) =
√
l(l + 1)z

(p)
l (κ)/κ, and R

(p)
l (kr) are the radial function of order l:

R
(p)
τl (κ) =

z
(p)
l (κ) τ = 1

1

κ

∂(κz
(p)
l (κ))

∂κ
τ = 2.

(B.21)

For regular waves (p = 1) z
(1)
l = jl is a spherical Bessel function, irregular waves

(p = 2) z
(2)
l = nl is a spherical Neumann function, and outgoing waves (p = 3)

z
(3)
l = h

(1)
l is an outgoing spherical Hankel function. The indices are σ = {e, o},

m = 0, . . . , l, l = 1, . . . [1, 23]. In addition, Yτσml(r̂) denotes the vector spherical
harmonics de�ned as

Y1σml(r̂) =
1√

l(l + 1)
∇×

(
r Yσml(r̂)

)
(B.22)

and Y2σml(r̂) = r̂ ×Y1σml(r̂) where Yσml denotes the ordinary spherical harmon-
ics [1]. There are a few alternative de�nitions of the spherical vector waves in the
literature [1, 20, 23]. Here, we follow [23] and use cosmφ and sinmφ as basis func-
tions in the azimuthal coordinate. This choice is motivated by the interpretation of
the �elds related to the �rst 6 modes as the �elds from di�erent Hertzian dipoles.
The modes labeled by τ = 1 are TE modes (or magnetic 2l-poles) while those la-
beled by τ = 2 correspond to TM modes (or electric 2l-poles). We note that the

derivatives of R
(p)
τn (κ) are easily expressed in spherical Bessel and Hankel functions,

i.e.,

∂ R
(p)
τl

∂κ
=


∂

∂κ
z

(p)
l τ = 1

−R
(p)
τl

κ
+
l(l + 1)− κ2

κ2
z

(p)
l τ = 2.

(B.23)

The Green functions are expanded in spherical waves to analyze spherical geometries.
The scalar Green's function has the expansion [1]

G(r1 − r2) =
eik|r1−r2|

4π|r1 − r2|
= ik

∑
σml

jl(kr<) h
(1)
l (kr>) Yσml(r̂1) Yσml(r̂2), (B.24)

where r< = min{|r1|, |r2|} and r> = max{|r1|, |r2|}, and Yσml denotes the spherical
harmonics. In addition, the full Green's dyadic, G = IG, can be expanded as [1]

G(r1 − r2) = ik
∑
τσml

u(1)
τσml(kr<)u

(3)
τσml(kr>), (B.25)

where τ = 1, 2, 3. We also use the frequency derivatives of the Green's function and
the Green's dyadic expansions.
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B.5 Volume integrals

The volume integrals of the spherical vector waves are given by integrals of spherical
Hankel functions as evaluated here. We have∫

x2z2
p(x) dx =

x3

2

(
z2
p(x)− zp−1(x)zp+1(x)

)
. (B.26)

For the spherical Hankel function zp = h
(1)
p = jp +i np we have∫

x2| h(1)
p (x)|2 dx =

x3

2

(
| h(1)

p (x)|2 − Re{h(1)
p−1(x) h

(1)∗
p+1(x)}

)
. (B.27)

To evaluate the stored reactive energy outside a sphere, we need the result∫ ∞
a

(
x2| h(1)

p (x)|2 − 1
)

dx = a− a3

2

(
| h(1)

p (a)|2 − Re{h(1)
p−1(a) h

(1)∗
p+1(a)}

)
. (B.28)

The corresponding internal energy is∫ a

0

x2| j(2)
p (x)|2 dx =

a3

2

(
j2p(a)− jp−1(a) jp+1(a)

)
. (B.29)

We also have for τ = 1∫
[a,b]×Ω

|u1σml(kr)|2 dV =

∫ b

a

| h(1)
l (kr)|2r2 dr (B.30)

For τ = 2, we use

k|u2σml |2 = k u2σml ·u∗2σml = ∇× u1σml ·u∗2σml
= ∇ · (u1σml×u∗2σml) + u1σml ·∇ × u∗2σml = ∇ · (u1σml×u∗2σml) + k|u1σml |2

(B.31)

and hence∫
[a,b]×Ω

|u2σml(kr)|2 dV =
1

k2
Re
[
h

(2)
l (kr) R

(3)
2l (kr)r

]b
a

+

∫ b

a

| h(1)
l (kr)|2r2 dr, (B.32)

where we have used the Wronskian relation z∗z′ − z′∗z = −2i/x2, for z = h
(1)
l (x),

and the recursion relations for the spherical Hankel functions [35] in the last steps.
The terms can be evaluated as b → ∞ by considering the asymptotic behavior of
the spherical Hankel functions.

Appendix C Q from Brune synthesis

Q factors can be determined from the stored energy and dissipated power in circuit
models of the antenna. Chu used circuit models of the spherical modes to determine



28

physical bounds on antennas [7]. The models can be adapted to small antennas
that express the Q in the lumped circuit elements [16]. For general antennas, we
synthesize an equivalent circuit from the input impedance using Brune synthesis [2].
There are several approaches to synthesize circuit models, e.g., Brune, Bott and
Du�n, Miyata, or Darlington synthesis [41]. The synthesis methods can produce
di�erent circuit so the circuits are not unique. It is also possible to synthesize
lumped circuits with an internal stored energy that is non-observable from the input
impedance.

The circuit synthesis is based on expressing the input impedance as a (ratio-
nal) positive real (PR) function in the complex frequency variable s = σ + jω and
subsequent manipulation of the PR function to identify the circuit elements. This
requires modeling over wide bandwidths and shows that the resulting Q depends on
the global properties of the input impedance.

We start to construct a rational approximation of the antenna input impedance.
In the range ω1 ≤ ω ≤ ω2 we use a rational function of order (m1,m2), with
|m1 −m2| ≤ 1, that is �tted to the input impedance using the MATLAB function
invfreqs. The order is chosen as low as possible such that the relative error is
below some threshold, here we use 10−3, and that the rational function is a PR
function [41].

Brune synthesis [2, 41] is an iterative procedure, where the order of the rational
PR function modeling the input impedance is reduced in each step Zn → Zn+1, see
Fig. 9. Here, we only present a brief overview of the Brune synthesis for the purpose
of calculating the stored energy, see [2, 41] for details. First, series (C1, L1) and shunt
(C2, L2) capacitance and inductance are removed by identi�cation of the asymptotic
expansion of the input impedance and admittance at s = 0 and s = ∞. Then, the
series resistance RB = mins=jω ReZ is removed. This leaves a PR function with
Z(jω0) = jXB. Depending on the sign of XB = ImZ(jω0) a negative inductance
or capacitance is removed, see Fig. 9. Finally, a resonance LC circuit and series
inductance or shunt capacitance are removed, see [2, 41] for details. Note, that also
RB = 0 and XB = 0 are treated separately. This leaves a PR function, Zn+1 of lower
order than Zn. The iteration, Zn → Zn+1, is terminated when a pure resistive load
remains, i.e., ImZn+1 = 0.

The stored energy is easily calculated in the iterative synthesis procedure. The
stored electric and magnetic energy in a capacitor, C, and inductor, L, are W (E) =
|V |2C/4 and W (M) = |I|2L/4, respectively, where I and V denote the current and
voltage, respectively. For simplicity, consider the case with a series inductor, i.e.,
ZB = jωLB. The stored electric and magnetic energies are then iteratively given by

W
(E)
B,n =

|In|2

4ωC1

+
|Ṽ1|2C2

4
+

|Ṽ2|2

4ωC3(ωL3 − 1
ωC3

)2
+W

(E)
B,n+1 (C.1)

and

W
(M)
B,n =

L1|In|2

4
+
|Ṽ1|2

4ωL2

+
|Ṽ1|2LB

4|Z̃|21
+

|Ṽ2|2L3

4(ωL3 − 1
ωC3

)2
+
|In+1|2L4

4
+W

(M)
B,n+1, (C.2)
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Figure 9: Illustration of the Brune synthesis of a lumped circuit from a rational
positive real (PR) input impedance Zin = Z1. In each iteration step, Zn → Zn+1,
series and shunt capacitance and inductance are �rst removed. Then the series
resistance RB = minω ReZ is removed. This leaves a PR function with Z(ω0) = jXB.
Depending on the sign of XB = ImZ(ω0) a negative inductance or capacitance is
removed. Finally, a resonance LC circuit and series inductance or shunt capacitance
are removed, see [2, 41] for details. Note, that RB = 0 and XB = 0 are treated
separately.

where Ṽn is the voltage over Z̃n for n = 1, 2. One problem with the Brune synthesis
is that it uses negative inductors and capacitors [2, 41], see LB and CB in Fig. 9.
This is resolved by transforming the T containing the negative element to an ideal
transformer.

The transformation of a T network with arbitrary inductors Lm, m = 1, 2, 3 and
a capacitor C to an ideal transformer is illustrated in Fig. 10. We assume that L1 < 0
is negative corresponding to the Brune inductance LB in Fig. 9. The inductors in
the ideal transformer are M = L3, La = L1 + L3, and Lb = L2 + L3. From the
Brune synthesis [2, 41], the inductors are related as L1L2 + L1L3 + L2L3 = 0, and
hence LaLb = L2

3 showing that La > 0. The stored magnetic energy in the T and
ideal transformer in Fig. 10 is

W (M) =
|I1|2L1

4
+
|I2|2L2

4
+
|I1 + I2|2L3

4
=
|I1|2La

4
+
|I2|2Lb

4
+

Re{I1I
∗
2}M

2
. (C.3)

The corresponding stored electric energy is W (E) = |I1 + I2|2/(4ω2C) showing that
the stored energy in the ideal transformer is identical to the stored energy in the
original circuit representation.
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Figure 10: Transformation of the T network (a) to an ideal transformer (b).
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Figure 11: Transformation of the Π network (a) to a T network (b).

The interpretation for the case XB > 0 is more involved [2, 41]. Here, the Π
network with the capacitors C1, C2, C3 are �rst transform to a T network with the
components C = C1 + C2, L1 = LC2/C, L2 = LC1/C, L3 = LC3/C, see Fig. 11.
The stored energies are not the same in the Π and T networks for general component
values. However, the components are not arbitrary in the Brune synthesis [2, 41].
The capacitors in the Π network are constrained as C1C2 +C1C3 +C2C3 = 0 and the
inductors in the T network satisfy L1L2 +L1L3 +L2L3 = 0. The stored energies are
identical for this case. The T network is �nally transform to an ideal transformer,
see Fig. 10. We consider the stored electric energy to see that the stored energies are
identical for the Π and T networks in the Brune case, see Fig. 11. With prescribed
voltages V1 and V2, we have

4W (E) = |V1|2C1 + |V2|2C2 + |V1 − V2|2C3 = |V1|2C1 + |V2|2C2 − |V1 − V2|2
C1C2

C1 + C2

=
|C1V1 + C2V2|2

C1 + C2

=
|C1V1 + C2V2|2

C
(C.4)

for the Π network, where C1C2 + C1C3 + C2C3 = 0 is used. The stored energy in
the corresponding T network is

4W (E) =
|V |2

|ωL3 − 1
ωC
|2ω2C

=
|V |2C

|ω2LC3 − 1|2
(C.5)

where V is the voltage

V =

V1
jωL1

+ V2
jωL2

1
jωL1

+ 1
jωL2

+ 1
jωL3+ 1

jωC

=
C1V1 + C2V2

C + C1C2

C3− 1
ω2L

= (C1V1 + C2V2)
ω2LC3 − 1

C
(C.6)

that inserted into (C.5) gives (C.4) and shows that the stored electric energies are
identical for the Π and T networks for the case C1C2 + C1C3 + C2C3 = 0. The T
network has a negative inductance L2 that is removed in the �nal transformation to
the ideal transformer, see Fig. 10.
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Appendix D Bode-Fano matching limitations

We consider the Bode-Fano matching to determine a bound for lossless matching
networks, see [12] for details. Using the asymptotic expansions and the zeros in the
complex half plane for the shunt LC series LC circuit in Fig. 4, we have the integral
identities

2

π

∫ ∞
0

ω2 ln
1

|Γ (ω)|
dω =

2

Qc

+
2

3
Re
∑
n

λ3
n (D.1)

2

π

∫ ∞
0

ln
1

|Γ (ω)|
dω =

2

Qg

− 2 Re
∑
n

λn (D.2)

2

π

∫ ∞
0

1

ω2
ln

1

|Γ (ω)|
dω =

2

Qg

− 2 Re
∑
n

1

λn
(D.3)

2

π

∫ ∞
0

1

ω4
ln

1

|Γ (ω)|
dω =

2

Qc

+
2

3
Re
∑
n

1

λ3
n

(D.4)

where Qg = max{Qp, Qs}, Ql = min{Qp, Qs}, Qc = 3Q3
gQl/(3Q

2
gQl + 3Qg − Ql) ≤

Qg, Reλn ≥ 0, and we have assumed that ω0 = 1. We bound the integrals using
maxω |Γ (ω)| = Γ0 for ω ∈ ω0[1−B/2, 1 +B/2] giving the inequalities

1

π
(B +B3/12) ln

1

|Γ0|
≤ 1

Qc

+
1

3
Re
∑
n

λ3
n (D.5)

1

π
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≤ 1
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− Re
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λn (D.6)

1

π
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1

λn
(D.7)

1

π
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(1−B2/4)3
ln

1

|Γ0|
≤ 1

Qc

+
1

3
Re
∑
n

1

λ3
n

(D.8)

We note that the middle equations are identical to the Bode-Fano bound for the
RCL circuit [19] for maximal Q value max{Qp, Qs}. This is natural as the cascaded
shunt (or series) circuit cannot improve the matching. It is also seen that a complex
conjugate pair gives the optimal λn for B � 1 and that this case reduces to the
bound for the RCL circuit. The set of inequalities are solved numerically for Γ0

given B and assuming a complex conjugate pair λn.
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