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A Framework for Linear Control over Channels with Signal-to-Noise
Ratio Constraints

Erik Johannesson, Anders Rantzer and Bo Bernhardsson

Abstract— We present a framework for the solution of control o v
and estimation problems under a signal-to-noise (SNR) rati
constraint. The framework can be used to design optimal
linear controllers, based on output feedback, with two degees
of freedom: One part of the controller is placed before the
communication channel and represents sensing and encoding
operations. The other part represents decoding and issuing C t e T D
of the control signal. The framework includes a generalized (

n

plant model that can be used to represent problem instances
covered in previous papers [12], [11] as special cases. It is
shown that the design problem can be solved by minimization

of a convex functional depending on the 1- and 2-norms of the Fig- 1. Model of feedback system with disturbance and notsyruni-
Youla parameter, followed by a spectral factorization cation channel. The objective is to desighand D so that the system is
' ' stabilized andz is minimized under an SNR constraint.

. INTRODUCTION

The trend towards decentralized control systems has in-
spired a lot of research on networked control systems (NCS)hannels in [15]. For Additive White Noise (AWN) channels,
As control systems are required to operate using non-ideadnditions on the SNR for stabilizability were derived, end
communication channels between its parts, it becomes irdifferent assumptions, in [3] and [16]. Limitations due to
portant to take into account the impact of these channels mwisy channels have also been characterized in [13] and [8].
the control performance. Communication constraints, tvhic Regarding optimal control performance, design of an
are a fundamental aspect of NCS, can take various forms decoder-decoder pair with one degree of freedom has been
pending on the type of communication system used. In digitabnsidered, with different structures, in [6], [9], [17] can
networks there may be packet drops, bit rate limitationd, ar{16]. In [6], it was shown that a constant gain encoder can be
time delays. In analog communication systems there may logtimal for first order plants. A design procedure for a con-
constraints on the Signal-to-Noise Ratio (SNR). troller with two degrees of freedom was recently presented i

In this paper, a control system with an analog communi1]. The aim of the present paper is to generalize and refine
cation channel is considered. It has the architecture seenthe results presented there. The problem considered in [11]
Fig. 1, whereG is a generalized LTI plant and the controller,is actually a special case of the problem studied here. This
which has two degrees of freedom, is made upCbind also holds for the estimation problem considered in [12].
D. It is possible, but not necessary, to think 6f as a The case when the encoder has access to the channel
sensor/encoder and @ as a decoder/controller. output (channel feedback) has been considered in [1], where

The problem of simultaneously designing the optimait was shown that non-linear strategies can be better than
linear C and D is considered, with the plant subject tolinear, under some assumptions. Linear strategies forabe c
a stochastic disturbance. The objective of the controBler with channel feedback were studied in [16] and [18]. The
to stabilize the system, satisfy an SNR constraint on thatter paper gives a solution to the problem in terms of a
noisy channel and minimize the plant output. The main resuiinctional with a structure similar to the one obtained here
of this paper is that an optimal linear controller can bend in [11]. Although the solution in [18] is arrived at using
found by first minimizing a functional and then performinga slightly different technique, it could be modified to also
a spectral factorization. The functional to minimize deggen solve the problem in [11].
on a combination of 1- and 2-norms of the Youla parameter. The problem of optimizing the control performance at
It is demonstrated that this minimization can be arbityarila given terminal time was considered in [7] and [5]. The
well approximated by a convex optimization problem. solutions may however yield poor transient performance and

. therefore be unsuitable for closed-loop co .
A. Previous Research p control

A lot of the research on NCS with analog channels haB. Notation
focused on fundamental limitations. Moment stabilizapili  yanote the unit circle b§f. For1 < p < oo, the Lebesgue

of the feedback loop has been characterized for generat no@pacesﬁ and the Hardy spacés, are defined oveF in the
P P
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and ., are denote®RH, andRL, respectively. For details, w1 Yy Gyu w2

consult standard textbooks such as [14] and [20].
For transfer matriceX andY’, define u
1 o ] * (ot t r
X1, = Py try/ X (e) X *(e')dw C + D
T Jo
2 1 o iw * (0 dw T?’L
1X]5 = o tr (X(e ) X" (e )) dw
) 0277 Fig. 2. Block diagram for internal stability analysis.

(X,)Y)=— / tr (X*(e"™)Y (€)) dw.

27T 0

A scalar transfer functionX € H, is outer iff the set SNR constraint (1) and minimize the sum of the variances
{X¢q: ¢ is a polynomial inz"'} is dense inH,. X € RH, of z in stationarity:
is outer iff it is biproper andX (z) # 0 for |z| > 1. .

Equalities and inequalities involving functions/h evalu- J(C, D) = Jim E(z(k)" 2(k)).
ated onT are to be interpreted as holding almost everywhere
onT. Transfer function arguments will sometimes be omitteq,i_-i
when they are clear from context.

By expressing: andt in terms of the transfer functions in
g. 1, the objective and the SNR constraint can be written

DCG..Gyy | DG, |
Il. PROBLEM FORMULATION JCD) =G+ 77564, |, H71 “DCGyll,
Consider the system in Fig. 1. The plaftis an LTI gnd
system with state space realization
y P , G, |I> || DCGyu |
0" > ||l—F=AA— — (2)
o o A | B B 1—-DCGy. ||, ||1—DCGy,|,
G(z) = w(2) Gaul2)) (& D11 D - - -
Gyo(2) Gyu(z) c ‘ D 0 " respectively. For technical reasons, only solutions where
2 21

the product DC is a rational transfer function will be

where(A, B,) is stabilizable andC5, A) is detectable. The considered. This may exclude the possibility of achieving

signalsv and z are vector-valued wittn,, andn. elements, the minimum value, but the infimum can still be arbitrarily

respectively. All other signals are scalar-valued. Acaugty, ~Well approximated by rational functions.

GLo IS Ny X Ny, Gy 1S 1 X Ny, Guyy i 0y x 1 and Gy, is For properD and C, it holds thatDC € R. Only the

scalar and strictly proper. It is assumed tl@&t, G, and latter will be explicitly enforced, but it will be seen thatet

GGy have no zeros or poles i solution can be constructed so th@te #Ho is outer. Then
The inputw is used to model exogenous signals such &, C~" are proper, and = (DC)C~" is also proper.

load disturbances, measurement noise and referencessignal . SOLUTION

It is assumed that and the channel noise are mutually '

independent white noise sequences with zero mean andThe solution is divided into three parts. First, Stablllty

identity variance. conditions are given. Then the optimal factorization peobl
The communication channel is an additive white noisés presented. Its solution is used in the third part to derive

(AWN) channet with SNR o2 > 0. Since the channel input an equivalent convex problem.

and output can be scaled, it can be assumed without Io&s

. ! L Internal Stabilit
of generality thatn has variancd. The SNR constraint is y

assumed to hold in stationarity, that is Introduce K = DC. Following the same reasoning as in
[20], it is concluded that internal stability of the systeins
klim E(t(k)?) < o°. (1) Fig. 1 and Fig. 2 are equivalent. The latter can be repredente
— 00

by the closed loop maf’, defined by
The feedback system is said to be internally stable if no

additive injection of a stochastic signal with finite varian y w1
. . . . t| =T Wo
at any point in the block diagram, leads to another signal " n
having unbounded variance. This is true iff all closed loop
transfer functions are ift,. Thus, the system in Fig. 1 is internally stable iff
The objective is to find causal and proper £Eystems KGy. Gyu DGy

C and D that make the system internally stable, satisfy the 1-KG,, 1-KG,, 1-KG,,
C

CGyy KGy,

1Since only linear controllers are considered, it does natend n or T = 1—KC 1—KC 1—KC € Ha. (3)
v are Gaussian or not. Linear solutions may, of course, be mpless yu yu yu
suboptimal depending on the distributions. KGyu D

°Note that it is not claimed that linear solutions are optipet se. 1-KGyu 1-KGyu 1—-KGy,



The following two lemmas will give necessary and suffi- Suppose furthermore thdat € RL; satisfies (4). Then
cient conditions for internal stability, respectively.é'proofs there exists(C, D) € ©¢ p(K) with C € H, outer and
are omitted for space reasons, but can be found in [10]. D € L5, such that the minimum is attained and (7) holds

Lemma 1:Suppose thaf’ € H,, thatG,, = NM~'is  with equality.

a coprime factorization oveRH ., and thatU,V € RH If K is not identically zero, theC, D) is optimal iff
satisfy the Bezout identit)’ M + UN = 1. Then DC =K and
MQ -U 2 « G* qu
=" € RHo. 4 Cl” = U K| onT. 8

Lemma 2:Suppose thalG,, = NM~' is a coprime
factorization overRH.., that U,V € RH, satisfy the
Bezout identityV’ M + UN = 1, that (4) holds, tha€’ € #H,
is outer and thaD € £,. ThenT € H,.

If K =0, then the minimum is achieved by = 0 and any
C that satisfies| C'SG,, |3 < a.

Proof: Suppose first thaf{ = 0. Then the right hand
side of (7) is0. Letting D =0 givesHSDquHg =0 and it
B. Optimal Factorization is clear that(C, D) € O¢ p if C is as stated.

- L Thus, it can now be assumed that is not identically
Suppose for now that the produlst = DC' € R is given, zero. ThenC' is not identically zero and) = KC 1.

and_ that (4) holds. Perhagé is a nomlnql controller that is By assumption boti”*, G, andG,,G", are positive on
designed to have some desired properties and now has to,ﬁae Y

implemented in the architecture of Fig. 1. Another posijbil Since these functions are rational this implies that
is thatK is optimal in the sense that it is the product of some e > 0 such thatG7,G., > ¢ and Gy, Gy, > ¢, onT.
C and D that is the solution to problem 1. (9)
In either case, a natural question to ask is how to factorizBhus by Theorem 3 there exist scalar minimum phase
K into C and D such that interngl stability is achieved, thetransfer functions.,,, G, € H2 such that
SNR constraint is satisfied arfid||; is minimized. Rewriting - _ A A A P
J(C, D) and the SNR constraint2 in terms &f gives Goulou = Goula, GGy = GGy
Now, ||CSGva§ < « and Cauchy-Schwarz’s inequality

2 2
HGw + KGouGyo H DG (5) can be used to prove the lower bound (7).
1-KGy, 5 1 - KGy, 5 ) 2 . 2
IDSG.u|l? > ot HCSGUU HKC‘lstu
and ) ) 2 2
~ N 2
CGyy KGyu < o2 (6) >t <‘CSGUU ,‘KC’ASGZU >
1-KGyull, ||1-KGyul, ‘ ,
The SNR constraint will be impossible to satisfy unless =a HKSQGMGW L
K satisfies o = a7 | K5%C.uGyl:
a=o0?— H# > 0. Equality holds iff| K C~'SG..| and|CSG,,| are propor-
B yull2 tional onT and||CSGyv|\§ = a. Itis easily verified that this
(It follows from (6) thata # 0.) is equivalent to (8). Thug,C, D) achieves the lower bound

The objective of the optimal factorization problem is toiff D = KC~! and (8) holds, since these conditions imply
find C and D such that (5) is minimized subject to (6) andthat (C, D) € ©¢ p(K).

K = DC. For notational convenience, introduce Assume additionally thatX € RL; satisfies (4) with
1 M,N,Q,U,V € RHs. Then it holds that
S=———"—€RH
1-KGy, log |K| =1log|MQ — U| —log |[NQ + V|.

The set of feasible(C, D), parametrized byK, is then By Theorem 17.17 in [14]log|MQ —-U| € £; and
defined as log [INQ + V| € L; and thuslog |K| € £;. It follows from
) (9) and the boundedness 6f,, andG.,, on T that
Oc,p(K) = {(C, D) : |CSGyl; < 0, DC = K }.

GAZU
e e

yv

dw > —00

Note that the first term in (5) is constant and the second /_F log
term is a weighted norm ab. In the left hand side of (6),
the first term is a weighted norm af and the second is and ’ézuéglK‘ € £;. Then by Theorem 3 (in Appendix)

v

constant. The solution is given by the following lemma.  there exists an outer functiofi € 7, such that (8) holds.
Lemma 3:Suppose thaty > 0, S € RH~, K € Rand Also, D = KC~! € £, since

that G%,G.. € RL andG,,G;, € RL, have no zeros 1 »
onT. Then |KC|} = RPN N L
. : 1 2 2 zZu 1
(C7D)€H(%2D(K) ||DSGZUH2 Z a ||KS GZ“GW’Hl' (7) _



C. Equivalent Convex Problem e fMQ-U=0:C=D=0.

It will now be shown that the main problem is equivalentf (C, D) satisfy these conditions, th€d@, D) € ©¢ p and
to a convex minimization problem in the Youla parameter. J(C.D

As discussed earlie(C, D) should satisfy the SNR con- Proof: C 'd( ’C l))< @é@) te d definek — DC
straint (2) and stabilize the system. That1s¢ H. It was Then (rgob) eorg' er((K,) fc)> rethisacl:jhgille O?]'{n Mo:eove.r

i 1 9 C,D . ’
also assumed th&t' D € R. Thus, the feasible set is becausel’ ¢ s it follows from Lemma 1 that can be
Oc,p ={(C,D): DC € R,(2),T € Ha}. written using the Youla parametrization (4). Since the SNR

It will be shown that minimization off (C, D) over©c¢ constraint (2) is §atisfied b§C, D) it follows that K € O,

can be performed by minimizing the convex functional ~ Where©x is defined by

= 2 K u 2
SO(Q) ||Gz'u + quGUU(AQ + B)”Q ) ®K — {K . (4)7 Gy(; < 0_2 .
|G- Gyo (AQ + B) (EQ + F)} L= EGyully
o2+1-||EQ+ an ’ It has thus been proved that
where A = M?, B = —MU, E = MN andF = MV, (¢ D) e ©cp = (C,D) € O¢.p(K) for someK € O.
with M, N, U,V determined by a coprime factorization of (15)
Gyu, Over the convex set A lower bound will now be determined fof (C, D).
O0=42Q:Q € RHoo,||[EQ+F|> <o®>+1}. @
o= { | - J inf  J(C,D) > inf inf  J(C,D)
The Q € ©¢ obtained from minimizingp(Q) will be  (¢:P)€Oc.p Kedx (C.D)edc,p(K)
used to constructC, D) € ©¢ p. However, this will not be @ inf ’G 4 KG-uGy, 2+ it H b, |12
possible forQ for which the corresponding has poles on Keog [T 7 1=KGuu |ly (¢ D)eoe, p (k) 1 1K G=u lo
T. For such@ a small perturbation can then be applied first. KG.yGyy 2
This will r.esulf[ in an increased cost, but this increase aan b . KG.uGyo 2 (I—KGy.)? .
made arbitrarily small. > inf |G,y + 5
~Lemma 4:Suppose) € O, ande > 0. Then there exists <9« 1= KGyull, 52 H KGyu
Q) € O¢ such that 1-KGyully
A (4)
MQ-U = i
k=Y2"U pp, o) o2, 79
NQ+V )
and The first step follows from (15). In the second step, the
o(0) < p(Q) + ¢ first term has been moved out since it is constant in the inner

The proof of Lemma 4 is based on a perturbation argumemmlmlzanon. The third step follows from Lemma 3 with
and can be found in [10]. The main theorem of this paper ) KGyu 2 1
can now be formulated. =0 T T RG K‘Gyu , >0, S= 1-KGy,, € RHoc.

Theorem 1:Suppose that? > 0, G%,G.. € RL~ and
GG, € RLs have no zeros off, thatGy,, = NM ! is The fourth step follows from

a coprime factorization oveRH ., and thatU, V' € RH KG 2 1 2
. . . -1 yu — -1,
satisfy the Bezout identit]y M + UN = 1. Then - KGy, |, H [—KGy |,
(C,Dl)réfec,D J(C. D) = QlengQ (@) (11) which is due to orthogonality, sino&,, is strictly proper,

Furthermore, suppos@ € Og, ¢ > 0 and letO) e 00 and application of the Youla parametrization, which gives

be as in Lemma 4. Then there exigts, D) such that the K - A 1 _
, — - AQ+B, ——— =EQ+F
following conditions hold: 1-KGyu @ 1—-KGy, @
« If MQ U is not identically zero(C, D) € H» x L2, Now a suboptimal solution will be constructed. Suppose
whereC is outer and that Q@ € O ande > 0 and letQ € O be as given by
= MQ-U (12) Lemma 4 and defin& € RL; by (12). ThenK € ©x and
NQ+V H KG..Gyo |
1 2 2 B
2 _ A KGZUGK’U (1 _KG u)
2 i Hl_KGyu 2 [GLuGeu QP(Q):H ZU+1—KGU ST
e e GG |KlonT vl g || Kl
zu T yv YTy 1— KGyu 9
(1—-KGyu)*|;

(13) If MQ—U =0thenK =0,
D=KC™ (14) J(0,0) = G2 = 9(Q) < (@) + e,



and the proof is complete. with domain {(z,y,v) :z,y € R", v e R, yTy <1}, is
If, on the other hand)/ Q) — U is not identically zero then convex in(z,y) for anyv € R. Thus,

K is not identically zero. By Lemma 3 there then exists an T \2
outer C € H, and D € L, such that (13) and (14) are g9(z,y) = max f(z,y,v) = 27z + (=7y) ,
satisfied. The lemma also says that sy€h D) satisfy veR 1—yTy
KC..C 2 with domain {(z,y) : z,y € R", y'y < 1}, is convex in
5 H% (z,y) since it is the pointwise maximum of a set of convex
H DGy _ (1 - KGyu) 12 functions [2]. Now, supposéu, e) € ©,. Let
1—-KG,, KG,.,
RS S | i 1 w1 =0, wgt1—wrp=27/n, k=1,...,n—1
1 - KGyu ||y .
and a=la(w) a(w2) ... a(wy)]
~ T
H CGyp |I° _ - H KGyu | é=le(wi) ews) ... elwn)]
— o —ll—1 -
1 - KGyully — 1 - KGyu|y By definition of the integral, it holds that
D,C and K satisfy the conditions of Lemma 2, which im e 1 1 (" e(w)2dw < 1
implies thatT € H» and thus(C, D) € ©¢,p. Moreover, n=oo (62 +1)n (02 +1)2m J_. '
o for largen, (a,(c*+1)~"/%¢ n belongs to the do-
KG.uGye 2 So for | i, (02 +1)"1/2¢ bel he d

m main of g and

= 0(Q) = ¢(Q) +e. . ( g ¢
pla,e) = lim g | —=, ———e | .
Sincee can be made arbitrarily small this shows that (11) - Vi V/(e? +1)n

holds and hence the proof is complete. B Since the right hand side is convex i@, ¢), and thus in
A by-product of Theorem 1 is a necessary and sufficieritz, ¢), it follows that p(a, e) is convex. [ ]

criterion for the existence of a stabilizing controller tha Remark 2:Convexity of p(a,e) has been shown previ-

satisfies the SNR constraint. ously in [4]. This proof is, however, substantially shorter
Corollary 1: There existgC, D) that stabilize the closed  Define the functional

loop system of Fig. 1 subject to the SNR constraint (2) iff
the?e gxist@ € Rg[oo sucrjl that ? o(Q)=¢(@)— (”GZ””3+2RG (Gav, GZ“Gy”(AQ+B)>)

2
IMNQ + MV < o* + 1. 16) = 1G-uCo(AQ B3 + [ S QT PNEQ I,
Remark 1:Corollary 1 implies that the minimum SNR o +1-[|EQ + Fl;

compatible with stabilization of a stochastically distedb Lemma 6:Supposer) € Og. Thenyy(Q) < « iff there
plant by an output feedback LTI controller with two degreegxists(a, e) € ©, such thato(a,e) < v and
of freedom can be found by minimizing the left hand side of
(16) overQ € RH... The analytical condition for stabiliz- a(w) > /G5, GGy Gy, |AQ + B, 17)
ability presented in [3], is derived from a minimization bkt e(w) > |[EQ + F| Vw. (18)
left hand side of (16). This means that the same conditionis  p,qqf: The_proof is a simple modification of the proof
also necessary and sufficient in the present problem setting | emma 2.7 in [10]. -

This has been noted previously in [16]. Theorem 2:The problem of minimizingp(Q) over O
It will now be shown that the minimization @f(Q) over s convex.

©¢ is a convex problem. To this end, define the functional  pyyof: The proof is a simple modification of the proof

2
Dqu
1€.0) =[G + =

2 2

2 of Theorem 2.4 in [10]. ]
e (& 17, alw)e(w)de)
pla,e) = %/ a(w)?dw + P ey L R IV. EXAMPLES
o 2w It will now be demonstrated that the estimation problem
with domain considered in [12] and the control problem considered in

[11] are special cases of the problem in this paper.

_ . 1 " 2 2
0, = {(a’e) ta(w),e(w) € R, %/ e(w)"dw <o+ 1}' A. Signal Estimation with SNR Constraint

Consider the system in Fig. 3. The objective is to design
the filtersC' and D such that the signdP F'w is estimated as
well as possible in the mean-square sense. The measurement
Fla,y,0) = (IJFW)T@JFW) — 2 Fun +_ G@g has to be fiItereq apd encoded Uy for
e . oo transmission over the communication channel. The decoder
=riz+2vry+oi(yy—1) D then produces the estimate. Comparing with the block

Lemma 5:The functionalp(a, ) is convex.
Proof: Taken > 2. The function
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